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The results of a detailed study of the evolution, scaling, and percolation of islands in a model of sub-
monolayer molecular-beam epitaxy appropriate for the case of dendritic island growth are presented.
The scaling of the island density, monomer density, island-size distribution, structure factor, and pair-
correlation function are studied as a function of the coverage 0 and the ratio R =D /F of the diffusion
rate D to the deposition rate F. Our results span the full range of coverage starting from very low cover-
age all the way through the coalescence and percolation regimes. For small coverages the islands are
fractal while at higher coverages they become compact, similar to what has been observed in
Au/Ru(0001). For large R, four distinct scaling regimes are found: a low-coverage nucleation regime,
an intermediate-coverage regime, an aggregation regime in which the island density remains constant,
and a coalescence and percolation regime. The scaling behavior in the first three regimes is compared
with results obtained using a generalized rate-equation approach. An anomalous fractal scaling form for
the structure factor in the aggregation regime is also derived. The dependence of the percolation thresh-
old on R is also studied and found to show interesting nonmonotonic behavior.

I. INTRODUCTION

The fundamental physical processes in the growth of
thin films by deposition techniques, such as molecular-
beam epitaxy (MBE), involve nucleation, aggregation,
and coalescence of islands on a two-dimensional sub-
strate.! > This leads to the formation of a distribution of
islands of various sizes and morphologies which grow and
coalesce with time. The classic work of Smoluchowski*>
on the rate equation and more recent work on the devel-
opment of dynamic scaling ideas,’”® have provided
powerful tools for the analysis and understanding of
growth and aggregation processes in terms of the evolu-
tion of the cluster-size distribution. In particular, dy-
namic scaling of the cluster-size distribution as well as
the Smoluchowski rate-equation approach have been ap-
plied to detailed studies of aggregation processes®® 10713
as well as thin-film growth.>14~17

With the recent development of analytical tools such as
the scanning tunneling microscope and high-resolution
diffraction and scattering techniques which can
effectively probe the morphology and the growth of mi-
crostructures at the surface, the study of submonolayer
evolution in MBE and other deposition techniques has re-
ceived considerable attention (see Ref. 3 and references
therein). In particular, using various experimental tech-
niques it is now possible to study the submonolayer island
morphology, density, and size distribution in a variety of
systems ranging from homoepitaxial systems such as

Fe/Fe(100),"*  Ni/Ni(100),"  Si/Si(100,®  and
Cu/Cu(100),2! to heteroepitaxial systems such as
0163-1829/94/50(12)/8781(17)/$06.00 50

Pb/Cu(001),22 Au/Ru(0001),”* and Ag/Si(111).** From
these measurements, other important quantities may be
determined. In particular, such parameters as the ada-
tom diffusion constant D =D,exp (—E, /kT) and the ac-
tivation energy E, for surface diffusion can be deter-
mined experimentally by measuring the scaling of the is-
land density N as a function of temperature and deposi-
tion rate F at low coverage.’®?! For example, the ex-
ponent Y governing the scaling of the island density N at
fixed coverage 6, N ~(D /F)” X may be determined exper-
imentally by studying the variation of N with the deposi-
tion rate F. Once Y is known, the activation energy E,
for diffusion may be determined from the scaling of the
island density as a function of temperature. If the con-
stant C; =N(D /F)X is known, then the prefactor D, in
the diffusion constant D =D exp(—E, /kT) can be deter-
mined. Thus the knowledge of the scaling behavior of
the island density and size distribution for simple models
of island formation both in the very-early-time and the
aggregation regime may enable the determination of im-
portant physical quantities in epitaxial growth.

Recently, these techniques have been used to study is-
land morphology and evolution in the submonolayer re-
gime, and dendritic island growth has been observed in a
variety of systems. One example is the experimental
study of the deposition of Au on Ru(0001) at room tem-
perature.”® In these experiments, the morphology of the
islands was studied using scanning tunneling microscopy,
and they were found to be fractal at low coverages
6=0.3, with a fractal dimension d;~1.7 corresponding
to that of diffusion-limited aggregation (DLA), while for
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higher coverages they were seen to become compact.
Two other examples are Ag/Ni(100) (Ref. 25) and
Ag/Au(111),?® in which dendritic step decoration has
been observed. Dendritic island growth has also been ob-
served near T=200 K for Pt/Pt(111).?"*® This is con-
sistent with the prediction?>® that for homoepitaxy on
fcc(111) surfaces, island relaxation due to edge diffusion is
inhibited. Consistent with this scenario, recent theoreti-
cal calculations using density-functional theory®' predict
fractal growth for Al/Al(111) for 25 K<T <155 K.
Thus one may conclude that dendritic island growth may
occur in a wide variety of systems including both
homoepitaxy and heteroepitaxy.

In this paper we investigate the evolution, growth, and
scaling of islands in a model of submonolayer MBE ap-
propriate for the case of dendritic island growth over the
full range of coverage, starting from very low coverage
(6=1077) all the way through the coalescence and per-
colation regimes.'® In our model, monomers are deposit-
ed randomly on a two-dimensional lattice, and allowed to
diffuse with nearest-neighbor hops. To simulate low-
temperature MBE and/or dendritic island growth, we as-
sume that whenever an adatom encounters another ada-
tom as its nearest neighbor, both atoms are ‘frozen”
(stop diffusing) and form a stable two-atom cluster or is-
land. Similarly, when a diffusing adatom encounters an
existing island, it is attached to the island cluster and be-
comes immobile. An adatom deposited on top of an ex-
isting island or monomer (second-layer growth) also
diffuses, and if it encounters another adatom or island on
the same adlayer it is frozen. However, if it first diffuses
over the edge of the island to the layer below (there is no
barrier to going down a step) it is added to the island.
Thus for large D /F (which as we shall see corresponds to
the scaling regime) there is a negligible amount of
second-layer growth (at least below percolation) since the
second-layer atoms quickly diffuse to the edge of an is-
land and down to the first layer where they join the clus-
ter.

The paper is organized as follows. In Sec. II we
present an introduction to the scaling theory for the
island-size distribution and define the relevant exponents
which characterize the scaling behavior of the island den-
sity, monomer density, and the island-size distribution
with coverage 6 and the ratio D /F. In Sec. III the Smo-
luchowski kinetic equation for the evolution of the
island-size distribution and the corresponding rate equa-
tions for the island density and monomer density are dis-
cussed. We introduce our model and describe our simu-
lations in Sec. IV. In Sec. V, we present our results and
compare them with the predictions of the generalized
rate equations discussed in Sec. III. Finally, we summa-
rize our results in Sec. VI.

II. SCALING THEORY

The fundamental quantity in the kinetic description of
island growth is the island-size distribution function
N, (t), which gives the density (per site) of islands of size s
(where s is the number of atoms or particles in the island)
at time ¢. Since the coverage 6=Ft is often more con-
venient for comparison with experiments, we express the
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time dependence of the island-size distribution and its
moments in terms of 6. Defining the total island density
N (excluding monomers) and the coverage 6 by

N=T N,(6) and 6= S sN, , (1)

s22 s21

then the average island size S can be written in terms of
the zeroth and first moments as

N, ()

S= = _ =N 2)
SN(@ N
522

where N, is the monomer density.

