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Quantum fluctuations of the charge near the Coulomb-blockade threshold
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In the vicinity of the Coulomb-blockade threshold, quantum Quctuations of the charge strongly
innuence the energy spectrum of small metallic junctions. %e develop a nonperturbative calculation
of the junction ground-state energy and evaluate the junction charge in the limit of a small junction
conductance. Close to the Coulomb-blockade threshold this charge is effectively screened due to
intensive virtual electron tunneling. We also describe level splitting close to the edges of the Brillouin
zone and show that the electron tunneling rate can be substantially suppressed due to quantum
Quctuations of the charge. As a result the junction current-voltage characteristic becomes non-
Ohmic near the Coulomb gap.

I. INTRODUCTION

Charging effects in rnesoscopic tunnel junctions have
attracted much attention during the last several years
(see, e.g. , Refs. I and 2 for a review). A convenient ex-
perimental realization of these efFects can be provided
in the so-called electron box structure. s It consists of a
small metallic island connected via a tunnel junction with
a capacitance Cg to a lead electrode and via a gate capac-
itance Cz to a voltage source V~. The charge of an island
is quantized in units of an electron charge e. Therefore,
the Coulomb energy of the system depends on the num-
ber of electrons on an island n and the externally applied
charge Q = CsV~

(p) (ne —Q )2

2C

C = C~ + C~ is the total capacitance. At suKciently
low temperatures T « E, = e2/2C and ne —e/2
Q & ne + e/2 Coulomb interaction suppresses single
electron tunneling across the junction. Then the equi-
librium number of electrons on an island is a step function
of Q . Within the interval ne —e/2 & Q & ne+ e/2
this number is equal to n At Q = n. e + e/2 an extra
electron tunnels to an island and the picture repeats e
periodically in Q .

Quantum Huctuations of the junction charge, or, in
other words, virtual electron tunneling across the junc-
tion, can substantially modify this simple classical pic-
ture. Quantum effects become particularly important
close to the points Q = ne+e/2 where the energies of the
states n and n+ 1 are nearly equal. It was pointed out in
Ref. 4 that quantum fluctuations of the charge lead to the
efFective renormalization of the junction capacitance and
to the flattening of the band in the vicinity of the points
Q = +e/2 (from now on we restrict our attention to the
case n = 0 and —e/2 & Q & e/2). More recent analysis
of the problem ' demonstrated that in the limit of large
tunneling conductance o.q » 1 (aq —Bq/Rt, Rq —vr/2e

Bt is the junction tunneling resistance) for small Q
quantum Huctuations lead to the effective renormaliza-
tion of the junction capacitance C,tr C/nt2 exp(2at),
whereas for the values Q close to e/2 such Huctuations
destroy the Coulomb blockade and the band becomes
flat. As a result the expectation value for the junction
charge operator becomes smaller than ~Q ~, i.e., an ex-
ternal charge turns out to be (partially) screened due to
intensive virtual electron tunneling across the junction.
A clear experimental indication of the presence of this
efFect in the electron box structure has been reported in
Ref. 3.

In the limit of a small junction conductance a& (& 1 one
can proceed perturbatively in o,q and calculate the first
order correction to the ground-state energy of the system

Eo(Q ) (see, e.g. , Refs. 2 and 4). This naive perturbation
theory fails in the vicinity of the points Q = ke/2 be-
cause the first order correction to the expectation value

of the charge operator

(Q) =Cd '
(2)

diverges logarithmically at Q ~ +e/2

For such values of Q higher order terms of the pertur-
bation expansion become important. The physical rea-
son for that is clear: for Q -+ e/2 the energy states
Q /2C and (Q —e) /2C are nearly degenerate. There-
fore, strong tunneling between these two states occurs
even for very small o.q and a naive perturbation theory
in o.q cannot be sufFicient.

Note that the origin of the logarithmic divergence (4)
at Q = +e/2 is similar to that discussed in the familiar
Kondo problem. This useful analogy has been estab-
lished by Matveev who calculated an expectation value
for the charge operator (Q) making use of a renormaliza-
tion group approach developed for the anisotropic Kondo
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problem. Note that the results of Ref. 7 have been ob-
tained under certain assumptions about the particular
form of the tunneling matrix element. Therefore, a pri
oui it is not completely clear how far one can go with
this analogy in the description of metallic tunnel junc-
tions. In this paper, we develop a general analysis of the
problem based on the microscopic effective action for a
tunnel junction. ' The results of our analysis expressed
in terms of the junction conductance are insensitive to the
details of the model describing electron tunneling across
the junction.

