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Giant magnetoresistance in lateral surface superlattices
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%e investigate the low-field magnetoresistance p „perpendicular to a one-dimensional periodic potential

which is imposed upon a two-dimensional electron gas in GaAs-Al Ga&,As heterojunctions. Distinct low-

field anomalies and a crossover from positive to large negative magnetoresistance with increasing potential

strength unveil the important role of anisotropic relaxation processes in strongly modulated electron systems.

Imposing a one-dimensional (1D) periodic potential upon
a two-dimensional electron gas (2DEG) creates a lateral sur-

face superlattice with peculiar transport properties. ' The mo-
tion of conduction electrons in both a weak periodic potential
(potential amplitude Vo&&EF, the Fermi energy) and an ap-

plied magnetic field B perpendicular to the electron gas
plane, for example, gives rise to magnetoresistance oscilla-
tions reflecting the interplay of the two relevant lengths of
the system, the superlattice period a, and the classical cyclo-
tron radius R,=6k„/eB Here, . kF= )2mn, is the Fermi
wave vector and n, the carrier density of the 2DEG. These

commensurability effects are usually accompanied by a pro-
nounced positive low field magnetoresistance, if the current
Bows normal to the 1D modulation. The positive magnetore-
sistance stems from electrons on open orbits (parallel to the

grating) and disappears once all electrons perform closed cy-
clotron orbits (magnetic breakdown). Usually the scattering
time v of the electrons is assumed to be the same in "val-
leys" and "hills" of the potential landscape. In this paper we
demonstrate both experimentally and theoretically, that the
slope of the magnetoresistance switches from positive to
negative with increasing modulation strength. The under-

standing of this crossover involves not only the magnetic
breakdown effect but also a k-dependent scattering time, not
considered previously.

We used conventional modulation doped
GaAs-Al„Ga& As heterostructures containing a high mobil-
ity two-dimensional electron gas. A 1D lateral superlattice is
defined by means of holographic lithography. The grating
with period a =500 nm is transferred to the 2DEG by selec-
tive wet etching of the G&4 cap layer. Hence the surface is
either terminated by Al Ga& As or by stripes of GNB giv-
ing rise to an alternate bending of the conduction band which
results in a lateral periodic potential. After patterning we
fabricated Hall bars, sketched in the inset of Fig. 1(b). To
determine the resistivity p„„we applied a dc current (0.1—0.5
p,A) between the current probes [see Fig. 1(b), inset] and

measured the longitudinal voltage drop using a nanovoltme-
ter. The magnetic field B was applied normal to the plane of
the 2DEG. To change the modulation strength we used brief
illumination with a red light emitting diode (LED) at liquid-

helium temperatures.
Resistivity data, measured across the potential grating at

0.5 K, are displayed on the left-hand side of Figs. 1(a)—1(c)
for different strengths of the modulation potential. For the
strongest modulation [before LED flash, Fig. 1(a), left] the

zero field resistivity is huge (74 kA), followed by a drastic
negative low-field magnetoresistance if the magnetic field is
ramped up. The symmetry of p„with respect to ~B reflects
the homogeneity of our devices. Despite the large zero-field
resistivity, quantum oscillations emerge at about B= 1 T. Re-
ducing the modulation by briefly illuminating the sample
with a LED, utilizing both, the persistent photoconductivity
effect and the reduction of the surface depletion layer leads
to a decrease of p„„(B= 0) by a factor of -7. This trace is
plotted in Fig. 1(b) where the huge negative magnetoresis-
tance from Fig. 1(a) now has changed to a more spiked hel-

metlike structure around B=O. At higher B a pronounced
resistance drop is still present just before the quantum oscil-
lations commence. Further reduction of the modulation re-
sults in a camel's back shape of the resistivity, shown on the
left-hand side of Fig. 1(c). Note that around B=0 the resis-
tance now increases (positive magnetoresistance) as is usu-

ally expected in lateral superlattices.
The right-hand side of Fig. 1 displays model calculations,