According to the dynamic scaling assumption
there exists only one characteristic size in the problem
which is the mean island size S(6) defined in (2). This im-
plies that N (6) scales with S(8), and one may write gen-
erally N,(8)= A(S,0)f(s/S), where f(u) is a scaling
function for the island-size distribution. Using the
definition of 6 and the scaling form for the island-
size distribution, we can write, 60=3,>sSN,(6)
= A(S,0)S* [ & f(u)u du, which implies 4(S,0)~6/S%
Taking A4(S,0)=6/5? one may write the general scaling
form

N.(0)=6S 2f(s/S) (s=2), 3)

where  the  scaling function  f(u)
f[)”f(u)u du=1,and f(u)~u®for u <<1.

We now assume that at late time (and for large R), the
average cluster size S scales as

S~RY6" @)

6—38,14

satisfies

where R =D /F is the ratio of the diffusion rate D to the
deposition rate F. Equation (3) may then be rewritten in
the form

N

—a | (3)
RX6?

N,(6)=R ~2g'~¥g,

where g,(u)=(1/c2)f(u /c), where ¢ =S /(RX6). Alter-
natively, one may rewrite this in the form

s
RX¢&*

N (9):S—TR ‘X/Zgz

s

, (6)

where r=2—1/zand g,(u)=u"g(u).

At late time, one expects the walker density N, to be
much smaller than the coverage 6, so that in the scaling
regime N, <<6 and S ~6/N. This implies the scaling re-
lation for the total island density,

N=~0/S~R Xp'" %, 7

Thus we have obtained scaling relations for N(8), S(6),
and N,(6) as functions of R and 6 with two independent
exponents ¥ and z. Comparison with Egs. (1) and (3) im-
plies that the scaling function, in addition to satisfying
[of(uudu=1, also satisfies the  relation
f o flu)du=1.

In addition to the scaling relations above for the island
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density and size distribution, we may also define scaling
exponents for the monomer density N, of the form

N,~R107". @®)

If we assume that the scaling form for N (8) also holds
for N, then from Egs. (3) and (5) we obtain

y=(w+2)x, v=(o+2)z—1. 9)

We note that for the point-island model in d =2, Eq.
(9) holds since for this model w=0, z=y=4%, and
v=x=1. However, Eq. (9) does not generally hold for
more realistic models, since the monomer density N, may
in general scale differently from the island density N (6)

fors>2.

III. RATE-EQUATION APPROACH

The traditional method for studying the kinetics of
cluster growth processes is based on the theoretical ap-
proach developed by Smoluchowski,*> who wrote an
equation for the evolution of the cluster-size distribution
using a mean-field argument which neglects fluctuations
and geometry. For the case of growth in which only
monomers diffuse, one can write down a simple set of
equations®’ % governing the density of monomers N,
and the density N,(¢) of islands of size s at time ¢. Ignor-
ing dissociation, one has generally,

dN, R
=F_K1N1 _Nl 2 KSNS , (loa)

dt s>2

dt‘ =N(K,_,N,_,—K.,N,) (s>1), (10b)

where F is the rate of deposition of atoms (in units of
atoms deposited per site per unit time) and K, governs
the rate of attachment of adatoms (monomers) to islands
of size s. The exponents are usually determined by substi-
tuting the scaling forms (6) and (8) into (10), and by as-
suming a general®!®!%>!3 form K, ~Ds? for the depen-
dence of the rate constant on cluster size, where D is the
diffusion rate of single adatoms (in units of hops per unit
time). Ignoring the proportionality factor (which may be
different for K, s =22, and K,) since it does not affect the
scaling behavior, and dividing by the deposition rate F,
Eq. (10) may be rewritten,

N,
=1—RN?—RN, 3 s’N,, (11a)
dé 522
dN,
20 =N|R[(s—1/N,_,—s’N,] (s>1), (11b)

where R =D /F and 6=Ft is the coverage (number of
atoms deposited per site). Rewriting in terms of the
scaled variables =R /20 and N, =R 12N, Eq. (11) be-
comes

daN

—=1-R2-R, > s’A, , (12a)
do s=2

dn,

ﬁ=ﬁ,[(s—l)”ﬁs_l—spﬁs] (s>1). (12b)
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For the point-island model, the islands have zero
size,’>** and one has K, ~D (p=0). In this case Eq. (12)
becomes

aN
L-1-N2-R, S A, (13a)
do s>2
daN
d—§=ﬁ1(ﬁs_1—ﬁs) (s>1). (13b)

Defining the total scaled island density as N =3.5,N,,
and summing Eq. (13b) over s for s =2, one obtains the
point-island rate equations

dN
—=1-N-RN, (14a)
db
élf_:m ) (14b)
db

The solution of these equations is as follows. In the
early-time low-coverage regime 9<<1 (§<<R /%) in
which islands are still nucleating and the island density N
is much less than the monomer density (N <<A',) which
is very small, the last two terms on the right of (14a) may
be neglected, so that one has

N,=6, N~&, (15)
which implies N, =6 and N ~R#°. (Taking hi’gsher order

corrections into account, one has N 1 =§-6°/15 and
N=8-287/105.) At late times (§ >> 1), the island densi-
ty will increase to the point where the last two terms on
the right of Eq. (14a) become important, leading to the
decrease of the monomer density so that N | << N. Equat-
ing these two terms (neglecting the middle term since
N . <«<N) and using Eq. (14b), in the asymptotic regime

9 >>1 one obtains
R ~p173 , ﬁl~§—1/3 ) (16)

Thus for 6>>R7!? one has N~R 3973
N,~R 723713 and S ~0/N ~R /*6*/3, which implies
that v=Y=1 and ¥ =z =2 for the point-island model.

For realistic models in which the islands have finite
size one expects p70. Blackman and Wilding*? have
suggested that the rate of capture of monomers by an is-
land of size s is proportional to the linear dimension
(cross section) of the island as well as the diffusion con-
stant D. For compact islands in two dimensions this im-
plies p =7, while for fractal islands it implies p=1/d,
where d; is the fractal dimension of the island. They
determined the exponents z, v, and 7=2—1/z for general
p using an analysis of the moments M, =3 s"N, based
on Eq. (10) with K;~s?. In addition, they numerically
integrated Eq. (10). Here we proceed somewhat
differently by using a heuristic argument to modify the
scaled rate equation for the total island density N, but our
results for z, v, and 7 are the same. However, in addition
to determining these exponents, we also determine the ex-
ponents ¥ and y governing the R dependence of N and
N,.

First we note that for p0 the rate R, at which ada-
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toms are attached to existing islands is no longer written
as R,,~DN;N but rather as R,,~DN;3,>,N,s?,
which we may approximate in the scaling regime as
R, .~DN NS?, where S is the average number of atoms
in an island. Thus the rate equation (10a) becomes,
dN,/dt ~F—DN?—DN,NS”. In the late-time regime in
which we are interested, one has N, <<, so that
S=(6—N,;)/N=0/N. Thus the rate equations in this
regime become

— =F—DNi—DN,e’N'"?, (17a)
dN )

N _pN? . 17b
” : (17b)

Dividing by F and rewriting in terms of the scaled
variables §=(D /F)'"0, N=(D /F)"?’N, and N,=(D/
F)!2N,, we obtain

dN

—=1-N2—N,N'"7¢, (18a)
dé
d—ﬁ’=ﬁ% : (18b)
dé

For p=1/2 we assume power-law solutions of the
form N~8'"? and N,~8 " (see Sec. II). In the scaling
regime in which N >>N, and dN,/df, N, <<1, we can
ignore the second term on the right of
Eq. 18(a) and equate the first and third terms, i.e.,
1=N,N'"P8*. Using the latter equality as well as Eq.
18(b), and replacing the scaled variables, one obtains

z2=2/(3=2p), v=z/2, X=z/2, y=1+z/4
(p<i). (19a)
Thus for p < 1,
N~R™220\72 N ~R-1/2%2/89=2/2 (p 1)
(19b)

