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We present a theoretical study of the dielectric response and collective excitations of a two-
dimensional system of bosons interacting via a dipolar interaction. The model is designed to simulate
the situation occurring in semiconductor double quantum well systems under strong electric fields
perpendicular to the layers. The field produces a net polarization of photoexcited electron and hole
carriers and favors the appearance of long-lived polarized excitons. This gas of interacting point
dipoles shows interesting features and we study the effects of low dimensionality and statistics. Well-
defined density-fluctuation excitations appear at low temperatures with a linear dispersion relation
at long wavelengths. The low dimensionality of the system gives rise to an effective long-ranged

potential with only a faster power-law decay.

I. INTRODUCTION

Extensive research of two-dimensional (2D) Fermi sys-
tems with electrons and/or holes has been undertaken in
recent years. The subject has been studied both exper-
imentally and theoretically, and a number of books and
comprehensive reviews is available.! This whole area has
greatly benefited by advances in materials fabrication,
since charge carriers can be confined to move essentially
on a plane, and a 2D degenerate electron (or hole) gas is
readily achieved under real experimental conditions.

At the same time, Bose systems of reduced dimension-
ality have not attracted as much attention. Major exper-
imental efforts have been directed to superfluid helium
films,?2 while theoretical investigations have also dealt
with other model systems. A charged Bose gas is per-
haps one of the simpler and yet interesting models which
have been studied in the past decades.3™® This system
combines the well-known Coulomb interaction with pe-
culiarities of Bose statistics and effects of different di-
mensionalities. Although there is no direct physical re-
alization of such a model, this system has been useful
as test ground in the development of various theoretical
techniques. These studies have helped establish a connec-
tion with Fermi systems, especially in the case of reduced
dimensionality.®7"® Moreover, these studies illustrate the
substantial difficulties in approaching the many-particle
interacting Bose problem in a planar geometry.!%1! In-
deed, in the purely 2D case one cannot consider the two-
body interaction potential merely in the Born approxi-
mation. The corresponding perturbation series for the
renormalized potential has to be summed taking into ac-
count an infinite set of terms (to escape the divergence for
low momenta in performing the Fourier transform). This
divergence is purely quantum mechanical, and it is also
responsible for the vanishing of the scattering ¢ matrix for
particles with low energies.!? (A renormalization group
approach has been found to be fruitful in the handling of
this problem in low dimensionalities.®!!) Moreover, al-
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though classical phase fluctuations lead to a vanishing of
the long-range order in two-dimensional Bose systems, a
theory describing the transition to a superfluid state has
been developed.'!''3 More recently, the problem of a 2D
dilute Bose gas has also been addressed in the context of
high-T, superconductors.4

We address the present work to the question of effective
screening in a 2D Bose gas with weak interparticle repul-
sion. The system of particular interest is a gas of electric
dipoles, which are free to move on the z-y plane, and all
of which are polarized in the z direction. Such a prob-
lem is closely related to the experiments of Fukuzawa
and co-workers!® and Kash and co-workers.!6:17 These
authors studied a double quantum well system, and an
electric field applied normal to the plane of free motion
of electrons and holes (i.e., along the growth direction).
If the field is strong enough, electrons and holes become
spatially separated, although coupled via the Coulomb
potential, so that they form excitons whose lifetime in-
creases by up to three orders of magnitude compared
to the zero-field case — as the lifetime is controlled by
the strength of the applied electrical field (through the
overlap of electron and hole wave functions).!® For large
fields (= 30 kV/cm), so that the excitons can reach
thermal equilibrium well within their lifetime, the sys-
tem can be modeled by a weakly interacting Bose gas,
as the typical interelectron or interhole separations are
much larger than the electron-hole distance (or exciton
radius)—see below. The original experiment was inter-
preted as a phase transition to a collective state at a
fixed strength of electric field while the temperature was
lowered.'® Although detailed analysis has cast doubts on
this identification, a similar experimental arrangement
with improved samples would perhaps provide interest-
ing and more definite results.”

Other possibilities for realization of a planar Bose sys-
tem of excitons with spatially separated electrons and
holes may include semiconductor heterojunctions of type
II, based upon materials such as InAs, AISb, and GaSb.
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The chemical potential there typically occurs in the en-
ergy gaps of both materials, producing neighboring layers
of electrons and holes.!®

Systems with spatially separated electrons and holes
have been studied theoretically by several groups. The
very idea was seemingly first proposed by Kogan and
Tavger.'® They considered a system of two semiconduc-
tor films with electron and hole carriers, respectively, sep-
arated by a dielectric slab. Pairing between the charge
carriers was provided by the attractive Coulomb interac-
tion. In this pioneering work they calculated the BCS-
like energy spectrum of the system, the critical temper-
ature of the corresponding transition to the collective
state, and investigated the formation of itinerant exci-
tations. It was also suggested that the Coulomb inter-
action between these spatially separated charge carriers
provides the mechanism by which the system exhibits
superconducting behavior. These results did not receive
much attention until later, as the experiments on the
double quantum well under the influence of strong elec-
tric fields were inspired by work of Lozovik and Yudson?°
and Shevchenko.?! Unlike the problem we consider, those
systems were essentially three dimensional—the charges
were free to move in semi-infinite slabs of semiconductor
or in slabs of finite thickness, and bulk screening between
identical carriers was taken into account, as required by
the typically higher carrier density considered. In our
approach, the role of Bose statistics as well as the two
dimensionality of the system is investigated.