discussed below. Our theoretical modeling is organized as
follows: First, we sketch a model of the Fermi surface in a
strong 1D periodic potential which has been presented in
detail elsewhere. Based on this picture we can (i) estimate
the phase space fraction [determined by the angle 0 in Fig.
2(c)] of electrons able to cross the potential grating, and (ii)
derive the expressions Eqs. (6)—(9) for the conductivity. The
central issue of our work is to demonstrate the consequences
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FIG. 1. Left-hand side: p„ for different strengths of the one-
dimensional superlattice potential. (a) Strongest, (b) intermediate,

and (c) weakest modulation adjusted by brief illumination with a
LED. The inset of (b) sketches the experiment. Right-hand side:
Corresponding calculated p„ traces (thick solid lines) consisting of
isotropic (dashed) and anisotropic contributions (solid) to electron
scattering rates. The parameters used are tabulated in Table I.

of different scattering times on the transport behavior. Based
on simple assumptions we give explicit expressions for the
magnetoresistance.

The unidirectional potential with period a in the x direc-
tion we model by a Kronig-Penney-type potential with am-

plitude Vp/2 and barrier width a/2, sketched in Fig. 2(a).
Since the elastic mean free path (before patterning) is much
larger than the period a, we expect the size quantization
within the potential wells not to be destroyed by disorder.
This is the origin of the peculiar Fermi surface which con-
trols the transport properties. Generally, the electron energy
E(k) at 8=0 may be written as

6 k
E(k) =

~ + e(k„), (&)

with k, kY the wave-vector components and m* the electron
effective mass. The first term in Eq. (1) describes the free
electron motion in the y direction. The second term in gen-
eral is composed of 1D minibands due to Bragg reflectiens at
the Brillouin zone boundaries. In the following we neglect
Bragg reflection and consider only classical reflection. Since
the period a is much larger than the Fermi wavelength
XF=2 m./kF-O. la semiclassical approximations may be
used.

In the following we consider two distinct groups of elec-
trons, free electrons and bound electrons Only electrons .with

energies e(k„) higher than + Vp/2, have enough kinetic en-

ergy in the x direction to overcome the barrier. The corre-
sponding segments of the Fermi surface, sketched in Fig.
2(c), remain circular with free-electron-like velocities:

v, = fikFcos(f)/m* and v = fikFsin(f)/m* for —8p/2
~t/I~ Op/2, and m —Hp/2~ib&m+ Hp/2. Here, kF is the av-

erage Fermi wave vector corresponding to V&=0 in Fig.
2(a), while the superscript F denotes the other quantities at
the Fermi surface. The critical angle Ho dividing up the
Fermi surface is determined by the condition

~k,
~

= gm*Vplfi, leading to . cos(Hp/2) = gVp/2EF. Signifi-
cant deviations of e(k,) from the free electron dispersion
6 k„/2m* are expected if this energy is smaller than the
barrier height. Electrons in these states are denoted as bound
electrons, having a quantum-wire-like dispersion. The x
component of the velocity expectation values for such clas-
sically bound electrons vanishes, giving rise to the flat sec-
tions at the Fermi surface with v„=0 and vY = flak~(r/i)/m*
for Hp/2~P~m —Hp/2, and 77+ Hp/2~ $~27T Hp/2, shown
in Fig. 2(c). Since many Brillouin zones of our superlattice
are occupied, we approximate k (tb) in the fiat sections of
the Fermi surface by

1+Vp/2EF ~
'i

i 1+2 cot (f) (2)

Equation (2) interpolates between the limiting cases
k (m/2) = /2m*(EF+ Vp/2)/fi and k (Hp/2) =kFsin(Hp/2)
in good agreement with exact numerical results of the Fermi
surface.