For the special case p=1, one has z =1, and there are
logarithmic corrections,

N~R n(g), N;~R 7340712 (p=1), (20a)
which implies that
z=1, v=1, x=1, v=21 (p=7). (20b)

For the case p > % we assume N =const—a / 9\", which
implies z=1 and again ﬁl ~6. Substituting into Eq.
(18) as before, this implies

(1+p)/2
(21a)

z=1, ¢g=2p—1, v=p, X=3, v=
(p>31).
In terms of the unscaled variables,
N~R™'*1—aR79%079), N ~R ™ "*97297r
(p>3). (21b)

For the case of fractal islands with df=1.7, we have
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p=1/d;~=0.58, which implies v=0.58, ¥ =0.79, and
g~0.16.%°

IV. MODEL AND SIMULATIONS

In our model, adatoms (monomers) are deposited ran-
domly on a square lattice with deposition rate F (in units
of atoms per site per unit time), and then diffuse with
diffusion rate D (nearest-neighbor hops per adatom per
unit time). An adatom deposited on top of an existing is-
land or monomer (second-layer growth) also diffuses with
diffusion rate D. When an adatom encounters another
adatom as its nearest neighbor, both atoms are frozen
(stop diffusing) and form a stable two-atom cluster or is-
land. Similarly, when a diffusing adatom encounters an
existing island, it is attached to the island cluster and be-
comes immobile. At each stage, either a deposition step
(consisting of the deposition of one adatom at a randomly
chosen site) or a diffusion step (consisting of the diffusion
by one nearest-neighbor lattice site of a randomly chosen
walker) is carried out. In order to properly keep track of
the competing rates of diffusion and deposition, the depo-
sition step was carried out with probability
pr=1/[1+N (D /F)], where N, is the monomer density
(per site). Similarly, the diffusion step was carried out
with  probability pp,=1—p=N (D/F)/[1+N(D/
F)].%41" A list of all monomers or walkers was continu-
ally updated, and if a monomer encountered another par-
ticle (i.e., another monomer or part of a cluster) as its
nearest neighbor, then that monomer was added to the
cluster and removed from the walker list.

We note that in our model there is no additional bar-
rier or activation energy for jumping down a step
(Schwoebel effect*?). This is consistent with the observa-
tion for island growth of Au on Ru(0001) that Au atoms
can easily diffuse over first-layer island steps to condense
at their edge in the bottom layer.”> Thus the Schwoebel
effect (barrier) is not expected to be very large in this sys-
tem. We also note that while the magnitude and sign of
the Schwoebel barrier effect is expected to vary from sys-
tem to system, there are a number of other systems [such
as Al/AI(111) (Ref. 31)] for which the barrier is believed
to be negligible compared to the diffusion activation ener-
gy over a large range of temperatures. Even for systems
for which the Schwoebel barrier is more significant, it has
been shown*® that for small islands, as well as for islands
which have small features due to lack of relaxation (such
as fractal islands), that the energy of condensation upon
surface impingement may be sufficient to lead to incor-
poration of the adatom directly into the cluster, thus
overcoming the Schwoebel barrier in these systems. Such
an assumption has been made in recent simulations by
Smilauer, Wilby, and Vvedensky,44 in which it was used
to explain the reentrance of layer-by-layer growth with
decreasing temperature in deposition of Pt/Pt(111).*°

Our simulations typically involved system sizes (L X L)
ranging from L =400 to 1024, with periodic boundary
conditions. (Smaller system sizes were also used to obtain
snapshots of the island morphology.) Averages were tak-
en over 50-200 runs, and simulations were conducted for
different values of the ratio D /F ranging from 10 to 10°.
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In our simulations, we kept track of the monomer density
N, the total density N of first-layer islands, and the first-
layer island-size distribution N, all as a function of the
coverage 0 from very low coverage (§~1077) to a cover-
age 6=1. In addition, we monitored the number of nu-
cleation events in order to determine directly the rate of
coalescence of islands as a function of coverage. We also
calculated the normalized circularly averaged first-
layer density-density pair-correlation function G(r)
=(0—6%) " n(0)a(r)),, where A(r)=n(r)—6 and the
brackets denote a circular average as well as an average
over runs. Here the density n(r)=1 at a site r at which
there is an adlayer atom, and O otherwise.
Finally, we also calculated the circularly averaged
structure  factor  S(k)=((1/L?)| 37 (r)e’*"|?),
=(3 (7(0)(r))e k7).

In order to study the morphology of the islands, we
also calculated the radius of gyration of the clusters Rg
and studied the dependence of R; on the island size s.

Assuming that Rz~s ~ /, we calculated the fractal di-
mension d, of the islands as a function of the ratio
R =D/F at several values of the coverage 6. We also
determined the percolation threshold (i.e., the coverage
6, at which a single island first percolated through the
lattice) as well as the first-layer coverage at percolation
6, as a function of R=D /F.

V. RESULTS

Figure 1 shows an overview of our results for the varia-
tion of the island density and monomer density as a func-
tion of coverage for a given value of R =D /F. As can be
seen from Fig. 1, we find that the dynamical behavior of
both N and N, is divided into four distinct regimes: a
low-coverage nucleation regime (L), an intermediate-
coverage regime (I), an aggregation regime (A), and a
coalescence and percolation regime (C). In the low-
coverage nucleation regime, the monomer density is
much larger than the island density which is increasing
due to the nucleation of new islands. In the
intermediate-coverage regime the island density is larger

10

10° k

ARSI BTSRRI
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0

FIG. 1. Log-log plot of unscaled island density N and mono-
mer density N, as a function of coverage 6 for R =10° showing
the four scaling regimes.
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than the monomer density, so that the monomer density
is decreasing while the island density continues to in-
crease. In the aggregation regime, the island density and
size have become sufficiently large that every adatom de-
posited lands either near or on top of an island. As a re-
sult the island density remains essentially constant while
the monomer density is sharply decreasing. Finally, in
the coalescence regime, the islands begin to join together
and percolate so that eventually second-layer growth
occurs and the monomer density increases.

Figure 2 shows pictures which give an overview of the
typical island morphology and distribution for three
different values of D /F (D /F=10°, 107, and 10°) and for
three different values of the coverage (6=0.1, 0.3, and
0.7) corresponding to the very beginning of the aggrega-
tion regime (0=0.1), the middle of the aggregation re-
gime (6=0.3), and the coalescence and percolation re-
gime (6=0.7). As can be seen from the pictures, for rela-
tively low coverage the islands are fractal as is observed
in a number of experiments,?>2%27-28 while at higher cov-
erage they become compact. We now discuss each of
these scaling regimes in detail.

