
PHYSICAL REVIEW B VOLUME 50, NUMBER 12 15 SEPTEMBER 1994-II

Thermalization of a one-dimensional electron gas by many-body Coulomb scattering:
Molecular-dynamics model for quantum wires
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One-dimensional quantum-wire systems are peculiar in the sense that binary electron-electron col-

lisions cannot thermalize the energy distribution of the electrons in the same subband. We show that

such a thermalization occurs through many-body Coulomb scattering. We consider a one-dimensional

electron gas described by Newton's equations of motion with many-body Coulomb forces. These equa-

tions are solved by the molecular-dynamics technique. Thermalization of the nonequiBbrium distribu-

tion function towards Maxwell s function is demonstrated for a single-subband GaAs wire with electron

density 1 X 10' cm ' —3 X 10' cm ' and electron temperature 200 K.

Recently, optical measurements' and Monte Carlo
simulations ' of one-dimensional carrier relaxation have
been reported for GaAs quantum wires. It has been
found that carrier relaxation is much slower than in bulk
and two-dimensional systems under similar conditions.
In particular, the electron cooling time due to polar-
optic-phonon emission tends to increase with decreasing
wire cross section and is as large as —100 ps for a'2100X 100 A cross section. Furthermore, it has been ac-
cepted that interna1 thermalization due to electron-

electron scattering occurs only through intersubband
binary collisions. ' Intrasubband binary collisions can-
not thermalize energy distribution of a one-dimensional
electron gas. ' This is indeed the case with the exception
of some special cases. In the intrasubband binary col-
lision an electron changes its momentum from k to k' by
collision with another electron which is scattered from ko
and ko. The screened matrix element of the Coulomb in-

teraction between the electrons is

Ko(lk' —k l&(y —y')'+(z —z')')
M. .. .,.,=,„'„fdyfd fd'fd'~" ~'y"' ...,,...,„',(„„(,(„.),(„)),„)

where tp(y, z) is the electron envelope function in the con-
sidered subband (the x axis is assumed to be identical
with the wire axis), I. is the wire length, Ko is the Bessel
function, e, is the material permitivity, e is the dielectric
screening function, s(k) is the electron energy and g is
the component (parallel with the wire axis) of a reciprocal
lattice vector. The probability of the binary collision is
given by Fermi's golden rule5'6S, , = [-'~M

kko k ko g kko k ko kko kok

x 5(s(k)+ e(ko) —E(k') —s(k 0)) . (2)

For g =0 and e( k }=A k /2m, where m is the electron
effective mass, one gets k'=ko and ko=k. %'hen the
spins of the colliding electrons are parallel, there is no
physical effect from such collision. When the spins are
antiparallel, the only effect is the spin Sip in states k and
k 0. Since new momentum states cannot be created, in-

A.n inspection of (1) and (2) yields conservation of
momentum and energy,

k+ko —k' —ko=g, e(k}+e(ko)=e(k')+e(ko} .

I

trasubband binary collisions do not thermalize the energy
distribution. '

For g =n 2n/a (a. is the lattice constant;
n =k 1,+2, . . .) and s(k}=Pi k /2m it is easy to see that
k'Ako and kook. Such an umklapp process creates new

momentum states, however, the probability of its realiza-
tion is likely negligible (typical energies of the colliding
electrons have to be of the order of 1 eV for
g =2m/a=10' m ', while actual typical energies in
GaAs wires are much lower). '

For g =0 and for nonparabolic dispersion
s(1+as) =Pi k /2m, where a is a constant, Eqs. (3) yield
k'Ako and kook. Thus the thermalization through in-

trasubband binary colhsions is possible, when the energy
dispersion is nonparabolic. Up to now, to our
knowledge, no estimations of this effect in real GaAs
wires have been published.

There is, however, a more fundamental problem in the
frame of the parabolic dispersion model. Fermi's golden
rule (2) reduces the many-body Coulomb interaction to
the binary collision processes, which cannot thermahze
one-dimensional electrons in the same (parabolic} sub-
band. Is such a thermalization prohibited also in the
one-dimensional gas with many-body Coulomb interac-
tion? In this work we show that many-body Coulomb
collisions thermalize the nonequilibrium distribution to-
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x, (t+b, t)=x, (t)+b, t
Ak, (t+ht)

To simulate an infinitely large system using a finite num-
ber of particles, the following periodic boundary condi-
tions are employed. %'e define a basic cell of the length
L, that contains E electrons (typically N =1000). When
an electron leaves the cell crossing the boundary x =I.,
another electron is injected into the cell at the equivalent
boundary x =0 with the same k value. A similar pro-
cedure is used when an electron crosses the boundary
x =0. Thus an infinite system is simulated using finite
and constant X.

