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It is shown that in a degenerate two-dimensional electron gas (2DEG), intrulevel intracenter elec-
tron transitions due to a strong impurity potential, for not too low temperatures, can lead to the
observed activated behavior of the resistivity in micrometer- or submicrometer-width parabolic chan-
nels. This contribution is exponentially suppressed if the Fermi level is not too close to the bottom of
the nearest Landau level. As the temperature decreases, at Sxed con6ning potential, this activated
behavior is changed to a temperature-independent behavior that is usual for elastic scattering of the
degenerate 2DEG. The latter is related with intrulevel interedge electron transitions. The asymmetry
of the Shubnikov —de Haas oscillations and their dependence on con6nement and temperature are
obtained in agreement with experimental observations.

I. INTRODUCTION

Dissipation processes in electron transport related with
edge states in mesoscopic quantum Hall systems have at-
tracted considerable attention especially after the publi-
cation of Ref. 2. These processes were studied in many re-
cent theoretical and experimental papers; see, e.g. , Refs.
3—12 and the review of Ref. 13. Recently, some investi-
gations, Refs. 14 and 15, that give a spreading out of
the current density, indicate that additional treatments
of dissipation are necessary in narrow channels. In a
GaAs/(A1As) Ga heterostructure, i4 an almost linear spa-
tial dependence of the Hall potential was observed for
current densities j —0.01 A/m; this is rather different
than its behavior for j about four times smalleri4 (for
j & 0.0025 A/m the spatial behavior of the Hall poten-
tial is almost independent of

ij i ). In Ref. 15 a substan-
tial sharing of the total net current, between edge and
bulk states, is obtained in the linear regime for hard-wall
confinement which contributes mostly to the edge cur-
rent. Thus for smooth confining potentials the bulk cur-
rent contribution to the total current along the Hall bar
should be larger 5 than that for hard-mall confinement.
A smooth confining potential is now considered as a more
realistic model ' for describing many experimen-
tal observations in two-dimensional electron gas (2DEG)
channels. However, the kequency ' 0 of the confining
potential and the typical scale at which it changes at the
edges of the channel y„are still not well known (cf. Refs
9, 12, and 16—21). Some theoretical results o lend sup-
port to the estimate y 0.5 pm made in Refs. 16 and
17. Assuming a spreading out of the current density, we
will take into account the Hall Geld E~ in the manner of

Ref. 19.
We will study the dissipation in the linear regime of

the quantuni Hall effect (/HE) in a narrow channel,
of infinite length, in the presence of a strong perpen-
dicular magnetic field B such that bio, » ksT, where
~, = ieiB/m' is the cyclotron frequency, m' the effec-
tive mass, and e (& 0) the electron charge. We will con-
sider electron scattering by a random static potential as
well as by acoustical phonons. The applied electric fields
(along the channel) are supposed to satisfy the condition
i'/E~i && 1 due to the strong magnetic field. Spin
splitting is neglected unless otherwise stated. We will
study both intralevel and interlevel transitions for elastic
and inelastic scattering. In Ref. 3 these transitions were
studied only for inelastic scattering and the result wass
that there is no exponential suppression, compare Ref.
10. In Ref. 11 only interlevel transitions were treated for
strong confinement, with a typical group velocity of an
edge state vs 10' cm/s. However, we have obtained
an exponential suppression of the intmlevel contribution
to the dissipation for typical scattering processes due to
acoustical phonons at the edges, 2~ when the confinement
is smooth, i.e., when the typical v~ of an edge state is
smaller than the speed of sound s, vs & 10 cm/s for a
GaAs/(A1Ga)As heterostructure. For vs & s we have no
exponential suppression of the dissipation ' for linear
responses and finite EH (or j ). The strong intralevel
inelastic scattering in Ref. 3 can be ascribed to an as-
sumed rather strong confinement that leads to the esti-
znate vs 10 cm/s. Notice that in Refs. 18 and 21 a
much smaller vg is estimated: for B = 3.9 T. Ref. 18 Gnds

vs = EH/B = 10 cm/s with 0 = 78 x 10ii s . The
treatments of Refs. 20 and 21 show that in some rather
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typical experiments smoother confinements are possible
at least for edge states near the Fermi level, in agreement
with Refs. 16 and 17. Here we show that in the linear
regime the dissipation due to intraleve/ impurity scatter-
ing, is exponentially suppressed for smooth con6ning po-
tentials if the Fermi level is not too close to the bottom of
the Landau level. Moreover, for a degenerate 2DEG this
exponentially suppressed dissipation can be temperature
independent but for smaller 0 it can be activated. The
former behavior is related with intralevel interedge tran-
sitions of electrons with coordinates ~y~ = W/2, within
the same Landau level. The latter behavior is related
with impurity assisted intmlevel intrncenter transitions
involving electron coordinates [y~ && W/2.