A. Low-coverage nucleation regime 6 <<R ~!/2

The low-coverage regime has been studied previously
for the point-island model by Bartelt and Evans** and
also by Tang™ in a model similar to ours. In this regime
(6<<1), the island density is much smaller than the
monomer density, so that the probability of island growth
is much smaller than the probability of nucleation.
Therefore the average island size is very small and the
point-island rate equations (14) are expected to be correct
except for logarithmic corrections due to diffusion in two
dimensions. In this regime, these equations [see Eq. (15)]
imply N, ~8 and N~8, or N, ~6 and N ~R6’. Taking
into account higher-order corrections (see Sec. III), one
obtains S=(§—ﬁ1)/(ﬁ)~§2 <<1, so that for the ratio
d /I (where d is a typical island diameter and [/ is the dis-
tance between islands), one obtains d/I~(SN)!/?
~(R7'8°)'2 << 1. Thus the point-island approximation
is reasonable in this regime. However, since d =2 is the
critical dimension for diffusion-limited cluster growth, it
is expected that there will be logarithmic corrections to
the scaling behavior.3

Figure 3 shows scaling plots of our results for the
monomer and island density using the form predicted by
Eq. (15), with the addition of the approximate logarith-
mic correction factor 1/VIn(2Dt)=1/VIn(2R6) pro-
posed in Ref. 33. As can be seen, the scaled monomer
density N,R!”?/[In(2R 0)]'/? as a function of the scaled
coverage OR /2 /[In(2R 0)]'/? is independent of R, all the
way up to and including the peak. Since the scaled cov-
erage at the peak of the scaled monomer density in Fig. 3
is a constant (approximately 0.6), we can solve approxi-
mately for the coverage 8, at the peak of N, to obtain
0,~0.4[InR /R ]'/2. Also shown in Fig. 3 is the scaled
island density NR ~'/2 versus 6R '/2/[In(2R 0)]'/%. This
is different from Ref. 33, in which the logarithmic factor
was included in both the scaled island density as well as
the scaled monomer density. As can be seen in Fig. 3, we




8786 JACQUES G. AMAR, FEREYDOON FAMILY, AND PUI-MAN LAM 50

find improved scaling for the island density data which  creases much more slowly than in the early-time nu-
now scales quite well for § <<R ~!/2and R > 10°. cleation regime. For §>>R ~1/? @>>1), the point-island
rate equations (14) predict N,~8 ' and N~§'7,
which implies that N, ~R?*?07! and N~R!7%¢'/3
This also implies that N,/N=1/6**<<1, so that the

As the coverage increases, the monomer density N;  average cluster size S ~60/N =8?>>>1. Consequently in
peaks and begins to decrease, while the island density in-  this regime the size of the islands becomes important, and

B. Intermediate-coverage regime (R ~'/2 << 0<<8,)

FIG. 2. Pictures of the island morphology (L=200) for three different values of R (R = 10°%, 107, and 10°) and three different cover-
ages 6=0.1, 0.3, and 0.7 in the beginning and middle of the aggregation regime, and in the coalescence regime. (a) R = 10°, 6=0.1.
(b) R=10% 6=0.3. (c) R=10°% 6=0.7. (d) R=10", 6=0.1. (¢) R=107, 6=0.3. (h R=10", 6=0.7. (g) R=10% 6=0.1. (h) R =107,

6#=0.3. (i) R=10% 6=0.7.
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the point-island model and rate equations** must break
down even for coverages low enough that deposition on
top of islands and island coalescence may be neglected.

Figure 4 shows a log-log scaling plot of N;R?’* and
NR 73 versus 6, which shows more clearly both the cov-
erage dependence and the D /F dependence of the island
density and monomer density in and beyond the
intermediate-coverage regime. Surprisingly, in the
intermediate-coverage regime the R dependence of the
monomer density N, agrees reasonably well with the
point-island prediction [see Eq. (16)] y=%.46 However,
the dynamical behavior of the monomer density N, does
not, since instead of decreasing as N, ~6~ !/ the mono-
mer density varies as N,~60~ %%, which implies v=~1
rather than v=1. Similarly, as shown in Fig. 4, over the
same coverage range (1073<8<0.02) the curves of is-
land density versus coverage for fixed R show strong cur-
vature rather than a slope of { as predicted by the point-
island model. Similarly, for fixed coverage the density N
does not scale as N ~R ~* with y =1, as predicted by the
point island model.

Figure 5 shows a semilogarithmic plot of the island
density in the intermediate-coverage regime as a function
of coverage for three different values of R, indicating that
in this regime the growth of the island density is essen-
tially logarithmic, i.e., N~60'"?~ 4(R)In(6), which im-
plies that z=1. We have also observed similar logarith-
mic behavior for the island density over a wide range of
coverages in simulations on a triangular lattice. These re-
sults (z=1 with a logarithmic correction and v=1) are in
agreement with the generalized rate-equation predictions
[Eq. (20)] for the case p=1. As noted in Sec. III, for
fractal islands with d;~1.7 one has p=1/d,=0.58,
which implies v=0.58, y=0.79, and ¢=0.16. For the
highest value of R (R =10°) a fit to the late part of this re-
gime away from the peak of N, (1.5X107%<6<0.02)
gives v=0.58. Thus we find v=0.5-0.6.
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We have also studied the R dependence of the
coefficient 4 (R) in the intermediate coverage regime and
obtain 4 (R)~R ~* with y=0.41, somewhat below the
predicted value [see Eq. (20)] of y=1 for p=1. In the
limit R — o this scaling behavior predicts that the
coefficient of logarithmic behavior goes to zero, so that
asymptotically the island density becomes essentially in-
dependent of coverage in this regime. Thus the rate-
equation analysis with p~1 appears to account for the
dynamical behavior of N; and N as well as approximately
for the R dependence of N observed in the intermediate
regime. However the R dependence of the monomer den-
sity N, is in closer agreement with the point-island pre-
diction y=2 than with the generalized rate-equation
analysis (Sec. III) which predicts y=0.75-0.79 for
p=0.5-0.58.
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FIG. 5. Semilog plot of N(6) in the intermediate time regime
for R=D/F=10"-10° showing logarithmic behavior
N~ A(R)In(6).
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C. Aggregation scaling regime 6; <0< 0,

1. Scaling of island density and monomer density

Beyond the intermediate regime (8 > 6; ~0.02, see Fig.
1), the monomer density decreases rapidly, and there is a
rapid crossover from a regime in which N, ~60"" with
v=0.5 to a region of steeper slope with the maximum
value of v ranging from v=1.7 for R=10° to 2.5 for
R =10%. However, this is not a true scaling region for the
monomer density, since the slope is in fact increasing
with R.*” An analysis of the D/F dependence of the
monomer density (N;~R %) in this regime gives
¥ =0.75£0.05, which is significantly larger than the
point-island prediction y =3 although close to the rate-
equation result (21) for p=0.50-0.58 which gives
¥ =0.75-0.79.

In this regime (6>0.1) one has N, <<8, so that
S =~6/N and the ratio d /I of average cluster diameter d
to average cluster distance [ satisfies d /! ~0"% . Conse-
quently, the island diameter is of the order of the distance
between islands, while the fraction of the surface occu-
pied by islands is large enough that one must take into
account the probability of deposition onto an island as
well as onto the substrate. As a result every adatom de-
posited attaches to an existing island and no additional is-
lands are created. This implies the existence of an ex-
tended aggregation regime for large D /F (up to coales-
cence) in which the island density N ~6' ? remains ap-
proximately constant,'®?247 which implies z =1. Beyond
this regime, the islands begin to coalesce and the island
density decreases rapidly with coverage.*’

As can be seen from Fig. 4, the plateau region corre-
sponding to the aggregation regime becomes wider and
flatter with increasing R, in part due to the fact that
A(R) decreases with increasing R. For R=10° the
range of coverage over which the island density remains
relatively constant is approximately 0.1 <6 <0.4 (see Fig.
1). Interestingly, the value of the coverage at which the
island  density reaches its maximum  value
(B max=0.1721+0.003) is essentially independent of R for
R>10°.