Coulomb force (4) has to be recalculated after each
time step At. To be consistent with the periodic bound-
ary conditions an electron should be considered to in-
teract with all other electrons in the cell and also will all
electron images in the periodic replicas of the cell. This
can be achieved through the Ewald sum method. "How-
ever, the implementation of the exact Ewald sum is too
time consuming and often subject to numerical errors. In
Ref. 12, a minimum image approximation for the Ewald
sum has been found to work well for plasma coupling
constant I as large as 36. [We note that

wards Maxwell distribution. For simplicity we examine
many-body Coulomb kinetics of the classical one-
dimensional electron gas. We use the molecular dynam-
ics (MD} method to simulate the time development of the
electron distribution in the GaAs quantum wire.

Similarly to Refs. 3 and 4 we analyze the electron dy-
namics, while the efFect of holes is neglected. The per-
fectly one-dimensional electron gas with free motion in
the x direction is assumed to occupy only the lowest-
energy subband of the wire. The dynamics of an ith elec-
tron is governed by Newton equations k;=F, /fi and

x,.=4k, /rn, where the Coulomb force is

x; xjF;= (4)
4m as,.

with the summation over all other electrons. A similar
classical formulation of many-body Coulomb kinetics has
been used to study the electron transport in GaAs wires
as well as the relaxation of photoexcited carriers in two-
dimensional and three-dimensional GaAs systems.
Newton equations can be solved numerically without ad-
ditional model approximations. Therefore, this MD ap-
proach avoids several approximations which cannot be
avoided in Monte Carlo treatments of carrier-carrier
scattering, namely, the approximation of discrete
binary collisions and the random-phase approximation
for screening. In the MD approach "collisions" are
treated as continuous many-body events and dynamic
screening is automatically included. ' Of course, MD is
fully classical. Quantum corrections (exchange effects,
Fermi statistics), included recently into the MD ap-
proach, ' can be neglected in the nondegenerate limit of
low carrier densities. %e use our MD in this limit.

Equations k, =F; /A' and x; =A'k; /rn are discretized as

F,(t).
k, (t+bt)=. k, (t)+Et.

I'=e /(4nezAZ), where A, is the mean interparticle dis-
tance and e is the mean kinetic energy of the electron. ] In
our case I' &0.4, i.e., the minimum image approximation
should be even more reliable. In this approximation an
electron is considered to interact only with X —1 elec-
trons in the cell (O, L } through specially defined in-
terelectron distances. The calculated value of x, —x. is
used in the sum (4} only if ~x,.

—
x~ ~

& L/2. Otherwise the
following replacement is used in (4). If x; —x &L/2,
then x, —x is replaced by x, —x L. —Ifx; —x & L/—2,
then x, —x is replaced by x, —x +L. Thus the particle
at which the force is calculated sits at the center of its
own cell.

Unfortunately, experience shows us that this approach
is still too time consuming for our problem. Therefore
we have also implemented a faster technique that trun-
cates the Coulomb interaction for a pair of electrons with
a distance greater than a cutoff length Rc &L/2. In this
technique the sum (4) is modified using the same
"minimum image" replacement for ~x;

—xj ~
& L/2 as de-

scribed above. However, only terms with ~x; —x
~ &Rc

and terms with ~x; —xj TL
~ &Rc are taken into account

in the summation. Of course, choosing RC=L/2 one
comes back to the minimum image approximation. The
fast search for all electrons j within the distance Rc is
performed according to the algorithm described in Ref.
13.

As in the minimum image approximation, also in the
"truncation" technique the particle at which the force is
calculated sits at the center of its own cell, but the length
of the cell is 2Rc, not L Since 2R. c &L, the number of
interacting particles within the cell may change with time
in the simulation process. This lowers the accuracy of
the conservation of the total energy in the simulated en-
semble. In the minimum image approximation there is
no such problem, because an electron interacts during the
simulation with the same number of partners. Neverthe-
less, in our situation (low I }, above a certain Rc value
the "truncation" technique gives results, which are in-
dependent on Rc and essentially the same as the results
obtained by the minimum image approximation. In the
same time the former approach provides one order of
magnitude lower (three digit) accuracy of the conserva-
tion of total energy than the latter one, thus showing that
the lower accuracy does not afFect the results. Compar-
ison of both techniques will be demonstrated later on.
First we discuss the results obtained by the "truncation"
technique.