In addition, we obtain the asymmetry in the
Shubnikov —de Haas oscillations and the dependence of
the latter on 0 and T. The resistivity at the low-energy
side of the Landau level is substantially smaller than at
its high-energy side if T is not too high and 0 not too
small. Moreover, we study dissipation due to intralevel
intraedge electron transitions. Such transitions should be
possible in an experiment due to the nonequilibrium pop-
ulation of the edge states that results from nonequilib-
rium processes at the current probes2 7 and/or an energy-
dependent rate of the transitions between interlevel edge
states.

The paper is organized as follows. In Sec. II we

present, for convenience, some basic relations from Ref.
19 appropriately modi6ed to take into account the inter-
action with phonons and a static random potential. In
Sec. III we calculate the dissipation in a narrow chan-
nel due to interaction with impurities for intralevel and
interlevel transitions; in Sec. IV we do the same for tran-
sitions assisted by acoustical phonons. Finally, in Sec. V
we present the concluding remarks.

II. BASIC RELATIONS:
CHANNEL CHARACTERISTICS

We consider a 2DEG confined in a narrow channel,
in the (z, y) plane, of width W, length L = L, and
of 6nite thickness I = d. The width S' is smaller or
much smaller than the size of the sample I„ in the y
direction, see below. For R' & 0.1 pm we can take the
confining potential as parabolic: V„= m'02y2/2; here
intralevel interedge, intralevel intraedge, and interlevel
intraedge electron transitions can be important. How-
ever, the results related with intralevel intraedge and in-
terlevel intraedge electron transitions can be directly ex-
tended to the case of the more realistic potential V„' = 0
fory~ &y&y„, V„'=m'0 (y —y„) /2fory&y„&0,
andV„'=m*0 (y —y~) /2fory&y~ &0, for W&1
p,m, see Ref. 19. In the latter case, for W ) 1 pm, we
have W = y„—y~. For definiteness, in what follows we
will consider V& . For the confinement in the z direc-
tion we normally assume d = 0; otherwise we consider a
parabolic well of frequency cu or the standard triangular
well. Now as explained in Ref. 19, when a weak electric
Geld E is applied along the channel and a strong mag-
netic field B along the z axis, we should include the Hall

field EH in the Hamiltonian. Then the current density,
averaged over a statistical ensemble and the dimensions
of the channel, reads

jy ——~„„(E~)E~+0„E = 0,

jd= „,'":., ). q. (V');. iM..(q)i'
I

qL, a,a

x(f-p —f. o)b(E- —E. )

and

LW .-, ). q l~ql'IM. .(q)l'[f o(1 —f. ,)
I

q,a,a

+nq(f p
—f o)]8(E —E —h~q) (4)

The eigenvalues and matrix elements are given by

E = E„I, ——h~(n+ 2)

h k2 eEH f„eE~'t
2m ~2m'

and

IM..(q)I' = l(~l *e'"l~')I'

(~t/~I t)
N' lq u[LN' N—

( )]—2—
xF(q, )bq (6)

respectively. Further, &3 = (ur, + Oz) ~, m = m'u /0,
u = [(u2/~2)qz + q2]Ez/2, l = (h/m'~) ~2 is the renor-

malized magnetic length, Lg (u) a Laguerre polyno-
mial, and F(q, ) the form factor. For d = 0 we have

F(q, ) = 1; for d finite and V, = m'uzz /2 we have, with

9, = h/m'u), « P, F(q, ) = exp( —q,'E,'/2) if ~, )) ~.
For typical values q2 « E, 2 the result for F(q, ) is almost
equal to that obtained from the variational wave func-
tion Xp(z) = z(bp/2)'~ exp( —boz/2) if E, = bo/6, i.e.,

F(q, ) = [1+q2/bo2] s; in this case the average thickness
is 3/bp If not .specified we will take F(q, ) = 1. Fur-
ther, f p