In Sec. II we evaluate the higher order terms of a
perturbation expansion in powers of o.q. Then we de-
velop a diagram technique which allows one to sum up
the perturbation series and to formulate the closed sys-
tem of equations for the partition function and the self-
energy of our problem. In Sec. III we calculate the en-
ergy spectrum of the tunnel junction in the limit of small
o,q. We also evaluate the electron tunneling rate close to
the Coulomb-blockade threshold and study the effect of
quantum fiuctuations of the charge on the current-voltage
characteristic of a tunnel junction. A brief discussion of
our results is presented in Sec. IV. Some details of a
regularization procedure are outlined in the Appendix.

II. PERTURBATION THEORY AND DIAGRAM
TECHNIQUE

Let us consider a tunnel junction between two normal
metals with an externally controlled charge Q . As we
already discussed, this physical situation can be easily
realized, e.g. , in the simple electron box con6guration.
The ground partition function for this system has the
form

&()) q. ) = 0 f 44 e f D4
Yn go

('2~miQ.

system "spends" part of the time in the charge states
Q + e, Q + 2e, etc. As a result the value (Q) will
deviate from Q and the junction ground-state energy
Eo(Q ) = —TlnZ(Q~)!z~o will be renormalized. Pro-
ceeding perturbatively one can expand the expression (4)
in powers of o.q and recover corrections to the charging
energy (1) due to virtual electron tunneling. Then inak-
ing use of (2) and keeping only the first two terms of a
perturbation expansion in a~ we get

(Q) = Q C/Cir

7x'
C/C, g = 1 —4g+ 2g + 29ln 2 16

9 3
—4ln2ln2+2Li~(1/4)) + (8)

for Q « e and

(Q) = Q-+g I [.(Q-)]+2g"((I [ (Q-)])'

+31n[a(Q )]) + (9)

for a(Q ) = 1/2 —Q /e « 1. Here Liz(z) is the dilog-
arithm function and g = aq/z. 2. We see that for small
Q virtual electron tunneling yields a capacitance renor-
malization (8) whereas for the values Q close to e/2
the situation turns out to be more complicated because
of the presence of logarithmically diverging terms in the
perturbation expansion (9). It is straightforward to show
that the third order correction to (Q) contains the main
logarithmic contribution 4g e[lna(Q )] as well as lower
powers of lna. Analogously the nth order term of the
perturbation expansion for (Q) should contain all powers
of ln a from one to n. Below we shall develop a diagram
technique which allows one to sum up our perturbation
expansion in all orders in o.z and to evaluate the energy
spectr»m of our problem.

To proceed it is convenient to introduce the density
matrix

The term S[()(2] represents the action for a tunnel
junction2'8 p(~ V ) = DV exI (—S[V ]).

0
(10)

S[(p] = dv —
!
—

!
— dr d7'a(7 —~')

C (j)'
2 ~2e)

x cos
!

)'~(~) —~(&') &

)
where

o,'gT
a(~ —~') =

sinz [2rT{~—~')]

Making use of a Poissons resummation theorem. after a
trivial algebra one can rewrite the expression for Z(Q )
(4) in the form (see also Ref. 2)

AZ= —) Z(q —en), 4= f 44,

where —in contrast to Z(Q )—the function

The phase p(7) is linked to the voltage across the junc-
tion by the relation V{+) = (j(r)/2e. If we do not
take electron tunneling into account (i.e., put o(2

0) the junction energy would be that of a capacitor
Eo (Q ) = Q /2C. However, for any nonzero o.2, elec-(O)

trons can tunnel across the junction and, therefore, the

is not e periodic in Q . Let us furthermore define the
function Z(v, Q ) which coincides with Z(Q ) (12) at
v = P. The function Z(7, Q ) will play the role of a
propagator in a diagram technique developed below.

Expanding Z(~, Q ) in powers of a2 we get
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( q.'3Z(r, Q ) = exp
~

— *r
~

+ ) — dred~, ' . d~„d~„'cx(7i—~,') . .n(7„—~„')
2C ) B! o

x exp
1 T

dt ~ Q. —e) [0(t —r, ) —0(t —r,')j &

j=l

where g(z) is the step function and 0 & w~, w' & r for all j. Let us order the times r~, w'. and denote them according
to their ordering: T1 & ~~ ( . ( 72 1 4 T2 . Then we have

q2 ) & &era

Z(~, Q ) = exp
~

— 'r
~

+ ) ) ) d~2„d~2„, d7,
n=X e„=+i.pairs

I ~

n=1

1
x exp &

— dt Q —e) e„8(t—r„)
2C 0 r=l

The sum g, +i is taken over neutral charge configu-
rations P„e„=0 whereas the sum P,„

is taken over
all possible pairs iI, and jA, with e;, = 1, ej„=—1. It
is convenient to express the expansion (14) graphically
(Fig. 1). Each term of this expansion corresponds to
an even number of successive electron tunneling events
(stepwise function of Fig. 1), logarithmic interaction be-
tween each pair of these events v, , and wj„ introduced by
the kernel n(7;, —r~„)is depic. ted by a dashed line. We
shall distinguish between connected and disconnected di-
agrams. Connected diagrams (e.g. , the first diagram in

Fig. 1) cannot be divided into two parts without the
crossing of at least one dashed line. Disconnected dia-
grams (e.g. , the second diagram in Fig. 1) have parts
without dashed lines. The total charge corresponding
to these parts is always equal to Q because connected
blocks are neutral.