Simulation parameters are X =1000, ht =0. 1 fs, ' and
2Rc=20/nL, where nL is the linear electron density.
Typically each electron interacts with 20 nearest
partners. At the beginning of the simulation the initial k
and x values are selected. The size of k is selected for
each electron according to the Gaussian energy distribu-
tion of width 8.7 meV, centered at 8.7 meV. The sign of
k is selected at random. Then x is selected at random in
the cell (O,L }with a supplementing condition that the
generation of two electrons closer than 7 nm (for
nl =3X10 cm '), 8.5 nm (for nt =2X10 cm '), and
10 nm (for nl =1X10 cm ') is prohibited. This initiali-
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zation, chosen by experience, ensures that during the
simulation the mean kinetic energy remains the same as
the initial mean energy (E/k~ = 100 K).

In Fig. 1 the occupation number versus energy and ra-
dial distribution' versus normaHzed distance are shown
for times 0, 40 fs, . . . , 3 ps after the initialization. Simu-
lation has been performed for nl =3X10 cm '. The in-

itial occupation number is strongly peaked as a result of
the k selection from the Gaussian energy distribution.
During the first picosecond one sees a fast relaxation of
the occupation number towards the energy dependence
which is still strongly non-Maxwellian. No remarkable
change of this energy dependence is observed at times 1,
2, and 3 ps. Radial distribution also relaxes on subpi-
cosecond time scale and remains unchanged at times) 500 fs. A11 the curves have been obtained by averaging
the results of 30 simulations with a different ordering of
random numbers used to initialize k and x. The curves
from a single simulation would be more noisy.

Figure 2 shows how the occupation number from Fig.
1 progresses to relax at times 100, 200 ps, . . . , 10 ns. Fig-
ure 2 also shows the corresponding dependence on k.
The occupation number converges towards equilibrium
Maxwell function, shown in a dotted line for temperature
200 K. We note that curves in Fig. 2 are the time aver-
ages over 50-ps time intervals centered at shown times,
rather than instantaneous ensemble averages at these
times (such curves would be more noisy). This averaging
process is appropriate, because there is almost no relaxa-
tion on a 50-ps time scale and changes due to noise occur
on picosecond time scale.

On the nanosecond time scale of Fig. 2 the radial dis-
tribution (not shown) keeps the same shape as in Fig. 1 at
times & 500 fs. In other words, the slow thermalization
in Fig. 2 occurs in the regime of equilibrium radial distri-
bution. The fast relaxation of the occupation number in
Fig. 1 is closely related to the relaxation of the radial dis-
tribution. The increase of the radial distribution at dis-
tances close to zero is accompanied by the increase of the
occupation number at energies close to zero. This is due
to the fact that at t =0 a part of electrons can have
suSciently high kinetic energies to move fast to very
small mutual distances, where their motion is stopped by
the increased repulsion. On the other hand, the increase
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FIG. 2. Occupation number vs energy and k. This figure
shows how the relaxation in Fig. 1 progresses at times 100, 200
ps, . . . , 10 ns. The occupation number converges towards equi-
librium Maxwell function at temperature 200 K, shown in a
dotted line. The spacing between horizontal grid lines is 0.05.

of the high-energy tail of the occupation number is due to
the fact that at t =0 there are some electron pairs which
involve rather close partners with high kinetic energies
and with difterent signs of their momenta. Repulsion of
such partners further enhances their kinetic energies,
thus creating the high-energy tail. Generally speaking,
subpicosecond relaxation in Fig. 1 takes place because
the initial momenta and initial positions are uncorrelated.
We believe that during the fast relaxation the system
searches for a stable correlation. For example, when two
electrons become much closer than the mean interparticle
distance, their kinetic energies should be typically much
lower than the mean kinetic energy. Even this simple
correlation is disregarded in the initialization of k and x.
It should be mentioned that the fast thermalization is
mainly due to the absence of correlations, rather than due
to other details of the initialization. Test simulations
show us that at times greater than 500 fs the curves in
Fig. 1 remain (almost) unchanged when the initial posi-
tions are selected at equidistant x points and/or initial
energies are selected from monoenergetic distribution.
When the initial energies are selected from equilibrium
Maxwell distribution, the occupation number remains in
equilibrium, but radial distribution relaxes similarly to
that in Fig. 1.