——1/[1 + exp ((E p —E~)/k~T)] is the Fermi-
Dirac function, E p ——E (EH = 0), E~ is the Fermi
level, and nq is the equilibrium distribution function for
phonons. Notice that the initial distribution function f p

is a nonequilibrium one and gives a nonzero current along
the channel. Thus, strictly speaking the terms "Fermi-
Dirac function, " f o, and "Fermi level, " E~, should not
be taken at face value for EH g 0. We emphasize that
Eqs. (1)—(4) were obtained using perturbation theory
and that the energy spectrum, Eq. (5), is not degenerate
with respect to k . In Eq. (3) (V )q is the impurity

j =0. „EH.0

Here oo = —oo oc e2/2qrh is the conductivity in the ab-
sence of any interaction. The 6rst term on the right-hand
side of Eq. (1),j~ = o„„(E.H)EH =j&+jd, expresses dis-
sipation due to the interaction with impurities (j&) and
phonons (j&) Wit. h [q = (j~, q, ); A = LL„], we have
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potential correlation function given by

(V(q~) V(q ~)) = (2~)'6(q~ + q ~)(V');. ,

and V(qz) is the 2D Fourier transform of the impurity
potential taken in the 2DEG plane. To proceed further,
we specify the kind of phonons. For the very low temper-
atures pertinent to the /HE, we consider only the stan-
dard acoustical (DA) and piezoelectrical (PA) phonons
for which ~~ = sq and Cz = (c'/L L„L,)q+i with c' a
constant. If not specified we will assume a smooth con-
finement, 0 « ~u, ~, i.e., the confining potential does not
affect the eigenfunctions ~a) much but it substantially
changes the eigenvalues E . This condition is usually
fulfilled if the magnetic field is not too weak, cf. Secs. I
and V. From Eqs. (1) and (2) we can express E~ as a
function of E, E~ = EH(E ). Then from Eq. (2) we
have

j =0 E~(E ) =~'~(E )E,
~.= (~.) '= j~/E~(~.', )' (8)

for E ~ 0 and EH -+ 0, we have linear responses in the
narrow channel, i.e. , 0'~ is independent of E and p'~ is
independent of EH. Below we will consider only linear
responses.

We will consider three different cases for (Vz)z
(V )p~, q~ = (q +qv) ~ . When scattering centers are in
the z = 0 2DEG plane, with a short-range potential of a
j center, Uz(r) = Up6(r" —R~), we have (i) (V )~~
nrUp and, for a Coulomb potential, (ii) (V )~~
(2xe /spq~) nr, where nr is the density of the scattering
centers and sp the dielectric constant; here we neglect
the small difference between the dielectric constants of
GaAs and Al Gai As. For scattering due to remote
impurities, at distance zp ) 0 from the 2DEG plane,
we have (iii) (V )p~ = (2xe /epq~) nI exp( 2q~zp—) In.
cases (ii) and (iii) we neglect the possible screening;
otherwise, to avoid a logarithmic divergence we change
sp to sp = sp(1 + q, jq~) (cf. Ref. 11). Notice that for
B = 0, the Thomas-Fermi wave vector q, should be at
least smaller than the Fermi wave vector; also, the possi-
ble dependence of q, on B is usually neglected. ii Unless
stated otherwise, we will assume that almost all electrons
of the 2DEG are at the bottom of the N = 0 Landau level
that coincides with E p(k = 0). In the present study
such an assumption is not crucial.

levels, the main contribution will be given by interlevel
intruedge transitions between thermally populated states
of these levels. The latter contribution can be essential
only for large 0 and T.

A. Intralevel scattering

For intralevel transitions, from Eqs. (3) and (8), we
have, upon omitting the superscript ef in p', the impu-
rity contribution to the resistivity p as

OO OO k"= n"n:W
2

x [—df (Ep(k ))/dk ] exp
(

—4—'k + qz l
)I

(9)

where Ep(k ) = Eps (EH = 0) = h~/2+ h k2/2m+
E,p and W = 2fuu, k, /m'~ = 2paE 2p, . Here k, =
(u/M) [2m'A~]i~z is the characteristic wave vector that
represents the strength of the confinement for edge states
near the intersections of the Fermi level with the N = 0
Landau level, by = (Ey'p —h(u/2), and Ezp ——Ez E,p-
Further, f(Ep(+k, )) = 1/2, E, = hOzk, /~e~~, is the
characteristic electric field defining the infiuence of the
channel boundaries on edge states, is and yaE is the
coordinate of the right edge of the channel. We will as-
snnie b,y » k~T, i.e., electrons in the N = 0 Landau
level are degenerate. Then Eq. (9) gives