Analogously to the standard Feynman diagram tech-
nique we introduce the sum of all connected diagrams
Z(v, Q ) and then rewrite the diagram series in terms of
a Dyson equation (Fig. 2)

'r T'2

Z(~, Q ) = exp( —Q,~/2C) + d~2 d~,
0 0

x Z(~ —r2)Z(~2 —ri) exp( —Q 7;/2C). (15)

I

Making use of the Laplace transformation we find

Z„(Q ) = dwexp( —pr)Z(r, Q )
0

= I/[p+ Q'/2C —Z (Q )j,

p is the Laplace variable. Below we shall use this equation
to evaluate the energy spectrum of a tunnel junction.

The self-energy Z in the Dyson Eqs. (15) and (16)
can be represented in terms of the diagram series shown
in Fig. 3. These series allow one to express Z via
Z(w, Q ) and to obtain the closed system of equations
for Z. Equivalently one can rewrite the Dyson equation
introducing the vertex part 1'(p, Q; p', Q' )

1
tOO

= p+ Q /2C+ dp'a(p —p')
27t l gQQ

x(I'(p, Q;p', Q + e)Zp (Q + e)

+r(p, q. ; p', q. —e)Z, (q. —e)}

and express I' in terms of the diagram series presented
in Fig. 4. Note that this diagram expansion is very
similar to that discussed in the zero charge problem of
quantum electrodynamics. To recover this analogy one
should identify solid and dashed lines, respectively, with
electron and photon propagators. The only important
difference between these two problems is that in contrast
to Ref. 9 there is no "vacuum polarization" in our prob-
lem and the expression for the "photon propagator" n(r)
is fixed.

III. ENERGY SPECTRUM AND TUNNELING
RATE

The function Zp(Q ) contains complete information
about the energy spectrum of our problem. For —e/2 &

FIG. 1. Typical diagrams (one connected and one discon-
nected) which describe terms of a perturbation expansion for
Z (14). Dashed lines correspond to logarithmic interaction
between pairs of electron tunneling events. FIG. 2. Graphical representation of the Dyson Eq. (15).
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J+ t'1+ + ~ M +

FIG. 3. Diagrammatic representation of a perturbation ex-
pansion for the self-energy Z.

Q & e/2 this function defines the junction ground-state
energy Eo(q ) = T—ln Z(q~) i 2'~p. From the inverse
Laplace transformation

+ioo
Z(~, Q ) = . dpZ„(q ) exp(pr) (18)

one can easily find Z(v, Q ) exp(pox) for r ~ oo. Here

po is the pole of Z„(Q ) in the complex plane p with the
largest value Re po (all poles of the function Z„arein the
half plane Re p & 0). Therefore, the ground-state energy
Eo(q ) coincides with the smallest positive solution of
the equation

Z, '(Q ) =0 (19)

or, equivalently,

@o(q*) 2~ ~p(q&)lp= ao(Q—) (20)

+ ~ ~ ~

FIG. 4. Diagrammatic representation of a perturbation ex-
pansion for the vertex part I'.

Making use of the analytic properties of the function

Z„(Q ) one can also obtain information about higher
energy states. Indeed, provided Zz(q ) is an analytic
function of the parameters p and Q the function Eo(Q )
is also an analytic function of Q . This allows one to re-
cover the energy of excited states by means of an analytic
continuation of the function Z~(q ) from the interval

iQ ] & e/2 to iQ i
) e/2.

Before proceeding with the calculation of the energy
spectrum let us note that the terms of our perturbation
expansion for Z in powers of nq formally diverge in the
high frequency limit. These divergencies are induced by
the behavior of the kernel aq(v) (6) at 7 m 0 and have no
physical meaning. A standard way to treat this problem
is to introduce a high frequency cutofF u, . Then one
can solve Eq. (20) for ip] « (d, and obtain the results
which in general depend on the parameter ~, Therefore, .
this approach contains a certain ambiguity related to a
particular choice of the high frequency cutofF procedure.
Here we regularize our problem by making a shift of the
effective action (5) by the y-independent term

~let ~ ~(s)+ J «f «'~(» —»')'"v( —E.l» —»'I).