From Fig. 4 one can also see that for large R (R > 10°)
the height of the plateau scales approximately as
N~R ¥ with y=~1.%%* A power-law fit to the peak of
the island density for R =10°-10° gives N ~0.43R ~ %%,
while for smaller R the island density decreases more
slowly. Thus the scaling of the island density as a func-
tion of R in the aggregation regime is in agreement with
the prediction of the point-island rate equations, even
though the dynamical behavior (N =const) is not. These
results imply that the average island size S scales as
S ~RX#~R'30 in the aggregation regime as shown in
Fig. 6.

2. Island-size distribution scaling function

Figure 7(a) shows the island-size distribution N (8) for
R =10’ at four different values of 6 in the aggregation re-
gime. As 6 increases, the position of the peak of the
island-size distribution also increases while the peak
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height decreases. Since the island density is constant in (S L L LA L NN

this regime, one expects the island-size distribution func- R=107 - 10°

tion to satisfy scaling of the form of Eq. (3), with the

island-size distribution N(0) scaling with the average is- 0.3 6=0.1-0.3

land size S(8). Figure 7(b) shows plots of the island-size
distribution scaling function f(s/S)=S2N,(8)/6 in the
aggregation regime using the general scaling form (3) for
R =10° and §=0.1-0.4. Similar plots for smaller values
of R give essentially the same scaling function, but over a
smaller range of 0 since the coalescence regime sets in at
lower coverage for smaller R. For R =10° and 6=0.5
(not shown), scaling begins to break down due to island
coalescence, and the scaled distribution begins to deviate
from this form.

We note that the scaled island-size distribution f (u) in
our model in the aggregation regime is significantly
different from the point-island rate equation solution at
late time, which in our notation may be written

—1/2
%[1—27“ 0<u<i
flu= 22)
0 u>—

In particular, as shown in Fig. 7(b) the peak of the scaling
function is finite and located at u =1 rather than u =3.
Beyond the peak f(u) remains finite rather than drop-
ping to zero as predicted by the point-island result (22).
Furthermore, the slope at ¥ =0 is much larger (close to 1)
than for the point-island model, while f(0) is
significantly smaller and appears to go to zero for large
R. From the data for R =107-10° there appears to be a
power-law scaling region [f(u)~u® with ©w=~0.8-0.9]
below the peak whose lower limit decreases as the cover-
- age increases in the aggregation regime. However, it is
difficult to calculate accurately the exponent w since it
appears to increase slightly as R increases. Log-log plots
of the data in Fig. 7(b) as well as for R =10"-10% (not
shown) indicate that beyond the peak there is a rapid
essentially exponential dropoff in the scaling function.
Since in this regime, one has S ~R /36, one may reex-
press the island-size distribution using the scaling form
(6) with Y=+ and z=7=1. Scaling plots of this form for
6=0.1-0.3 and R =107-10° are shown in Fig. 8. As one
can see, there is reasonable scaling in this regime for the
whole range of coverage up to 6=0.3, and for all values
of R. However, for large enough coverage, the distribu-
tion changes radically due to coalescence. A dramatic
example of this behavior for R =107 and 6=0.5 is
shown, where the extended (approximately power-law)
tail is due to coalescence.

3. Scaling of structure factor and pair-correlation function

In order to obtain more information about the
geometry and spatial correlations in the aggregation re-
gime, we have also studied the scaling of the adlayer
structure factor S(k) and pair-correlation function G(r)
as functions of R and 6 in both the aggregation and
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FIG. 8. Scaling plot for the island size distribution using Eq.
(6) with 7=z =1and y =1 for R =10"-10’.

coalescence regimes. While the island-size distribution is
relatively sensitive to coalescence, the structure factor
S(k) is not, although it is more sensitive to the island
geometry.*® Taking the density n(r) to be 1 at a site r at
which there is an adlayer atom, and O otherwise, we cal-
culated the circularly averaged adlayer density-density
pair-correlation function G(r)=(#(0)7(r)),, where
Ai(r)=n(r)—6 and G(0)=0—6%. The brackets denote a
circular average as well as an average over runs. We also
calculated the (normalized) circularly averaged structure
factor S (k), where

S(k>=<flz— S Ar)etk 2>c
=<Z(ﬁ(0)ﬁ(r))e_“"r> . 23)

We note that the adlayer structure factor S(k) is essen-
tially equivalent to the ‘“diffuse” diffracted intensity
profile I(k) for momentum transfer with lateral com-
ponent k and vertical component k,. Assuming the am-
plitude for scattering by the adlayer is 1, and for the sub-
strate is given by A4, one has

I(k, k,)~(272)|0+(1—6) Ae"**|25(k)
11— 4e™ 25 (k) . (24)

Figure 9(a) shows typical plots of the circularly aver-
aged structure factor in the aggregation regime for
D/F=10°-10° at §=0.2. The position (k,,) of the peak
in S(k) corresponds to the typical island distance
I(k,,~1/1~N'?) and therefore decreases with increas-
ing R, while the height of the peak increases with increas-
ing R. In particular, since one has N~R ~!/? in the ag-
gregation regime, one expects k,, ~R ~!/%. Figure 9(b)
verifies this dependence for 6=0.2. For higher values of
0 in the aggregation regime, k,, is essentially unchanged
since the island density N remains constant, while for
0=0.1, at the very beginning of the aggregation regime,
k., is slightly smaller for a given R (due to the decreased
island density) and we find k,, ~R ~%18,

One interesting question is the scaling of the circularly
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averaged structure factor S(k;R,0) for fixed coverage 6
in the aggregation regime as a function of D/F. For
compact islands, one expects that for fixed 6 the average
island diameter d scales as d ~/~S'/2~(6/N)">~R /%,
where [ is the average island spacing. Thus for fixed cov-
erage there is only one length scale d ~I/~k,, !, and (as-
suming no change in island shape as a function of size)
one expects the (circularly averaged) pair-correlation
function to scale as

G(r;R,0)=fs(rk,,;0) (25a)
which for S (k) implies
S(k;R,0)=k, *fs(k /k,;0), (25b)

where the R dependence is given by k,, ~R ~!/%.

However, in the beginning of the aggregation regime
(6=0.1) and for the range of R (R =10°-10% studied
here, the islands are fractal. (For larger 6 one expects
that the islands will become compact due to the filling in
of the clusters as adatoms land on top of and in between
the arms. ) In Fig. 10 the island size s is shown to scale as

s ~RG , where R is the radius of gyration of each island
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and d,~1.75 for 6=0.1. This is consistent with the
fractal dimension of diffusion-limited aggregation
(DLA).! Thus there are essentially two length scales
which vary differently as a function of R: the average is-
land distance I ~N ~ /2~ R !/¢ and the average cluster di-
ameter d~S' '/ ~(0/N)"" ~1*% . This implies that
no single scaling form will exactly scale the structure fac-
tor for all k as a function of R, even for fixed coverage.
However, we can write an approximate scaling form simi-
lar to Eq. (25) using the following argument.