P~—( .&.&I )'
Zq tZ ies- 12~e ~gy

0
(1o)

p' = De ' ~ l [1 —4'(~2k, E)], (12)

respectively. Here C' = Cgx/2nr Upz/E, D
n Ce nr jspk„and 4(z) is the probability integral.
Equation (10) is obtained under the linear-response con-
dition

where C = 8uz/he204W. Then corresponding to cases
(i) and (ii) of the scattering potential we obtain, from
Eq. (1o),

ia gl —2(~, It:,i /~) gl —4A y ~, /5~Aaa—

and, using Ref. 23,

III. IMPURITY SCATTERING IN A
NARROW CHANNEL

For elastic scattering, in Eq. (3), we have q (f p-
f-.)6(E- —E- ) EH q.'(~f /~E) „„6(E'.
E~~, i, ). Then for N = N, only transitions with
wave vector change q = 2k can be essential. Moreover,
the factor (Bf/BE)z @o shows that, if the tempera-

7

ture is sufEciently low and 0 not too small, the dissi-
pation is mainly due to transitions with k —+k, i.e.,
intrulevel interedge transitions. For N E N, e.g. , when
the Fermi level is halfway between the two lowest Landau

—2(~ A: C/I'~)

~2~k.I
—4Ap-~ /h~O

+2vrk, E

(14)

For scattering by remote impurities, when the conditions

E~ && [f1(2m'&y )' '/~e~] min(1; M1'/8~, &~), (13)

assuming that (V2)~, as a function of q, changes on
a scale & E ~. As can be seen, the latter condition is
satisfied for both Eq. (11) and Eq. (12). For smooth
con6nement and L~ not too small, such that 4k Z && 1,
Eq. (12) gives
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2zo/E » 1 and

hei/b. ~kBT ((
4zoi/m u) 2i/2k. zo

(15)

However, if T is such that

h~ 02
+F ~) kBT )) 2'4

(20)

are satisfied, Eq. (10) gives

Qp
2

ia C —4zp A:,

~'[I + i/2vrzpk, ]
(16)

we obtain

(21)
Condition (15) shows that df(EO(k ))/dk is a sharper
function of k than exp( —4zok ); thus the transition from
Eq. (9) to Eq. (10) is justified. When k~T obeys the
inequality. opposite to (15), we obtain

'a Dh 0 ke

4kB+m Q)2zp

for case (i) and, when Oz/u2 « 1,

~2~k~T~
(22)

The regions of temperature pertinent to Eq. (17) are
determined by

h~ 02
kBT ((

4
(19)

AF && k~7 &)
hO

4zp m'u

Though the 2DEG is degenerate, we have an activated
behavior of the resistivity with activation energy Az.
Larger spacer distances zp and smoother confining po-
tentials, i.e., smaller 0, favor the activated behavior for
lower temperatures whereas a larger AF widens the re-
gion of this behavior but shifts its edges to higher tem-
peratures if 0 does not change much when AF does due
to the gate voltage. It seems that 0 can change when AF
does upon changing B. Indeed, the charge distribution
can be changed, especially in the most important part of
the sample for determining 0, i.e. , in the vicinity of the
edges due to even small changes of B that change the
Landau level degeneracy. An increase of about 30'%%uo in
the area concentration of the 2DEG, in a channel with
W —1000 A. , has been observed in Ref. 24 with increas-
ing B.

Notice that p', as given by Eqs. (11), (12), (14),
and (16), is independent of temperature. For smooth
confining potentials and the Fermi level not too close to
the bottom of the Landau level, such that 6~/k&T &&

1, 2(ur, kE/w) = 2k2l2 » 1 or 4zok, » 1, we have an ex-
ponential suppression of dissipation in the narrow chan-
nel caused by intrulevel interedge elastic scattering. How-
ever, even for smooth confining potentials, if the Fermi
level is suKciently close to the bottom of the Landau
level, such that k,E 1 or k, zp 1, an exponential sup-
pression of the dissipation due to this scattering, with
typical electron coordinates [y] = W/2, is absent or too
weak. In such a case p' can be rather large. Indeed,
estimating p' from Eq. (14), for B = 6.2 T, nl = 10 /
cm, k,Ã-2, 0=2.31 x 10 /sec, W 2k,P -400 k. ,

12, we obtain p' (8 x 10 0/CI) e = 20 0/0,
which is rather large.

In obtaining Eq. (10) from Eq. (9), we assumed that
the dominant contribution to the integral comes &om the
factor dfo/dk, i.e. , in cases (i) and (ii)

for case (ii). As with Eq. (17) we have again an ac-
tivated behavior though the 2DEG is degenerate. This
behavior is favored by smooth confining potentials, i.e.,
0/u « 1, as is seen from Eqs. (18) and (20). More-
over, this behavior is in good agreement with that ob-
served experimentallyi in a channel with W —2000 L,
I & 5 pm, B = 7.3 T, in a GaAs/(AlGa)As heterostruc-
ture at the v = 2 minima. A more detailed comparison
will be given below.