(21)

This procedure implies only an energy shift by a constant
value and does not infiuence any physical quantity which
we calculate below. Expanding (4) in powers of aq with
the aid of (21) it is straightforward to check (see the
Appendix) that no divergent terms appear for 7. —w' m 0
and our theory remains 6nite.

Making use of a regularization (21) one can rewrite the
Dyson Eq. (17) in the form

1 Q2 +

(
)= + — '('- )

x[r(p, q. ; p', q. —.)

xZ„(Q —e)+I'(p, Q;p', Q +e)
x Z„(Q + e) —21'(p, Q; p' + E„Q)

xZ„+@(Q )]. (22)

Equations (15) and (16) can be changed accordingly. To
solve these equations in the limit of a small junction con-
ductance we apply a perturbation theory in aq and take
into account only two first diagrams in the diagram series
for the self-energy Z (Fig. 3). This approximation cor-
responds to a summation of a subsequence of diagrams
with noncrossing dashed lines. It is equivalent to the well-
known approximation of main logarithms in the Kondo
problem or in the zero charge problem. Analogously, only
the first diagram in the series for the vertex part I' (Fig.
4) has to be taken into account. Within the framework
of this approximation the self-energy Z and the vertex
part 1 are equal to

Z(7., Q ) = n(~)[Z(7, Q —e).+ Z(~, q, +e)
—2 exp( —E,~)Z(~, Q )], I' = 1. (23)

Then with the aid of (23) one can rewrite the equation
for Z (22) in the form

l Q2 +~

Z„(Q ) 2t"

+Z„(Q +e) —2Z„+@(Q )].

dp'(p' —p) [Zp (Q —e)

(24)

+2gZ, +a (Q ). (25)

Our analysis can be simplified further for values Q close
to e/2. In this limit diagrams describing tunneling be-
tween the charge states Q and Q —e give the main con-
tribution and one can reduce the problem to the effective
two-state problem. Taking the Laplace parameter p close
to the poles of the functions Zz(q ) and Zz(Q —e) for
ie/2 —Q i « e and g « 1 one can estimate the functions
Zz in the right-hand side of (23) as

Z„-'(Q —e) ——:A(q ),

Z-'(Q +e) Z„+@(Q ) E,.

Taking the second derivative of (24) with respect to p we
get

d2 1
, = —gZ„(Q — ) —gZ„(Q + )
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Then for p+ Q /2C « E, and A(Q ) « E, Eq. (25)
reduces to

%'ithin the accuracy of our calculation this expression
yields

x(p) = g-/y(p) y(p) = g-/*(p) (26)

where we define z(p) = Z„(Q), y(p) = Z„(Q —e)
and denote the derivatives over p by overdots. To obtain
initial conditions for these equations we rewrite the Grst
of Eq. (26) in the form of an integral equation

where Ep (e/2) = E,(l —8g ln 2) /4, b = 1 + 4 ln 2,

L(q*) = 1 —g(»[a(q*)] +»[a.(Q*)l) (37)

E (Q ) = Eo(e/2) —E,a(Q )((1—gb)/L(Q )

+g(b 2—)/[L(Q*)]') (36)

*(~) = q f -&p'(O' p)V (p')+& +0*op'(27)
and a„(Q ) = [Ep(e/2) —Ep(Q )]/E, . Taking a deriva-
tive of (36) with respect to Q we get

and compare it with (24) for p+ Q /2C « E„i.e. , in the
vicinity of the pole of the function Z„(Q ). As a result
we arrive at the initial conditions:

q2 OO

zp —— * —g dp'p'Z„(Q —e)2C

—g~ /2C'
dp'p'[Z„(Q, + e) —2Z„+@.(Q )],

(28)

zp ——1+ g dp'Z~ (Q —e) —g
0 —Q~ /2C

ZI, (Q + e) —2ZI +@,(Q )].

dp'

(29)

zp ——Q /2C+ gE, [(1 —7ln2)/4+ (1/4+ 51n2)a(Q )],

(30)

yp
——(Q —e) /2C + gE, [(1 —7 ln 2) /4

—(1/4 + 5 ln 2)a (q )],

Initial conditions for y0 and y0 can be derived analo-
gously. As integration over p' in (28) and (29) runs far
Rom the poles of Z„with a sufficient accuracy one can
put Z~(Q ) = (p + Q2/2C) . Then for Q e/2 we
immediately get

(Q) = (e/2)((1 —gb)/L(Q ) +gb/[L(Q )] ). (38)

This dependence is presented on Fig. 5 for diferent val-
ues of g. In the main approximation the result (37) and
(38) coincides with that obtained by Matveev in the
limit of a large number of channels. It is interesting to
point out that the result (37) and (38) obtained by a
summation of noncrossing two-state problem diagrams
in some sense goes beyond the approximation of main
logarithms. The reason for that lies in the fact that di-
agrams with crossing dashed lines give a small (of order
g2) contribution to the self-energy and, therefore, it is
possible to recover the next order term in g/(1 —2g lna)
in the expression for (Q). On the other hand, the approx-
imation of noncrossing diagrams is obviously insufficient
to reproduce the correct prefactor for the term g lna in
the expansion (9) because diagrams describing tunneling
to higher energy states also contribute to this term This.
e8'ect might lead to a small unimportant renormalization
of g in Eqs. (36)—(38) which we do not consider here.

