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The first two terms describe the broad conduction band
and the nondispersive f level, respectively. The third
term describes the hybridization between f and conduc-
tion electrons. The last term refers to the Coulomb in-
teraction between f electrons on the same site.

For U =0, Hamiltonian (I) can be diagonalized by the
canonical transformation
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where ek and EI are the nonhybridized and uncorrelated
conduction band and f-level energy, respectively. When
the total number of electrons per site is taken as
1(n (2, the normalized ground-state wave function is

given by

(4)

For the finite-U case, we construct the trial ground-
state wave function around the uncorrelated wave func-
tion by introducing the effect of U through a projection
operator P, , '

with

Here we have taken for ~f„, & the form (4) with ak and
p'k replaced by variational functions tzk and pk . The
simplest possible choice for the projection operator, wide-

%'e exhibit a variational wave function for the orbitally nondegenerate Anderson lattice model, which

incorporates the effects of onsite Coulomb interaction to deal with essentially metallic systems. The
average occupation in the correlated orbitals, the renormalized hybridization matrix element, and the
mass enhancement are calculated as a function of Coulomb interaction U and the hybridization matrix
element V. Our results for the U~ ~ limit are in agreement with the existing results for the infinite-U

problem. %e show that the infinite-U approximation is a good approximation for a class of materials
with U ) U, and V ( V, . The calculation of the effective mass m in the heavy-fermion regime shows

that it becomes large mainly because of the small hybridization off electrons with the conduction band

rather than because of large Coulomb correlations. The advantages of our approach are briefly dis-

cussed.

There has been, of late, a renewed interest in the
periodic Anderson model (PAM), triggered mainly by the
remarkable properties of the so-called heavy-electron ma-
terials (HEM's). ' This model consists of a conduction
band, correlated f-electron states localized at lattice sites,
and a hybridization ( V) between f and the conduction-
band electron states. In the simplest form of the model,
only the spin degeneracy is taken into account. Various
approaches have been used to study the problem. Owing
to the large Coulomb interaction (U), application of a
perturbation theory does not look like a promising path lk

(see, however, Ref. 4). Including U in the unperturbed
part of the Hamiltonian and treating V as a perturbation, to get the two hybridized bands
is also beset with technical difficulties. Variational
methods offer an attractive possibility for treating the
large-U periodic Anderson model, since they are nonper-
turbative in both U and V. In most of the existing ap-
proximations the role of U is not so transparent. In this
paper we do the following. (i) We present a simple varia-
tional method to deal with metallic systems, which brings
out the role of U in a very transparent manner. A close
correspondence is maintained between the UWO and the ~q, ,&= g 1„'.~o&.
U =0 cases. Owing to the ease with which calculations k (k~, o.

are handled by using the variational wave function, the
method is amenable to further modifications andlor ex-
tensions. (ii) We estimate values of various physical
quantities for a range of values of U and V. (iii) We show
that the infinite-U approximation is a good approxima-
tion to describe a class af systems having U )U, and [,i, &=III.f.i,V( V, . (iv) The enhancement of effective mass in the
heavy-fermion regime is mainly due to small values of V
rather than large values of U.

The Hamiltonian for the orbitally nondegenerate ly„, &= g (~,.c,'.—p fk)IkO&
periodic Anderson lattice model is given by

H =g ek ck ck + g EIO'I;

k, o. 1, CT

+ ~(c, f; +H. c. )+ UghI tRf l. (l)''
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& nficr+ icr ia )c & fia+ io iver )uc (7)

ly used in the literature for U = ec, is P, =(1—fi'f t&fl$),
which forbids double occupancy. However, the problem
with this form of P, is .that it violates the requirement of
conservation of total electron density per site,

where nft=nft=nf/2 is assumed, V= VR, and iM is the
shift in the f level,

M (nf, d) V

f N«kf [(ek Ef+p) +4V l"
where (0), means (Q, l0lg, )/(g, l1(,i) and (0)„,
means (g„,lOlg„, ). In view of the requirement (7), we
choose

nf(1 nf)—Ud
2 2 2(2—nf ) —d nf

(15)

P, =1+ps &f,
— (1 d)+—gs

CT cr

(8)

with d as a variational parameter. P; projects out the
doubly occupied sites to an extent that we determine vari-
ationally. From Eq. (7) we obtain

1/2
1 nf~ d nf

1 —nf
(9)

where
1

nf. =y g pk
k (kf

(10)

and nf =nft+nft Here. we have used the translational
in variance.