For completeness we consider the activated behavior
under condition (20) when intralevel scattering occurs in
the N = 1 Landau level. We assume AFy = EFp-
3hu/2 & 0, and ~A~i[ && kgT, i.e. , that the electron dis-
tribution of this level is nondegenerate. The correspond-
ing result for p' is given by Eq. (9) with A~ replaced
by b,Fi in the Fermi factors and the integrand multiplied
by a factor [Li(u)]2 where u = 2k2Pcuz/cGz + q2P/2.
As with the N = 0 level under condition (20) [or (18)],
the main contribution to dissipation comes from transi-
tions between states rather close to the bottom of the
level. Such transitions, involving typical electron coordi-
nates iy~ && W/2, we denote as intraeenter transitions; of
course, they are symmetric for elastic scattering.

For parabolic confinement, if condition (20) is fulfilled,
we obtain, in case (i) and for N = 1,

C 7h&n
/

32k T~2

Comparing Eqs. (21) and (23) we see that for Ay & hu/2
and ~Ai;i] & hu/2, the main contribution to the in-

tralevel dissipation comes from the N = 0 level. If
A~ —hu/2 & k~T and b, y i & 0, Eq. (23) gives the main
contribution to the "activated" dissipation. If the spin
splitting of the levels is taken into account, at the v = 2
minimum we should take the maximum AF substantially
smaller than hu/2 when the spin splitting at the edges is
not too small. The latter condition is favored by spin po-
larization that appears at the edges. This corresponds
to an activation energy of 3.1 meV, observed in Ref. 1,
which is substantially smaller than hw, /2 = 6 meV and
the activation energy 4.8 meV in a wide channel. Notice
also that in a wide channel an activation energy larger
than bur /2 was observed. zs

The behavior of p* as a function of A~/her, obtained
numerically from Eq. (9), is represented in Figs. 1—5.
For cases (i), (ii), and (iii), it is plotted in Figs. 1, 2 and
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8.0

10 p~/p 4.0—

0.0

-0.03 0.0

from the bottom of the N = 0 Landau level. In Fig.
4, for T = O. l K and T = 1 K, this is mainly related
with the temperature-independent behavior of Eq. (11)
valid for 6 ~/hu ) krrT/hu = 4 x 10 4 and 4 x 10
respectively, and with the activated dependence similar
to Eq. (23) for b,~ & 0. With increasing temperature
or smoothness of the conlning potential we see an ac-
tivated behavior of the resistivity for both signs of A~.
Notice that in Ref. 28 for T = 0 sawtooth oscillations
of the resistivity were obtained that are related with the
sawtooth form of the broadened density of states of a
parabolic channel.

B. Interlevel and intralevel scattering

FIG. 4. The solid, dashed, and dotted curves correspond
to T = 0.1 K, 1 K, and 4.2 K, respectively. Here 0 /u = 0.1
and b,y/hu = 0 coincides with the bottom of the N = 0
Landau level.

In Fig. 6 we plot the resistivity for intralevel scattering
in the N = 0 and N = 1 Landau levels p& as a function
of the position of the Fermi level for diferent 0 and T.
For completness we also consider interlevel transitions.
From Eqs. (3) and (8) their contribution to p is

tions of Ref. 1. To avoid the logarithmic divergence of the
resistivity for cases (ii) and (iii), we assume q2P = 0.1.
This assumption is not crucial; indeed, &om Figs. 1—3
we see that the behavior of the curves between, e.g. , (i),
corresponding to q, E )& 1 and (ii) is rather similar.

Figures 4 and 5 show the asymmetry in Shubnikov-
de Haas oscillations and their dependence on 0 and T.
For de6niteness, in both figures we consider short-range
scattering. In line with the experimental results of Refs.
26 and 17 (see also Refs. 6, 17, and 25), we have at
the low-energy side of the Landau level a substantially
smaller resistivity than at its high-energy side, if T is not
too high and 0 not too small. The latter condition is
equivalent to assuming that the channel is narrow and is
in agreement with the stronger asymmetry for smaller W
observed in Refs. 26 and 27. Notice the substantial dif-
ference in the resistivity for symmetrical values b,F away

8.0

100

10

P'r IP .01 =-

.001 =

.0001 =-

2cu2Z4 OO OO

P dqe de qe (V )qe ~ »
0 0

x
]
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— ='q +q & /
(u. 2

exp' (ko —q')'/8rnkaTq. ' —&~i]
(1+exp[h (ko2 —

q )2/8mk~Tq —Apq]f
(24)

l

l

l
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1

0.25
1
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t

4
I

0.75 1.0

I 'po/p 4 o—

0.0
-0.03 0.0 0.03

FIG. 5. Same as in Fig. 4 with 0 /u = 0.001.