As we already discussed, the energy of excited states
can be obtained by means of an analytic continuation of
Ep(Q ) to the values ~q ~

) e/2. Here we are interested
in the expression for the energy of the first excited state
E1(Q ) in the vicinity of the point Q = e/2. The ana-
lytic continuation procedure is straightforward and yields

xp + 3ga(Q ) = yp —3ga(Q ) = 1+gin 2. (32)

To solve Eqs. (26) with the initial conditions (30)—(32) it
is convenient to introduce the function u(p) = x(p)y(p).
This function obeys the equation

u = 2xoyo —2g —2g»(u/zoyo)
0.2

r
I
I
Ir

r I

---- g-005
I

g=0.25 I

~0.5

which has a solution

p = du[(zoyo —xoyo) + 4xoyo
OPO

—4gu ln(u/xoyp)]

Combining this solution with Eq. (20) we arrive at the
final result for the junction ground-state energy Ep(q )

A
Q 0.0
Y

-0.2

-0.4
0.0 0.2 0.4

I r
I
I
I
I
I

I

0.6
I

0.8„„,(*oyo — oyo)
2 (xoyo) o ( 4zoyoxoyp

gt ln t ))+t-
&oyo

(35)

FIG. 5. Dependence of the expectation value for the charge
operator (Q) = dEo/dQ on the external charge Q calcu-
lated from the Eq. (35) for different values of g. Close to
the Coulomb-blockade threshold Q = e/2 the value (q) is
defined by the Eqs. (37) and (38).
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E~(Q*) = E.(e/2) + E.o(Q-) ~

+ . I
~

g(b —2)

[L(Q ) —2gim]2)
' (39)

eludes the effect of strong quantum fiuctuations in the
vicinity of the point Q = e/2. Making use of (39) and

(42) in the main approximation we get

Combining this result with Eq. (36) we immediately ob-
tain the expression for the level splitting Aqo ——ReEq-
Eo in the vicinity of the point Q = e/2

&1o(Q ) = 2[Eo(e/2) —Eo(Q*)](1—2&'&'/[L(Q )]').
(40)

At Q ~ e/2 in the main approximation this result re-
duces to a simple formula

This expression shows that intensive virtual electron tun-
neling close to the Coulomb-blockade threshold Q
e/2 not only leads to the band fiattening (36) and charge
screening (38) but also reduces the single electron tun-
neling rate by a factor of order [g ln [a(Q ) []

2 below the
standard, perturbative value. 1'2 To calculate the current-
voltage characteristic close to the point Q = e/2 it is
necessary to combine both efFects. De6ning an externally
applied voltage V = Q /C we arrive at the expression
for the current across the junction

&.(Q*) = -E.u(Q-)/~1 (Q-). (41)
I(V.) = 2(Q(V.))r(V.). (44)

I'(Q ) = 2ImE(Q ). (42)

Not very close to the point Q = e/2, this rate was cal-
culated perturbatively in at.~'2 Our analysis allows one
to find a nonperturbative expression for I'(Q ) which in-

The behavior of the two lowest energy bands Eo(Q ) and
E1(Q ) in the vicinity of the Coulomb-blockade threshold

Q = e/2 is depicted in Fig. 6 for different values of
g. We see that for larger values of g both the slope of
the bands and the value Aqo(Q ) become smaller but
remain nonzero except for the point Q = e/2. We also
point out an asymmetry of the bands which increases
with increasing g.

The presence of an imaginary part in the expression
for Eq (Q ) (39) indicates an instability of this state with
respect to tunneling (decay) to the ground state with the
energy Eo(Q ). For Q ( e/2 this process corresponds
to the tunneling of one electron &om the charge state
Q —e to the state Q . The rate of such a tunneling
process I'(Q ) is defined by a well-known formula

In combination with the results (37), (38), and (43) at
T -+ 0 this expression yields

I(V )
V —e/2C

Rt [1 —2g ln(CV /e —1/2)]

for V ) e/2C and I(V ) = 0 for V ( e/2C. The
result (45) demonstrates (see also Fig. 7) that the ef-
fect of quantum Buctuations on the current-voltage char-
acteristic of a small tunnel junction is important for

g ln(CV /e —1/2) + 1 leading to a smearing of the jump
in the classical conductance' G(Q = e/2+ 0) —G(Q
e/2 —0) = 1/Rt at Q = e/2.