We assume for simplicity that the islands consist of a
set of identical clusters (which may or may not be ran-
domly distributed). In this case (taking the density to be
1 at an occupied site and O at an unoccupied site) one
may rewrite the structure factor S(k) for k0 as the
product of a form factor S,(k) for each cluster, and the
structure factor S,(k) for a distribution of point particles
at the center of each cluster. For fixed coverage 6 but
varying R (assuming the same distribution of island
centers but simply rescaled for different R), for the circu-
larly averaged structure factor one may write
S,(k,R)=kZ2¢,(k /k,,), where k2, is proportional to the
density of islands. For fixed coverage, the average cluster
size scales as S ~ 0N ~k,. 2, and the average cluster di-

ameter as d~k,, , so that one may write

Sy(k;R)~k,, ¢, k/k /r), where #, is a crossover func-
tion and the factor of k,, * comes from the square of the
average cluster size. Combining the two expressions, one
has

S(k;R,0)=f(0)k 2,k /k*

N,k /k,,) (26)

where ¢,(u)=u “ for 1<u <d/a (where a is a short-
distance crossover length scale) and ¢,(u)=1 for u <<1.
A factor of f(6) has been included to approximately ac-
count for the coverage dependence. The function ¢,(u) is
expected to be sharply peaked at u =1, corresponding to
the average island distance. Of course, given the situa-
tion in which the islands are relatively randomly distri-
buted and have a range of different sizes, this expression
is only approximate. In particular, the dispersion in is-
land sizes and distances may allow an overlap between
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the power-law scaling region of ¢,(u) and the peak in
¢,(u). For d;=2, we recover Eq. (25b).

We now consider the scaling of the peak of S(k;R,0)
as a function of R for ﬁxed 6. Assuming that
é(u)~u S for u~1(k k), Eq. (26) becomes
S(k,,;R,0)=f(0)k,, f¢2(k/k ) Since the peak dom-
inates the structure factor, one may then write the ap-
proximate scaling form

S(k;R,0)~k, T fo(k /k, )f(6) , (27a)

where again the R dependence is given by k, ~R —1/6
Taking the Fourier transform, this implies that the pair-
correlation function satisfies the approximate scaling
form:>?

G(r;R,0)~k.

ko fork, )£ (6) .
We note that since G(O;R,0)=0- 0 thls implies that for
fixed coverage f(0)~k,’ “~R . Thus the scal-
ing function f;(u) has the unusual property that it scales
(approximately) everywhere except at ¥ =0. This reflects
the fact that the scaling form (27a) does not work well for
large k (i.e., for k >>k,), where the structure factor is
very small.

Figure 11(a) shows a scaling plot for the structure fac-

(27b)

0.24llvl‘rvﬁvvavllllvnll!rv

(a)

0=0.1

LA DL L L L I L I |

e e e by Ly Ly

0~2 [ T T 17T I T 1 rr l T TT I TrIrrr I T T
i (b)
- 6=0.1

R=10°-10°

Gl k Y;2/6

v by b by

o
[=]
3,3
LI L L L >~

_0.05lllll]JJlIlllllLlll‘llll
1 2 3 4
rk
m

o
(&}

FIG. 11. (a) Structure factor scaling plot of form of Eq. (27)
at 6=0.1 showing scaling for D /F=10°~10° with d,=1.7. (b)
Same as (a) but for correlation function G(r).
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tor S(k) for #=0.1 and R =10°-10° using (27a) with
d;=1.7. Corresponding scaling plots for G (r) are shown
in Fig. 11(b). As one can see, the scaling is very good,
while similar plots using d,=2 (not shown) give very
poor scaling. Surprisingly, we also find excellent scaling
(Fig. 12) using Eq. (27) with d,=1.7 for higher coverages
(6=0.2-0.5), even though the clusters are essentially
compact over this coverage range (see Fig. 13 and Table
I). This appears to be due to the fact that although the
core of the clusters has become compact, they continue to
generate dendritic DLA-like branches as shown in Fig. 2.
The existence of this anomalous scaling form for the
structure factor should be useful as an experimental sig-
nature for the identification of dendritic islands.

In addition to scaling the (circularly averaged) struc-
ture factor S(k;R,0) and pair-correlation function
G(r;R,0) for fixed coverage as functions of R, we can
also approximate the coverage dependence given by the
scaling function f(6). We do this by noting that
G(0)=60-6’= [S(k)d’k and S(0)=0= [G(r)dr,
while S(o )=G( )=0. Thus the normalized circularly
averaged pair-correlation function G(r;R,0)
=(0-6%)"'G(r;R,0) satisfies the three conditions
G(O;R,0)=1, [G(r;R,0)dr=0, and G(x;R,0)=0,
while the normalized circularly averaged structure factor
S(k;R,0)=(60—6%"1S(k;R,0) satisfies the three condi-
tions  S(O;R,6)=0, [S(k;R,0)dk=1,  and
S(0;R,0)=0. Given these three constraints on G and S,
and the fact that k,, is essentially independent of 6 in the
aggregation regime, one expects that, for fixed R (fixed
k,,), G and S will be almost independent of . Thus we
may write f(0)=(6-6° in Eq. 7). A scaling plot of
S(k) using this form with R =10% and #=0.1-0.5 is
shown in Fig. 14. The peak value scales within 10-20 %
for the whole range of 6. Similar plots have been made
for the circularly averaged correlation function G(r).
Thus we are able to scale approximately all our data for
S(k) and G(r) in the aggregation regime both as a func-
tion of R (for R =10°-10°) and as a function of coverage
(for 6=0.1-0.5) using the scaling form (27) with
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FIG. 12. Scaling plot for structure factor S(k) at 8=0.5
showing scaling for R =10"-10° with d,~1.7.
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f(0)=6-6*andd;~1.7.

We can explicitly derive the form of f(6) in the limit of
low coverage by modifying the arguments used in deriv-
ing Eq. (26) to include the coverage dependence.
Specifically, we write d ~(6/N)"/"/ ~(6/k2)"%r, where
S=60/Nis the mass of the average cluster. Then one has

S, (k;R,0)~0%,%,(k0" /k.°T), where the factor of
6’k,, * comes from the square of the mass of the average
island. Equation (26) then becomes
S(k;R,0)=0%26,(k0"" /k2/")¢,(k /k,,). Consider-
ing the behav1or near the peak as before [where
é(u)~u /], one then  obtains S(k;R,0)
~0k,, ' fk /k,,) for k =k, This implies that in the
low-coverage limit 6—0 (which is the limit to which the
pure fractal case applies) f(6)~6, in agreement with the
form used in Fig. 14.

We now consider the scaling of S(k;R,60) for large
k (k>>k,). For k, <<k <d/a, one expects that the
dominant contribution to the k dependence of S (k) will
come from the form factor of individual clusters, since
this region of k corresponds to length scales much small-
er than the average intercluster separation. In particular,

for k,, <<k <d/a we again take
S, () =k (k /K2 )~k -2k Y, while we assume
that the k, ~dependence of S,(k) is given by

S,(k)~k2 b,k /k,,), where é,(k/k,,) is approximately

TABLE 1. Island fractal dimension d, determined from fits
to the linear region in log-log plots of island size s vs radius of
gyration Rg. Note that d increases strongly as 6 increases,
while there is a much weaker dependence on R.