FIG. 6. Total contribution to the resistivity pT from the
two lowest Landau levels, in units of p, as a function of
the position of the Fermi level. The dotted curves 7, 8,
and 9 account for interlevel transitions with 0 /u = 10
and fl /m = 10, respectively. The solid, short-dashed,
and long-dashed curves account for intralevel transitions from
both levels with 0 /cu = 10,10, and 10, respectively.
The temperature is T = 1 K, 4.2 K, and 10 K for the groups
of curves (1, 4, 7), (2, 5, 8, 9), and (3, 6), respectively. Curve
9 has been multiplied by a factor 10
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Here we assume that the main contribution to p'"

j& /E~(e2/2nh) comes from interlevel transitions be-
tween the N = 0 and N = 1 Landau levels. This is
correct for, e.g. , b,si & 0; in Eq. (24) A~i ——AJ;i/k~T
and ks2 = 2m'/h = 2l 2u2/A2. Curves 7 and 8, in Fig.
6, for p'" /p are obtained numerically from Eq. (24) for
short-range impurities with A2/u2 = 0.1 and T = 1 K
and 4.2 K, respectively. Comparing curves 7 and 8 with
curves 1 and 2, respectively, which describe intralevel
contributions, we see that for 0.5 & b,s jh~ & 1.0 the
interlevel contribution is at least one order-of-Inagnitude
smaller than the intralevel one. For smaller A this dis-

crepancy increases. Thus, for A /u2 = 0.01 and T = 1 K
the intralevel contribution of curve 4 will be 10~s times
larger than the interlevel one for As /hu = 0.91. A factor
of approximately 3.3 x 10s in this value is related with
the occupancy of the states pertinent to interlevel tran-
sitions [oc exp(4~i)]. The remaining factor (- 3 x 102o)

is too small in comparison with exp[(byti /E) /2]
exp(kosl ) = es = 104s which corresponds to the ex-

ponential factor in Eq. (5) of Ref. 3 (see also Refs. 10
and 11) if we assume Ayooi as the separation between
the two neighboring edge channelss at the energy cor-
responding to the bottom of N = 1 Landau level. To
explain such a huge difFerence, we first notice that for
T -+ 0 we obtain, Rom Eq. (24), the same exponential

factor exp( —ko2E2) = exp( —u2/A2). However, for finite

T, assuming A~q & 0, we obtain, in addition to the oc-
cupation factor oc exp(AFi), a factor

F = exp — 1+4kgyT~, h~n —1
2Ic~T

0For 4k~Tu, jhuAs -+ 0, F tends to e /~ . However

for smooth confinement, with u2/A2 » 1, even for rather
small T, E can be many orders-of-magnitude larger than

QQ
the zero-temperature factor e ./'+ . Thus, for T = 1 K
and As/us = 0.01, F is = 10 2, i.e., much larger than

e ./'+ 10 . This estimate of p'", including the
preexponential factor, is in good agreement with our nu-

merical results. The optimal interlevel transitions perti-
nent to Eq. (25) correspond to an energy

E =-h&G+
~

vl+aT+ —2
~

& zh~,
3 hid 1

2 4 1+aT )
(26)

where a = 4kgyu2/huA2 and q2 = ko/(1+ aT) i/2; it is

assumed that E & 2'.
Comparing, in Fig. 6, curves with the same T but dif-

ferent 0, e.g. , curves 1 and 4 with 2 and 5, etc. , we see
that the larger 0 the more asymmetric the T dependences
of p2, with respect to the middle point b,» /hu = 0.5. In-
cluding interlevel contributions will obviously strengthen
this behavior. This is in line with the experimental ob-
servations of Refs. 26 and 27; see also the discussion of
Figs. 4 and 5. Comparing now curves for the same 0
but for difFerent T, e.g. , curves 1, 2, and 3, we see that
with increasing T the peaks of p& become more symmet-
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FIG. 7. Same as in Fig. 6 as a function of inverse temper-
ature when the Fermi level is between the N = 0 and N = 1
Landau levels. The dotted curves 4 and 5 account for inter-
level transitions with 0 /u = 10 ' and 10, respectively.
Curves 1, 2, and 3 account for intralevel transitions from both
levels with 0 /sP = 10,10, and 10, respectively.

ric with respect to the middle point b~ jhu = 0.5. The
latter is in agreement with Ref. 27.