At first sight the result (45) might look counter intu-
itive: it shows that at V ) e/2C the junction conduc-
tance decreases with increasing o.q. The reason for such
a behavior lies in the effect of charge screening. Due to
this effect close to the Coulomb-blockade threshold (a)

CV

UJ

(3
LU

0.1

---- g=005
g=0.25 r

rr

rrr

~r

04

0.2

0.0
0.0

---- g=005
g=0.25
g=0.5

I

0.5 1.0
V„

1.5 2.0

-0.1
0.4

Q„
0.6

FIG. 6. The behavior of the two lowest bands Es(Q )
(lower curves) and Eq(Q ) (upper curves) in the vicinity of
the Coulomb-blockade threshold Q = e/2 for difFerent values
of g.

FIG. 7. The current-voltage characteristic of a small
conductance tunnel junction (45) in the vicinity of the
Coulomb-blockade threshold. At T = 0 the current I is zero
below the Coulomb gap V ( e/2C. Above this gap the efFect
of quantum Quctuations on the current is strong in the region
g ln(CV /e —1/2) ) 1 where I substantially deviates from its
classical value (Ref. 1).
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the junction "feels" a smaller value of the external charge
than its bare value Q = V C (and thus both the elec-
tron tunneling rate and the current across the junction
decrease) and (b) each tunneling event changes the junc-
tion charge by the quantity 2(Q) smaller than e. Both
features become more pronounced for larger values of o.q

leading to the dependence (45).
At the same time, the value o.q should be still small

enough for the result (45) to remain valid. For relatively
large nz (typically for az + 2—3—see below) crossing dia-
grams become important and one might expect substan-
tial changes in the system behavior. ' Furthermore, even
for small nz the result (45) applies only for a physical
situation of a 6xed external charge across the junction.
This situation can be achieved, e.g. , for several junctions
connected in series. To see the charging eKects in a sin-
gle junction one should essentially decouple this junction
from a voltage source by a large external impedance (see,
e.g. , Refs. 1 and 2). The latter situation is better de-
scribed by the current biased model. Making use of the
results (36)—(43) and proceeding within the framework
of a simple master equation analysis we easily get for
I « e/RzC

2g
2C

~
1 —ln(I RzC/e) )

(46)

Here V is the average voltage across the junction and
I is a constant current bias. In contrast to the voltage
biased case (45) two quantum efFects—suppression of the
electron tunneling rate and electron charge screening-
act in the "opposite directions" and nearly compensate
each other leading only to a small quantum correction
(46) to the classical resulti in the limit of small g « 1.

Combining the results presented here with the analy-
sis developed in Ref. 6 one can also obtain information
about the linear transport properties of the junction at
finite frequencies and/or temperature. For example, one
can consider the con6guration with the external voltage
source V switched to the junction via an Ohmic resis-
tor R, and define the linear conductance Gz z(tu) of the
system "tunnel junction + Ohmic resistor" from the lin-
ear current response in the circuit I(tu) = Gz z(~)V (&u).

Then with the aid of Ref. 6 after the analytic continua-
tion to real &equencies one 6nds

z~C (Iz ((u) It (—(u) )
i(uR, C —1 i ~(i~R, C —1)2 ' (47)

(48)

where the correlation function for the "tunneling cur-
rent" {Iz{&u)Iz(—u)) (Ref. 10) is calculated in imaginary
time with the efFective action (5) and then is continued
to real times. Expanding to the second order in nq after
a simple algebra we get for ~ && E, (Ref. 11)

1
zoz (Qx I ~)

(49)

where C,zr(Q ) = C(d(Q)/dQ )
i is the effective (renor-

malized) junction capacitance calculated before. The re-
sult (49) is valid for Rs )) czzR~ W.e see that at low fre-
quencies and Q & e/2 single electron tunneling across
the junction gives rise to the renormalization of both the
junction capacitance and the Ohmic resistance (49). The
latter effect vanishes at ~ m 0 in a complete agreement
with the result (43) I'(Q & e/2) = 0.