Spatiotemporal oscillations of the radial distribution in
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FIG. 1. Occupation number vs energy and radial distribution
vs normalized distance d/nl ' for ni =3X10' cm ' at times 0,
40, 80 fs, . . . , 3 ps after the initialization. The spacing between
horizontal grid lines is 0.25 and 0.5, respectively.

O
~ &
c5
C4

O
L

PO 40 60 -4 -2 0 2 4

energy [rneV] k [](}8~ ']

4 ns
1900 ps
1700 ps
1500 ps
1300 ps
1100 ps
900 ps
700 ps
500 ps
300 ps
100 ps

FIG. 3. Occupation number vs energy and k for nL =2X 10'
cm at times 100, 300 ps, . . . , 4 ns after the initialization. The
spacing between horizontal grid lines is 0.05.
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FIG. 4. Occupation number vs energy and k for ni =1X10'
cm at times 100, 500 ps, . . . , 5.5 ns after the initialization.
The spacing between horizontal grid lines is 0.025.

Fig. 1 at times 40—200 fs show that an electron efficiently
affects the dynamics of several neighbors (and vice versa).
Since the "reflections" of individual electrons in the en-
semble are stochastic, oscillatory structure is damped
fast. The equilibrium radial distribution within the
nearest-neighbor distance is smaller than the transient ra-
dial distribution, i.e., close proximity ("collision" ) of
several electrons is less probable. This provides qualita-
tive understanding for the slow thermalization in Fig. 2,
because it occurs in the regime of equilibrium radial dis-

tribution.
In Figs. 3 and 4 we show the same material as in Fig. 2,

but for nt =2X10 cm ' and for nt =1X10 cm ', re-
spectively. One sees that with decreasing density the
thermalization becomes much slower. We note that Figs.
3 and 4 show only the thermalization occurring in the re-
gime of equilibrium radial distribution. The ultrafast re-
laxation during the first picosecond (not shown) is very
similar to that presented in Fig. 1 for nL =3X10 cm
The only difFerence is that with decreasing nL the equili-
brated radial distribution becomes less different from the
initial radial distribution and the occupation number be-
comes less relaxed (note that the occupation number in
Figs. 3 and 4 has more pronounced peak at time 100 ps
than the occupation number in Fig. 2).

All the calculations discussed up to now have been re-
peated using the minimum image approximation with
N =200. Due to long computing time, simulation time of
1200 ps has been chosen. In Fig. 5 we compare the

FIG. 5. Occupation number vs energy for nL =2X 10' cm
Results of the "truncation" technique are shown in full lines

(X=1000, 2Rc =20/nz, ), in dashed lines (N = 1000,
2R&=10/nL), and in open circles (%=200, 2R&=20/nl ). Re-
sults of the minimum image approximation for N=200 are
shown by crosses.

"truncation" technique with the minimum image approx-
imation for nl =2X10 cm '. Except for the Quctua-
tions no remarkable difFerences between both techniques
are observed even in the case 2Rc =10/nt, when an elec-
tron interacts only with the ten nearest partners in aver-
age. A similar agreement of both techniques has been
found for nt =3X10 cm 'andnL =1X10 cm

In conclusion, we have shown that internal thermaliza
tion of the one dimensio-nal electron gas in a single
subband occurs through many body Coulo-mb scattering
Such a thermalization is not predicted by the Boltzmann
H theorem. ' The H theorem predicts the thermalization
in a gas subjected to binary collisions but there is no ther-
malizing effect from such collisions in our one-
dimensional case. Typical electron energies in our simu-
lation are lower than optical phonon energy (36 meV).
This situation could be realized experimentally by optical
excitation of the carriers close to the band gap.
Electron-phonon interactions, ignored in our present
work, could be further suppressed using low lattice tem-
peratures. In this situation internal thermalization
through many-body Coulomb scattering could be a quite
important and observable efFect. Of course, interactions
with phonons (and with holes) should be included in a
more detailed analysis of such experiments.
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