In Fig. 7 we plot the total contribution to the resis-
tivity p&, due to intralevel transitions in the two lowest
Landau levels (N = 0 and N = 1) for scattering by short-
range impurities, as a function of inverse temperature.
The Fermi level is in the middle between the bottoms
of these levels (curves 1, 2, and 3). Curves 4 and 5, for
p'" /p, are obtained numerically from Eq. (24). Compar-
ing curves 4 and 5, in Fig. 7, with curves representing p&
we see that the interlevel contribution due to elastic scat-
tering can be practically neglected even for As/us = 0.1.
In line with the above treatment, curve 1 shows an acti-
vated behavior at comparatively high temperatures and
a weak temperature dependence for T & 2 K. The re-
gions of activated behavior in curves 2 and 3 are sub-
stantially wider, in agreement with our analytical find-
ings. Though the qualitative behavior of curves 1 and 2 is
similar to that observed in Ref. 1; for a more comprehen-
sive comparison we must consider the electron scattering
by acoustical phonons.

IV. PHONON SCATTEMNG IN A
NARROW CHANNEL

For completeness we consider the contribution pi'" to
p due to interlevel transitions assisted by acoustical
phonons. %e also consider the intralevel contributions
pi to p for conditions pertinent to the experiment of
Ref. 1 using the results of Refs. 19 and 21. Due to the
narrow low-mobility channel in this work, we should also
treat intralevel p& and interlevel p'" contributions to dis-
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sipation due to impurities. To describe the confinement
in the channel, of width W = 2000 A, with a parabolic
potential we should suppose 02/u = 0 /u, = 0.01, i.e. ,

0 = 1.9 10 s ) which is more than twice as large as
the 0 in Ref. 18). For conditions pertinent to Fig. 4(b)
of Ref. 1, we have AF = hw/2. Then for interaction with
PA (s = 2.5 x 10s cm/sec), and standard DA (s = 5 x 105

cm/sec) phonons we have g = E,/E, = 7 and rl = 3.5, re-
spectively H. ere E, = ~sB/~2, rI = (Q/w)(h~/m s )i~2.

The magnitude of + and its temperature dependence
are very difFerent for g & 1 and g & 1, cf. Refs. 19 and
21. For i1 & 1 we should have g oc Ts or T for PA
phonons and g oc Ts or T for DA phonons when zT =
h,s/Ek~T && 1 or zT && 1, respectively. For 20 K& T & 4
K for both PA and DA phonons we should have pP oc T.
Hence the above discussed activated behavior, observed
in Ref. 1 for 50 K) T ) 7 K, cannot be associated with

g . Such a conclusion is also supported by the estimate
of the typical value g for T = 10 K. Indeed, for PA
phonons, under usually fulfilled experimental condition
P/P, = 1, we have, &om Eqs. (14) and (15) of Ref. 19,
an expression for j& {diKering from Eq. (20) of Ref. 19

only by a small factor [1+ (g2 —1)E2/E2] i~2 = g i),
that gives for the usual parameters + = 1 0/ . Here
we assume c' = h(ehi4) /2ps, hi4 ——1.2 x 10 V/cm,
and p = 5.31 g/cms. Further, we neglect spin splitting
and take into account a spin factor 2, which leads to
twice smaller values of p . The corresponding estimate
for DA phonons [based on Eq. (24) of Ref. 19 with an
additional small factor 2/its, which appears due to the
finite thickness E, for g » 1], gives g = 0.5 0/ . For
DA phonons we assume e' = h:- /2ps, = = 7 eV. This P
should give a contribution to R of order (L/W)g
20 g —30 0/&, which is still much smaller than the
observedi R —300 0/& for T = 10 K. However, it can
cause a substantially slower decrease of p, as a function
of inverse temperature, in the T region between 6.6 K and
20 K than that of p& in curve 2 of Fig. 7.