IV. DISCUSSION

It is interesting to compare the results of our analysis
with those obtained by means of an instanton technique
in the limit of large junction conductance. ' Both ap-
proaches show that for small values of the external charge
Q « e Coulomb blockade is not destroyed by quantum
fiuctuations of the charge. In both cases of small and
large a& these fiuctuations yield a capacitance renormal-
ization defined by Eq. (8) for relatively small az and by
the expression '

C
C,a = exp(2a, —p),

16aq2
(50)

for large nq, p = 0.577 is the Euler constant. In our
present analysis we essentially use the small parame-
ter g = nz/zr « 1. The corresponding small pa-
rameter for the instanton technique of Refs. 5 and 6 is

exp( —2az) « l. In a certain window for the parameter
az of order one (more precisely czz 1—3) these condi-
tions overlap and one can expect both theories to pro-
vide a qualitatively correct description of the problem.
Indeed, the expressions for the effective capacitance ob-
tained within these two approaches match approximately
at nq 1.5—2, i.e. , at the borderline of applicability
of these approaches. Therefore, a combination of (8)
and (50) with a sufficient accuracy describes the eIFec-

tive junction capacitance C,g for all values of n&.

In the vicinity of the Coulomb-blockade threshold

Q = e/2 the situation becomes somewhat more compli-
cated. For small values of g the analysis developed here
yields a finite slope for the ground-state energy Ep(Q )
(and, therefore, nonzero expectation value {Q)) for all

Q g e/2. Although the band Ep(Q ) has an obvious
tendency to Battening with increasing g one can hardly
extrapolate our results to relatively large values of g & 1

to draw any definite conclusion about the form of Ep(Q )
for such values of g. To estimate the validity range of our
analysis let us combine (37) and (38) with an obvious re-
quirement {Q) & 0. Then within the accuracy of our
calculation we immediately get

Then substituting this result into (47) we obtain for Q
e/2, T ~ 0 and small u n, &~'/t =2.6. (51)
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For larger values of o,q the approximation of noncross-
ing diagrams is not sufficient and a more sophisticated
technique has to be developed. Then in principle one
can expect qualitative changes in the behavior of Eo(Q )
close to the point Q = e/2. For example, the instanton
analysis of Refs. 5 and 6 yields the fiat band and (Q) = 0
in the vicinity of this point. Accordingly, the junction
acquires a nonzero conductance already for V ( e/2C.
The transition between this Bat band picture for large
nq and one described here in the limit of small o.q can
take place as a sharp crossover or a phase transition for
values o.q 2—3. We, however, would like to emphasize
that the presence of such a crossover or a phase transition
by no means implies destruction of the Coulomb block-
ade for small values of Q in which case the only efFect
of quantum Quctuations of the charge is the capacitance
renormalization (8) and (50).

As was already pointed out, the ground-state energy of
a small tunnel junction in the limit g (& 1 has been previ-
ously calculated by Matveev who made use of the renor-
malization group approach developed for the anisotropic
Kondo problem. This calculation has been carried out
under speci6c assumptions about the details of the model
for electron tunneling across the insulating layer. Our
analysis demonstrates that the junction behavior is prac-
tically insensitive to such details. For example, assuming
that the tunneling matrix element is independent on the
momentum values of tunneling electrons and following
Ref. 8 one can immediately recover the efFective action
(5) and (6). The same efFective action can be recovered
for a "wide junction" Hamiltonian of Ref. 7 as well as
for other tunneling models provided the junction cross
section area is much larger than the square of the Fermi
wavelength. This is always the case for metallic tunnel
junctions. The only physical quantity that is sensitive to
particular features of the tunneling model is the trans-
parency of a tunnel barrier whereas the junction proper-
ties expressed in terms of its tunneling conductance I/Rq
remain the same.

Recently, the problem investigated here was also con-
sidered by Falci, Schon, and Zimanyi. Starting &om
the efFective action (5) and (6) and proceeding within
the framework of the noncrossing diagram approxima-
tion these authors reduced the problem to the effective
two-state one which then was treated by means of a
renormalization group technique. The result for (Q) ob-
tained in Ref. 12 coincides with our result (37) and (38)
within the main logarithmic approximation. To establish
a connection between our analysis and that developed in
Ref. 12 let us follow and restrict our attention only to
the noncrossing two-state diagrams, neglecting diagrams
that describe virtual tunneling to higher energy states.
For Q close to e/2 contributions &om these neglected di-
agrarns are proportional to the lower than the main pow-
ers of inc(Q ). Therefore, the accuracy of the method
coincides with that of the approximation of main loga-
rithms. Furthermore, proceeding within the noncrossing
two-state diagram analysis it is straightforward to check
that —in contrast to the analysis presented here (see the
Appendix) —it turns out to be impossible to regularize
the problem by means of a unique shift of the system en-

ergy. In other words, the effective two-state system &ee
energy essentially depends on the high &equency cutoff
parameter u, C. alculating this free energy perturbatively
in nq and making use of the standard scaling arguments
we arrive at the equations

drip/d ln (d = 2g610 dEO/d ln u, = —gEio
dg/dine), = 2g (52)

which leave the free energy invariant under the proce-
dure of successive decreasing of ~,. These equations es-
sentially coincide with those derived in Ref. 12 [the first
Eq. (52) has been derived in an earlier paper by Guinea
and Schon4]. It is interesting to point out that this scal-
ing procedure cannot be generalized to describe our ini-
tial problem which includes all charge states because the
(regularized) free energy for this problem does not de-
pend on ur, . Thus strictly speaking the renormalization
group Eqs. (50) are valid only for the reduced two-state
problem but not for the initial one. As we already dis-
cussed, the results of both for (Q) coincide in the main
logarithmic approximation. Some other results differ.
For example, it is easy to see &om (52) that the midgap
line Eo(e/2) = Eo(Q~) + b, io/2 remains unchanged
whereas our analysis yields Es(e/2) = E,(1 —8gln2)/4.