Coverage 0
R 0.1 0.2 0.3 0.4 0.5
10° 1.72 1.86 1.88 1.99 2.04
10’ 1.78 1.89 1.93 1.99 2.08
10® 1.81 1.91 1.97 2.00 2.07

FIG. 14. Combined scaling plots for S(k)/(6—6* for
different 8 and D /F =108

constant. This corresponds to assuming that the interis-
land contributions to S (k) are essentially constant (in-
dependent of k and k,,) for large k. Thus one obtains

S(k;R,0)~(0—0)k 7,

k,, <<k <d/a . (28)
This implies that S(k; R, 0) scales differently as a function
of R for large k than for k near k,,. Figure 15 shows
log-log plots of S(k) for 6=0.1 and R =10°-10° which
demonstrate this scaling form for large k. The slight
bend in S (k) at the largest values of k corresponds to the
crossover region at the beginning of our mass versus R
plots, while the region of power-law scaling in k corre-
sponds to the region in which one sees linear behavior in
log-log plots of mass versus R;. For 6=0.1, the absolute
value of the slope in the scaling region is 1.3 which is
somewhat less than the measured d,~1.7. However
this is not totally surprising, since it has been shown”’

that for small fractal systems with short crossover
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FIG. 15. Log-log plot of S(k) at 8=0.1 and D /F=10°-10°
showing scaling behavior for large k. Slope of dashed line is
—1.32.
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lengths, one often obtains effective exponents in S(k)
which are somewhat smaller than the actual fractal di-
mension. Similar plots have been made for higher values
of the coverage, and power-law behavior of S (k) was also
observed for large k. For example, for 6=0.5 and
D/F=10® the absolute value of the slope for large k
(1.66) is significantly larger than for 6=0.1 due to the in-
creased compactness of the clusters.

D. Coalescence and percolation regime (6> 6.)

Beyond the aggregation regime the islands begin to
coalesce and eventually percolate, so that the island den-
sity rapidly decreases while the monomer density in-
creases due to the formation of a second layer. As al-
ready noted, as R increases in the scaling regime
(R >10°), the plateau region of the island density flattens
and widens so that 0. increases with increasing R. This
suggests that the percolation coverage 6, should increase
with increasing R. However, for small R (R =< 10 the
coalescence portion of the scaled island density curves
(not shown) shifts to lower coverages as R increases, im-
plying that 6, should decrease with increasing R for
R < 10% Thus the percolation coverage 6, should exhibit
nonmonotonic behavior as a function of R, with a
minimum near R =10

In order to study this behavior more carefully, we have
studied the critical total coverage at percolation 6,(R;L)
for different system sizes L as a function of R. We also
kept track of the first-layer coverage at percolation
60,,(R;L). The clusters were identified using a simple re-
cursive algorithm, while the percolation condition was
defined as corresponding to a cluster which spans the sys-
tem size L in the horizontal direction. Simulations were
conducted for L =300, 400, and 500 and L =1000 and
R=10"-10°. From the data for 6,(R;L) for each value
of R, the infinite system percolation coverage was es-
timated using the finite-size-scaling form,
6,(0)—6,(L)=CL~'", where v=4% for ordinary per-
colation. Percolation and finite size effects have also been
studied in a model that includes cluster diffusion.>* Fig-
ure 16 shows a typical finite-size-scaling plot for 6,(R;L)
with R =10%, while Fig. 17 shows typical plctures of the
percolating cluster for various values of R=D/F. We
note that as R increases, the typical “blob” size at per-
colation increases due to the decreasing density of is-
lands.

Our results for 6, and 6,, as a function of R =D /F
are shown in Fig. 18. The percolation coverage 6, exhib-
its strong nonmonotonic behavior as a function of R,
with a minimum near R = 10%, just below the range of R
for which scaling of the island density N ~R ~* with
X=17% sets in. The estimated first-layer coverage at per-
colation 6,, is also shown, indicating that there is
significant second-layer growth before percolation for
R < 10* This is shown more clearly by the pictures in
Fig. 19. The existence of significant second-layer growth
before percolation is due to the fact that for small D /F
the diffusion length I, ~V'D /F is of the order of the typ-
ical cluster diameter d at percolation. However, for
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FIG. 16. Finite-size scaling plot of 6,(R;L) vs L ~17¥ with
=%, R=10% and L =300, 400, 500, and 1000.

R >10* one has I;, >>d and therefore there is no second-
layer growth and 6, _Gp Thus the decrease in 6, with
increasing R for R <10* is mainly due to the decrease in
second-layer growth.

Interestingly, the first-layer percolation coverage
0,,(R) also exhibits a minimum for R ~ 107, somewhat
below the minimum for 6,. Similar nonmonotonic
behavior has been previously observed in models of corre-
lated percolation®>>® as a function of the ratio of the
probability of nucleation to the sticking probability. This
behavior can be explained in terms of a change of mor-
phology of the clusters. For small R the clusters in the
first layer are like those for ordinary percolation, and as
R—0, 6,,—>p*=~0.593.>* As the diffusion increases,
the clusters become stringy (see Fig. 19), and this
enhances percolation and reduces 6,,, while for large
enough R an increase in R leads to an increase in the
smoothness of the clusters and an increase in 0,, as dis-

. cussed below.

We can also use the value of 6,,(R=0) to calculate
6,(R =0) exactly. Taking into account the probability of
deposition at a site in which the first layer is already oc-
cupied, one has d6,=(1—6,)d0, where (1—0,) is the
probability of depositing on top of an empty site. In-
tegrating, one obtains 6,(0)=In(1/[1—6,,(0)]), and
substituting  the  value of 6,,(R=0) yields
6,(R =0)==0.898.

Perhaps the most interesting result is the increase of 6,
with increasing R for R > 10“ A s1mple explanation of
this increase is as follows.’® As R increases, the clusters
(which are relatively compact near percolation) become
larger. Assuming that the fluctuations (roughness) at the
surface of a cluster increase less rapidly than the cluster
size as a function of R, then the relative roughness de-
creases with increasing R. This is consistent with the in-
crease in compactness as R increases, which is shown in
Table I. As their relative roughness decreases, nearby
clusters are less likely to touch and consequently the per-
colation coverage increases. Thus, while the decrease in
6,(R) for R < 10* is due to the decrease of second-layer
growth, the increase of 6,(R) with increasing R for
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R > 10° is due to the increasing smoothness and compact-
ness of the clusters. A nonmonotonic dependence of 6
on D /F has also been observed in recent simulations of
square-island growth.®

One interesting question is the limit of 6,(R) as
R — o0. Assuming no correlation between the cluster po-
sitions, 9,, should tend to the continuum percolation limit
6,~0.67"7 since in this limit the clusters correspond to
large smooth circular disks. We note that for R = 10°, we
already have 0,, =~0.66, close to the continuum percola-
tion limit. Thus it is quite likely that 6,(c) is larger
than the continuum percolation limit. This is reasonable,
given the existence of correlations in the cluster positions
due to the decreased probability that a cluster will be
formed near an existing cluster. This is also consistent
with recent experimental work®® on thermal evaporation

JACQUES G. AMAR, FEREYDOON FAMILY, AND PUI-MAN LAM 50

of metals on warm substrates, in which an unusually
large first-layer percolation coverage (6,,~0.8) was ob-
served.

VI. CONCLUSION

Understanding the evolution of the submonolayer in
epitaxial growth is an important first step in the study of
the mechanisms of thin-film growth. Recently, the island
distribution and morphology in submonolayer epitaxial
growth have been observed in a number of experi-
ments'® 7202325728 o5 4 variety of different systems and
under a range of different conditions, and in a number of
these experiments®>2°~28 dendritic islands were observed.