The interlevel transitions assisted by PA or DA
phonons contribute to the dissipation at least 104 times
less than the intralevel ones, when a finite value of 8, is

considered, for both models of F(q, ) with the reasonable

value E, = E This is .related to a rather large q, in both
cases. Moreover, until g" drops many orders of magni-
tude, for both models of F(q, ) the dependences of g"
on T, after T = 0.02, are very similar. Notice that
the interlevel contribution, due to scattering by short-
range impurities, p'", is at least 10 times smaller than
the intralevel one, p' . In Fig. 8 we plot g, caused by
both PA and DA phonons and all intralevel and interlevel
transitions assisted by them, as well as p', due to short-
range impurities, as a function of inverse temperature.
Here p' = p' + p' . Assuming nl ——20, the unit along
the y axis is p = 70 0/Cl. Here due to the spin factor
2 we have a p twice smaller than that of Sec. III. We
also plot pL, the sum of + and p' . The slope of p
in Fig. 8 is in good agreement, in the region where p
and p' are very close to each other, with the measured
activation energy of R = Ip /W, cf. Fig. 4(b) in Ref.
1. The same holds for the magnitude of p . In the same
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FIG. 8. Resistivity as a function of inverse temperature
for scattering by impurities (p' ), mainly accounted by in
tratevet intracenter transitions, and phonons (p, ), mainly re-
lated with intratevet intraedge transitions, for 1/T & 0.1 K
The total result is p, . The curve marked p"', accounting for
interlevel scattering by DA phonons, is drastically suppressed

(by more than 10 ) due to the Bnite thickness of the 2DEG.
The result shown is multiplied by a factor 10 . The Fermi
level is halfway between the two lowest Landau levels.

T region, 50 K& T & 7 K, the behavior of g is sub-
stantially difFerent than the observed activated one with

= 3.1 meV. For comparison we also plot the curve
representing 104+', related with interlevel transitions
due to DA phonons which are more important here than
the PA phonons. Notice that, e.g. , at 1/T = 0.02 K
and F(q, ) = 1, P" becomes more than 10s times larger
than its corresponding value in Fig. 8. It is clear that
in the pertinent T region the main contribution to dis-

sipation is related with intralevel center-to-edge electron
transitions caused by strong impurity scattering.

V. CONCLUDING REMARKS

One of the main results of this paper is the explanation
of the activated behavior of the dissipation, observed in
Ref. 1 in a low-mobility channel, by intralevel intracen-
ter transitions due to impurities. This result is substan-
tially related to the rather smooth lateral confinement

in micrometer- or submicrometer-width channels, such
that W & 2000 A.. We have seen with decreasing 0
the region of T, for which we have activated behavior,
increases. Our treatment shows that elastic intralevel i~.—

teredge electron scattering can be essential for channel

widths W & 1000 A, i.e. , for confining potentials V(y) of

rather steep form. Notice that Eqs. (9)—(12) and (16),

(17) are also valid for potentials that are not smooth.

When the Fermi level lies in the middle between the two
lowest Landau levels, we have k,E 1 since 0
Then Eqs. (11) and (12) lead to a very strong dissipa-
tion, due to intralevel interedge electron transitions. We
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have also obtained a strong suppression of intraleuel in
traedge and of interleuel intruedge contributions (the in
terleuel interedge ones are much weaker than the latter)
to dissipation, due to scattering by acoustical phonons,
related with the finite thickness d of the 2DEG. This re-
sult is obtained for ri = E /E, » 1, i.e., for the condition
pertinent to the experiment of Ref. 1 for which a smooth
confinement, i.e., small 0 « u, is well justified.

In line with experimental resultsm zr (see also Ref's.

6, 17, and 25) we have obtained the asymmetry in the
Shubnikov —de Haas oscillations and its dependence on 0
and T. In particular, at the low-energy side of the Lan-
dau level we have a substantially smaller resistivity than
at its high-energy side, if the temperature is not too high
and the confinement not too smooth. The asymmetry
of the resistivity for symmetric values b,~, with respect
to the bottom of the Landau level, is mainly related to
its insensitivity to temperature, cf. Eq. (11) valid for
b,~/Mr ) k~T/hu It's .also related to an activated be-
havior similar to that of Eq. (23), for b,~ of the same
modulus but of opposite sign. Thus, this finite tempera-

ture result complements that of Ref. 28 for T = 0 where
the calculated saw-tooth oscillations of the resistivity re-
flected the saw-tooth form of the broadened density of
states of a parabolic channel.

We have considered only the linear-response regime.
This is sufhcient for elastic scattering in a parabolic chan-
nel if j or E~ is small. Hence, from Eq. (13) and for
parameters pertinent to conditions of the experiment,
we obtain ]e]Err', « hu, (A/u, )s and E~ && 10 V/cm.
Notice that for E~ = 1 V/cm and other pertinent con-
ditions we obtain j 0.01 A/m. This is close to the
highest current densities used in Ref. 1 without any in-
fiuence of j on the measurement.
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