In magnetic Acids the Lorentz force leads to a redistribu-
tion of the kinetic energy between the x and y directions. The

FIG. 2. (a) Sketch of our 1D model potential. (b) Angle of inci-
dence p'" used to estimate the B-dependent phase space fractions of
free and bound electrons. (c) Calculated Fermi surface for a=250
nm, V0=7 meV, and EF"'—=EF+ Vo/2=S. 6 meV. The dotted line

describes the (classical) reflection of an electron from state + k,
into ~k„once the electron's angle of incidence (in real space)
becomes too small to traverse the potential grating. Fermi wave
vectors are different in the x and y direction: k (P= m/2) corre-

sponds to the density in the well region while k,"(/=0) =k„re-
flects the average carrier density. To see this consider an electron
entering in (a) from the left with energy E„:Then the Fermi sur-

face derives from the VO=O case until the y-direction kinetic en-

ergy reaches EF—Vo/2.
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free electrons move along the states at the circular parts of
the Fermi surface till they reach the boundary between bound
and free states. Then a classical reHection occurs,

(k„,k~ )~(—k„,k~ ), forcing them to follow a closed trajec-
tory in k space (and hence in real space), shown in Fig. 2(c).
The bound electrons gain kinetic energy in the x direction
which enables some of them to overcome the potential bar-
rier and become free. This effect is known as the magnetic
breakdown which, for 2R, )&a/2, can be treated classically.

A bound electron becomes free when the sum of the ac-
quired kinetic energy in the x direction, m*(v„'") /2, and the

rniniband energy e(k„)=EF m*(—v ) /2 becomes larger
than the barrier potential Vo/2. The equation

F y III 2e(k, )+ —,'m*(v„'") =— (3)

then defines a critical magnetic field to get over the barrier.
To estimate v,'" we consider an "average" electron in the
middle of the well region which hits the barrier as is
sketched in Fig. 2(b). The angle of incidence P'" and the

velocity component v„'" are

a toe
sing'"= 1—

4vy
v =v cosPI (4)

where ai, = eB/m* is the cyclotron frequency. Using Eq. (4),
and v =6k (P)/m* we rewrite Eq. (3):

k (P) ( Vn~" m* via
1 — +

kF ( 2EF) fikF 4

e n, r 1—C(8~)
m* 1+co v

(6)

The k~(p) value, given by Eq. (2), which satisfies Eq. (5)
determines the critical angle 8ii=2|/I separating free and
bound motion for f'rnite inagnetic field. In the following we
model this magnetic breakdown effect by replacing the
angle Hp with H&. The angle H& increases as B grows indi-
cating an increasing number of free and a decreasing number
of bound electrons at the Fermi surface. For Hz = m, all elec-
trons become free.

Assuming an isotopic relaxation time r and weak mag-
netic fields (co, r(&1), the Chamber's solution of the Boltz-
mann equation may be used to evaluate the conductivity ten-
sor. For the group of free electrons this involves the
integration along the closed k-space trajectory (circular
parts) which gives

C(8,) = m —8e 1 —co, 7 sin 8&

I+co 1 1r

Inverting the total conductivity tensor, given as the sum of
free and bound contributions, we obtain the resistivities for
isotropic scattering (superscript iso):

m* 1+co,r C(8ii)

m*

S

Here, the Hall resistivity equals the free electron value,
p„'"=B/en, .

So far we assumed an isotropic scattering time. For strong
modulation this assumption is not justified. Enhanced scat-
tering is expected in low concentration regions where the
screening of impurities is less effective. These regions are
accessible to free electrons only. We now ascribe different
scattering times to free and bound electrons. Since bound
ones cannot leave the well regions we describe scattering by
the B-independent lifetime rz. The (B-dependent) lifetime
r of free electrons, exploring both well and barrier regions,
we estimate by

1 Hp 1 Hg-Hp 1
(10)

where 7o denotes the zero-field value. Here, we assumed that
the average (over phase space) scattering probability remains
unchanged in weak magnetic fields.

Current conservation for a k-dependent scattering time
requires, in general, the numerical solution of the Boltzmann
equation. Such numerics we avoid by introducing momen-
tum relaxation times in the x and y direction, r and ry . We
neglect the magnetic field induced motion of states at the
Fermi surface and describe the effect of the magnetic field by
the angle Hz. For co,r=0 we derive p„x and pyy by replac-
ing r in Eq. (6) and in Eq. (7) with r, and in Eq. (8) with
ro. Comparing the resulting p~~ with p'" [Eq. (9)]we obtain

7r—eg+ sine/r =r+ ('r T). (11)

2 M~r 1 —exp( —8~ /ao, r)+ —
2 (1+cos8e)1+co 7 1+exp( —8~ /cu, r)

'