Finally let us note that the problem dicussed here also
shows many similarities to the two-level system with lin-
ear Ohmic dissipation. is For example, the first Eq. (50)
for the level splitting Eqo coincides with the analogous
equation if we identify g with the square of the tunnel-
ing matrix element between two levels (or the fugacity).
The third Eq. (52) is also somewhat similar (although
not identical) to the equation for the fugacityis for a
particular case of a dimensionless dissipative parameter
equal to one. Both problems can be mapped onto that
of logarithmically interacting gas of blips. An important
formal difFerence between them is that in our problem
only pairs of blips interact between each other whereas
for a dissipative two-level system 3 such interaction oc-
curs between all blips. This results in different physical
behavior obtained for these two problems.
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APPENDIX

Let us consider the grand partition function (4) with
the action

c &j)'
S[p] = dr —

I

—
I

+ dr dr'n(r —r')
2 g2e)

x exp( —E,(r —r')) —cos
~

t'V (r) —
V (r') &

(A.l)
2 )



8744 D. S. GOLUBEV AND A. D. ZAIKIN 50

To illustrate the main idea of our regularization proce-
dure we 6rst expand the partition function to the 6rst
order in a&. Making use of (Al) we get

Z~ ~(P, Q ) = exp( —Q P/2C) d~ dan(a)B, (a),
0 0

(A2)

where

e (eB,(a) = exp ——
I

—+ QCq2
e fe e'

+ exp ——
I

——Q I

a —2 exp
I

— a I.*)
& 2C)

(A3)

In the limit of small a we have Bi(a) oc a . This com-
pensates the singular behavior of a(a) oc 1/a for small a
and the integral (A2) remains finite.

In order to demonstrate that such regularization re-
mains in higher orders of the perturbation theory let us
expand the partition function with the action (Al) in
powers of o.q. Then we get

f ~
1 P

Z(P, Q ) = exp( —Q P/2C) 1+) ) — ... daida'i. ..da„da'„n(ai—a', ) ...o.(a„—a'„)

(A4)

where

B(ai, ..., a„,a'„..., a'„)= (—1)" '2 'exp ' ) v, (a', —a, )

8,) )— v;v, (ia', —a, i

—ia', —a,'i —ia, —a, i+ ia, —a,'i) .
i=1 j=i+1

(A5)

Here we imply v~ = —1;0;+1for a summation over "charge" configurations v and denote

01 = P~, 02 = (A6)

We are interested in the behavior of the expression (A3) for small ia~ —aI, I
where the kernel n(aI, —aI, ) (6) diverges

as 1/(ai, —a&) . To find the function B in this limit we perform a summation over vt, ———1;0;+1 (k g j) in (A3).
Then we obtain

—B(a„..., a„,a'„..., a'„)= (—1)" 2 ~ exp
* ) v, (a,

' —a, )
2~%

) (1 —g; )v;v (ia'; a
I

ia'; —a,'I Ia; —a+I + Is; —a', I)

X cosh Sg —8 Jg
—E~ v~ sg —8~ —Sg —8 ~ —Sy —s~ + Sg —s —1

where

0 = V CT = P. .
jgk jgk

(A8)

t

allow one to avoid high f'requency divergencies in the per-
turbation theory. Indeed, the first order correction to the
grand partition function in this case again has the form
(A2) with

For small iaI, —a&i the argument of the hyperbolic cosine
in (A5) is close to zero and we have B oc (aI, —a&)2.
Therefore, the product Ba(al, —a&) remains finite for

iag —aI, I
m 0 and no divergencies appear in the problem

defined by the efFective action (Al), (6).
Finally, let us note that the &equently used form of

I

the effective action in which cos( ~ l 2+i l) is replaced

by cos(+ +
) —1 (see, e.g. , Refs. 2 and 4) does not

e re'
Bi(a) = exp —

I
+ Q IaC q2

e (e+ exp ——
I

——Q I
aC(2 (AQ)

For a ~ 0 we have Bi(a) oc a and'the integral over a in
(A2) diverges logarithmically at small a.
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