The ground-state energy of (1) is

(@,IHI@, &

(|(,ly, &

(12b)

d (1—nf)
(1 n)+(1—d —)n n

X (f, ,f, tf, ,f, , )„, . (12c)

Here R is the renormalization factor for V, and is given
by

Again assuming the translational invariance, the density
matrices are evaluated using (5),

& c,'.f,.&, =R.&c,'.f,.)„, , (12a)

&f,.c,.&, =R.&f,.c,.&„, ,

Our method of construction of the ground-state energy
functional is similar to that used in Refs. 9 and 11.

Substituting pk obtained through energy minimization
in Eq. (10), the average occupation in correlated orbitals
nf is given by

=1 Ef+P
-2 i/2[(ek Ef+P—, ) +4V ]

(16)

1.0

We solve the self-consistent equations (15) and (16) and
tiE /Bd =0 for nf, iu, and d. Although our calculations
are valid for arbitrary dimensions, for simplicity we as-
sume the conduction band to be linearly ranging from

b to +b I—n the . calculations we have taken 2b =8 eV
and the nonhybridized and uncorrelated Fermi energy of
conduction electrons, Ez=3 eV. We have investigated
various cases 0& V/lEfl &1, 1&n &2, with 0& U & Oo.

The results for the parameter d, which is the reduction
factor for the doubly occupied sites and nf, are plotted as
a function of UllEfl in Fig. 1 for V/lEfl=1. 0, 0.6, and
0.1. We have taken n =1.75 and Ef = —1 eV. We 6nd,
at U =0, d =1. Using this in Eqs. (8), (9), (13), and (15),
we get P, = 1, R = 1, p =0, and, therefore, V= V. Conse-
quently, lf, ) reduces to l1(gati o) and we exactly repro-
duce the hybridized bands (3) for the uncorrelated prob-
lem. When U~ac, d~O. This simply refiects the fact
that at infinite U doubly occupied sites are forbidden.
Substituting d =0 in Eqs. (9) and (13), the renormaliza-

[(1—nf )(1+s )+dnf (1+s )](1—nf )E~=
(1 nf )+(1—d)nf nf—

(13)

In Ref. 9 the expressions for (c,t f, ), and (f;t c, ),
do not satisfy the identity (c, f, )=(f, f, ). S.uch a.
diSculty does not appear in the present formulation as
can be seen from (12a) and (12b).

Minimization of the ground-state energy functional
[obtained by using (6), (11), and (12}] by imposing the
constraint ak +Pk =1 through a Lagrange multiplier
Xk, gives us ak, Pk, and Ak. Using ak, Pk, A,k, and (11),
the ground-state energy is given by
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FIG. 1. The average occupation in the correlated orbitals n&
and the reduction factor for the doubly occupied sites d as a
function of U/lE/l for n =1.75, Ef= —1 eV, and
V/l Ef l

= 1.0, 0.6, and 0.1.
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tion factor R is given by
1/2

1 —nI
1 n—I /2

(17)

40

V2
p(E)=+5(E/ f (ek )—)=1+

(E EI+p,—)
where

f (~, ) = ,'(~„+EI -I ) ,'[(~„—E—I+—m)'+—4V']'~' .

(18)

(19)

The effective-mass enhancement obtained from Eq. (18) is

given by

m( veo, U~o) 1I*= ' =p[f(~F)l-
rnt v=o, U=o) R V

(20)