(7)

The Hall conductivity is Drude-like, rr„= —o,
= —cu, r o„„.Here, the superscript f denotes quantities cal-
culated for free electrons. The group of bound electrons (su-
perscript b) contributes to the yy-conductivity component
only, given by the sum over minib and contributions,
e k (i/I)r/(mam*), and approximated by

e nor m —H~+sinHq
CTyy

= (8)

where

e n, r 1+co,r C(8a) e n, r m —8ii+sin8&
m* 1+co, r m* 7r

Given the structure of py'y' ry can be viewed as the "isotro-
pic" scattering time of our inhomogeneous system. Hence
we express the resistivity in the x direction as

p, =p.".'(r, )+~p, , (12)
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TABLE I. Parameters of the model calculations shown in Fig. 1.

Fig. 1(a)
Fig. 1(b)
Fig. 1(c)

2.36X 10"
2.51&10"
2.63' 10"

EF"' (meV)

8.1
8.6
9.0

Va (meV)

7.8
7.0
6.7

~a (Ps)

0.081
0.22
0.67

'ro (ps)

7.5
7.5
7.5

where, for (co,v=0) we find

m*
Pxx 2

S

m —8&+ sin8tt rz rf-
Htt + sltl Hit T

(13)

While p„",'(rY) in Eq. (12) is valid for finite co, r, Eq. (13)
strictly holds only for co, 7.=0. If, however, we assume the
enhanced scattering in the barrier region to take place within
infinitesimally narrow stripes, Eq. (13) also holds for
co,v+0. Due to the huge aspect ratio only the transport co-
efficients in the x but not in the y direction are altered. Such
an approach idealizes our system but allows us to derive
analytic expressions for the magnetoresistance; however, it
neglects the influence of anisotropic scattering on the Hall
resistivity.

The results of the model calculations are shown on the
right-hand side of Fig. 1 where we plot both the isotropic
contribution p„"„'and the correction term 6p„, . The resulting

total resistivity, p"„'+6p, , closely follows the experimental

traces. The magnetoresistivity p,"„', always positive and fol-
lowed by a breakdown peak, dominates for the weakest
modulation in Fig. 1(c) as is manifested in the camel's back
shaped low B rnagnetoresistance trace. With increasing
modulation strength the anisotropic scattering effect, ac-
counted for by Ap„, , dominates. This is the origin of the
pronounced negative magnetoresistance in Fig. 1(a) and the
"spiked helmet" in Fig. 1(b).'

The parameters used in our calculations are summarized
in Table I. The quantum oscillations observed in the experi-
ments we ascribe to Shubnikov —de Haas (SdH) oscillations
within the potential wells. Hence, the Fermi energy inside
the well, FF""'=FF+ Vo/2, can—be extracted from the period- .

icity of the SdH oscillations. The scattering time of bound

electrons, rz, is controlled by "boundary" scattering and is
hence assumed to be the same for all three modulation

strengths. The barrier height Vo and the scattering time 7o of
free electrons remain as fit parameters. The fit parameters we

obtain are reasonable: ro, the scattering time in the well, is
comparable to the one measured in the unpatterned 2DEG.
Also the fitted values of vz behave as expected and drasti-

cally decrease with increasing potential amplitude Vo.
Despite the simplifications, our model covers essentially

all the low B features observed in experiment. "The abrupt
decrease of the calculated magnetoresistance traces at

Hz= m is the result of the strict distinction between the two

groups of electrons. A more advanced model, employing fi-

nite probabilities for electrons to be free or bound, could
result in a more gradual resistance drop, shown previously
for weak periodic potentials. '

In summary we have shown that the low B resistance
anomalies in lateral superlattices with strong potential modu-

lation arise from the anisotropy in k space. Aside from the

different electron dynamics on "free" and "bound" Fermi
surface segments, the explanation of the negative magnetore-

sistance necessitates the introduction of k-dependent relax-
ation rates, i.e., different scattering times for free and bound

electrons. With increasing B the anisotropy of the Fermi sur-

face and hence the low field anomalies vanish.
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