In this paper we have investigated the evolution,
growth, and scaling of the island size, density, and distri-
bution as a function of the coverage 6 and D /F in a mod-

" {c)
FIG. 17. Pictures of spanning cluster at percolation (white) for system size L =300 and large R. (a) R=10°. (b) R=10". (c)
R =10°. Gray areas correspond to islands which are not part of the spanning cluster, while the black correspond to empty regions.
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el of molecular-beam epitaxy appropriate for the case of
dendritic island growth. Our Monte Carlo results span
the range from very low coverage through the coales-
cence and percolation regimes. In addition, we have
presented a scaling theory and rate-equation analysis,
with appropriate modifications for the case of fractal is-
lands. While some of our results (such as the anomalous
scaling of the structure factor as a function of R =D /F)
are only appropriate for the case of dendritic island
growth, we expect others (such as the existence of four
distinct scaling regimes as a function of coverage, or the
coverage dependence of the structure factor) to apply to
either the pure compact or the fractal case. We now
summarize our results.

In the early-time low-coverage nucleation regime, we
found good agreement with the predictions of the point-
island model.’>3* However, beyond the nucleation re-
gime we found substantial deviations from the dynamical
behavior predicted by the point-island model and rate
equations. In particular, in the intermediate-coverage re-
gime we found N, ~6~¥ with v~0.5 and N ~0'~*~In(6)
with z=1, in contrast to the point-island predictions
v=1 and z=2. As already noted, these results are in
rough agreement with the predictions of the generalized
rate equations [see Eq. (20)] modified to take into account
the finite size of islands by including a power-law depen-
dence of the aggregation rate on the island size with
p=1. However, our results for the scaling of the mono-
mer density as a function of R in this regime (N, ~R ™7
with y =~2) agree surprisingly well with the predictions of
the point-island rate equations.

Beyond the intermediate-coverage regime we found,
again in contrast to the predictions of the point-island
model, an extended aggregation regime for which the is-
land density remains constant (z =1) while the monomer
density rapidly decreases. The existence of this regime is
due to the finite extent of the islands. We note that such
a regime has recently been observed by Li, Vidali, and Bi-
ham?? in recent experiments on compact island growth
for Pb/Cu(001). The range of this extended aggregation

0.75 TIlﬂqj rmqﬁ I]Tl‘ TI|IIH T Illl'ﬂ ll’“ﬂ ’llllq III"‘ T
r Continuum
g)n 0.7 E_ percolation _:
S L
3 E 8 A
S o065 » :
g - ]
b= L J
k] 0.6 - i
(=} o 4
8 r A R
[3] o ~ — A <
A 055 ol .
0.5 Coond oo oood ovond vvond ovond 1oond 1ol ||||3

10° 10° 10 10° 10°
D/F
FIG. 18. Percolation coverage 6, and first-layer coverage at

percolation 6,, vs D/F. Arrow at left of graph corresponds to
ordinary site percolation (D /F =0).
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regime was found to increase as D /F is increased, span-
ning a range of 0.1 <0<0.4 for D/F=10°. As already
noted, this is consistent with our prediction of the de-
crease of the coefficient A(R) in the expression
N~ A(R)In(8) with increasing R in the intermediate-
coverage region [see Eq. (20)].

Surprisingly, we found that although the dynamics in
the aggregation regime is substantially different from that
for the point-island model, the R dependence of the is-
land density at fixed coverage (N ~R X with y=~1) is in
good agreement with the point-island prediction. We
also found excellent scaling of the island-size distribution
using the generalized scaling form N,(8)=80S ~%f(s /S) as

FIG. 19. (a) Gray-scale plot (L =200) of island morphology
for R=10% and 6=0.5 showing first-layer (light gray), second
layer (dark gray), and some third-layer (black) growth. (b)
Gray-scale plot (L =200) of island morphology for R =103 and
6=0.5 showing first- (gray) and second-layer (black) growth.
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well as using Eq. (6) with z=7=1 and y=1 in the aggre-
gation regime for a wide range of R and 6. As expected,
the island-size distribution scaling function f(u)
(u =s/5) is significantly different from that obtained from
the point-island rate equations. At higher coverage, how-
ever, the island-size distribution no longer scales, and de-
velops a long (approximately power-law) tail due to
coalescence.

Our results for the morphology of the islands and the
fractal dimension d, in the aggregation regime are in
good agreement with the qualitative behavior observed in
Au/Ru(0001). As expected, we found that the clusters
become more compact with increasing coverage, while
there is also a slight increase in d, as R increases. For
large R (R =10°-10°) we found that for 6=0.1 the is-
lands are fractal (d;~1.7), while for 6=0.5 they are
compact (d,~2).

We also investigated the scaling of the circularly aver-
aged structure S (k) and pair-correlation function G (r) in
and beyond the aggregation regime. We found that the
scaling of the structure factor peak for k70 [and of G(r)
for 0] as a function of R satisfies an anomalous fractal
scaling form with d,~1.7, which we derived for fractal
clusters using a simple scaling analysis. We found that
this anomalous scaling form with d,~1.7 also holds for
the entire range of coverage in and even somewhat
beyond the aggregation regime (6=0.1-0.5), even
though for 8= 0.2 the clusters have become significantly
more compact. As already noted, this appears to be due
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to the fact that although the core of the clusters becomes
compact, they continue to generate dendritic DLA-like
branches. The existence of this anomalous scaling form
for the structure factor should be useful as an experimen-
tal signature for the identification of dendritic islands.
For large k, we found that the power-law tail of the struc-
ture factor satisfies a different scaling form [Eq. (28)],
with an exponent somewhat below the cluster fractal di-
mension. We also found that we were able to approxi-
mately scale both S(k;60) and G(r;0) for different cover-
ages, using the approximate normalization factor
f(6)=(6—167.

Finally, we studied the percolation coverage 6, as a
function of R =D /F. For small R (R <10% there is
significant second-layer growth before percolation, and
0, decreases with increasing R due to the decrease in
second-layer growth with increasing R. However, for
large R (R > 10%) there is negligible second-layer growth
before percolation, and the percolation coverage 6, in-
creases with increasing R due to the increasing compact-
ness of the clusters. Thus our results for the percolation
behavior as a function of R for large R have important
implications for the understanding of multilayer growth.
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FIG. 17. Pictures of spanning cluster at percolation (white) for system size L =300 and large R. (a) R=10°. (b) R=10". (c)
R =10°. Gray areas correspond to islands which are not part of the spanning cluster, while the black correspond to empty regions.



FIG. 19. (a) Gray-scale plot (L =200) of island morphology
for R =107 and #=0.5 showing first-layer (light gray), second
layer (dark gray), and some third-layer (black) growth. (b)
Gray-scale plot (L =200) of island morphology for R =10* and
6=0.5 showing first- (gray) and second-layer (black) growth.
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FIG. 2. Pictures of the island morphology (L=200) for three different values of R (R =10°, 107, and 10°) and three different cover-
ages 6=0.1, 0.3, and 0.7 in the beginning and middle of the aggregation regime, and in the coalescence regime. (a) R =10°, 6=0.1

(b) R=10%, 6=0.3. (c) R=10°% 6=0.7. (d) R=10", 6=0.1. (e) R=107, 6=0.3. () R =107, 6=0.7. (g) R =10°, 6=0.1. (h) R =10°
6=0.3. (i) R=10° 6=0.7.