This can also be seen from Eq. (14), which for U~ oo

(i.e., d~O) describes the energy of two noninteracting
bands hybridized by a matrix element R V. The enhance-
ment of the efi'ective mass can be understood as follows:
When U =0 and V=0, the Hamiltonian (1) describes a
noninteracting conduction band and an f level. We
denote the effective mass of the carrier fermions for the
noninteracting case as m~v o U o~. For VAO, the eigen-
values of H( U =0) describe two quasiparticle bands [see
Eq. (3)]. The lower quasiparticle band has predominantly

f character in the neighborhood of the Fermi energy.
Using (3) and (18), the elfective mass is given by

m(vwo, U=o) 1

V2m(v=o, U=o)
(21}

For the correlated problem, the effective mass of the car-
rier fermions m' is given by Eq. (20). The enhancement
of effective mass of the carrier fermions produced by
Coulomb interactions is

m( veo, U~o)
mcoul-

m( vxo, U =o)
(22)

Figure 2 presents m '( V/~EI ~ } as a function of

which is in agreement with the results obtained by vari-
ous authors ' ' for the U= Oo case. In the region
0& U & oo, d decreases with increasing UI~EII for all
values of VIIEI ~. Similar behavior is observed for nI, but
instead of approaching zero as U~ 00, as is the case for
d, it saturates to a nonzero value.

Underlying physics is simple to understand: For the
uncorrelated case, there is no restriction on the presence
of doubly occupied f sites and the f level, which lies
below the Fermi surface, plays no role. In the correlated
case, the presence of a double occupied f site raises the
energy by an amount U. However, the energy is lowered
because of the hybridization process, through which the
f electrons change over to the d electrons. The compet-
ing roles of U and V lead to a variation of n/ and d, with
Uand V, shown in Fig. 1.

As in other models, we have an enhancement of
effective mass of the carrier fermions. The density of
quasiparticle states is given by
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FIG. 2. The effective mass of the carrier fermioas m

as a function of UI~E~~ for n =1.75, EI= —1 eV, and

V /~ E~ ~

= 1.0, 0.6, and 0.1.

UI)EI ( for VI (EI )
=1.0, 0.6, and 0.1. It shows that (i}

m* increases up to a critical value of U, say, U„beyond
which it almost saturates. The critical value U, decreases
with decreasing V. This implies that the infinite-U ap-
proximation is a good approximation to study a class of
materials with U & U, and V & V, . (ii) m' increases by a
factor of 3000 by decreasing V/~E/~ from VI~E/~=1. 0
to 0.1 for a fixed value of UI~EI ~ ( UI~EI ~

=1 in this cal-
culation). Therefore, m' becomes large mainly because
of the small values of V rather than the large values of U.

From Fig. 2, we find that for small V/~EI ~ (say 0.1),
the effective mass rapidly saturates and the infinite-U ap-
proximation would be valid for all U/~EI ~

& 5 eV. This,
however, cannot be said for a case where V/~E/~ =0.6.
For this value of V/~EI ~, we see from Fig. 2 (inset) that
even for U/~EI ~

=20 the m ' curve has not saturated.
For heavy-electron materials, it is known' that

U =5-6 eV for Ce-based HEM's and U-2 eV for
uranium-based materials. In these materials there is no
reliable way of estimating V; however, crude estimates
put its value in the range 0.2& V &0.6 eV. For these
values of U and V, the results in Fig. 2 show that the
infinite-U treatment of the problem does not provide an
adequate description of the physics of heavy-electron ma-
terials.

In this paper we have presented a simple variational
method for the orbitally nondegenerate Anderson lattice
model. This approach is much simpler than the
Gutzwiller-type variationa1 method used in the literature.
The application of the Gutzwiller method to deal with
metallic systems (1 & n &2) presents diKculties and one
has to use some uncontrolled approximations. We have
shown through this paper how such calculations can be
handled more easily by using the variational wave func-
tion proposed by us. We have shown the variation of nI,
the effective hybridization matrix element, and the
enhancement of effective mass of the carrier fermions
with U and V. We have discussed the relevance of the
infinite-U approximation to the study of real systems. In
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the absence of any numerically exact results for the asym-
metric finite-U PAM, it will be interesting to compare
our results with quantum Monte Carlo calculations,
which hopefully will become possible in the near future.
It would be interesting to study the magnetic properties
of the ground state by including the possibility of an anti-
ferromagnetic phase. The method can be easily extended

to describe the transition metals and their compounds,
where the correlations in the d orbitals are much stronger
than in the sp orbitals by introducing dispersion in the
correlated orbitals.
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