In closely related developments, the behavior of spa-
tially separated electrons and holes under strong mag-
netic fields has attracted much interest recently, mostly
in connection with the fractional quantum hall effect
(FQHE) and in the high magnetic field regime (such that
electrons and holes occupy only a small fraction of the
lowest Landau level).?%23 Different aspects of the prob-
lem in high magnetic fields, such as Wigner crystalliza-
tion, excitations of the incompressible quantum liquid
responsible for FQHE in a double layer system, and an
excitonic charge-density-wave instability have also been
discussed in the literature.?*

In this paper we calculate the dielectric response func-
tion €(g,w), which provides a general description of var-
ious phenomena such as longitudinal collective excita-
tions, and the screening effects in interacting systems.
We shall consider the case of an ideal double quantum
well without impurities or geometrical imperfections. In
our model, excitons are represented by identical dipoles
with only a z component (i.e., polarized excitons), which
are free to move in the z-y plane. These Bose particles
interact via a dipole-dipole potential as long as the sys-
tem is dilute, such that higher multipolar fields are weak
and the constituent nature of these excitons can be ig-
nored. The problem for a general interaction potential
can also be approached within the framework of the di-
electric function formalism, as we describe below.

The structure of the paper is as follows. First, an inter-
action potential which reduces well to the known limiting
cases is introduced: a Coulomb interaction between con-
stituent particles, dominating at short distances between
the composite “Bose particles,” and a dipole-dipole in-

teraction at large separation between polarized excitons.
Next, we present our results on calculating the dielectric
function in the self-consistent-field approximation. Then
we compare the asymptotic form of our results with other
available calculations: the various temperature limits of
a planar Fermi system and a system of charged bosons
in two dimensions. The overall behavior of the dielectric
function is defined in quadratures and displayed for dif-
ferent temperatures. Moreover, using analytical expres-
sions for the low-temperature limit, we find the dispersion
relation for density-fluctuation excitations in this system.
Finally, we discuss the qualitative consequences of screen-
ing of an external potential by this two-dimensional sys-
tem of polarized dipoles.

II. APPROACH AND CALCULATIONS

A. Dipole interaction potential

In the next section we present the calculation of the
dielectric function for a 2D Bose gas in the mean-field
approximation for a general type of interaction. How-
ever, it is of special interest to consider the interaction
potential between dipoles polarized in the z-direction,
since such a problem is closely related to current exper-
iments, as discussed in the Introduction. As usual, the
dipole potential is given by

p(r) =(F-V)1/r, (1)

where 7 is the dipole strength and r is the distance to the
dipole. Correspondingly, for two point dipoles polarized
in the z direction, the interaction becomes

p? (1 — 3 cos? 0)

r3

o(r) = ) (2)
where 6 is the angle between the line connecting the
pair of point dipoles and their orientation. Moreover,
for dipoles dynamically constrained to the z-y plane
(8 = 7/2), the potential energy is particularly simple:

2

o="15. (3)
Notice, however, that a somewhat more rigorous po-
tential should include the interaction between the con-
stituent electrons and holes, since their separation is fi-
nite for the experimental systems we envision. Still, in
the dilute regime the short-range part of the potential
should not play a decisive role and the composite na-
ture of the particles can be neglected both in regard to
the interaction as well as in regard to the statistics they
obey. (The interesting question of nonbosonic behavior,
particularly relevant for high densities, will be addressed
in detail elsewhere; see Refs. 19-21.) Here we exploit
a phenomenological approach, where the interaction be-
comes Coulomb-like at short distances, while preserving
asymptotically a dipolar character. We then use the form

o(r) = f—: [1 — exp(—rz/dz)] s (4)

where d represents the distance at which excitons become
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“aware” of their internal structure, and as such, d should
be of the order of the exciton radius. A great advantage
of this particular choice of potential is that it has a well-
defined 2D Fourier transform, which can furthermore be
calculated analytically:

2 22
) . advm 5 g*d
%{ 1+ 257 exp(—g*d*/8) [Il (—8 )

<1+ 232)10( 28’12)]}. (5)

Here I,, is the Bessel function of imaginary argument of
nth order.2® Notice that ¢(g) has regular behavior in the
long-wavelength limit, with the zeroth order term (for
any finite d) given by

#(q) =

p2
m ’ (6)

and is, therefore, ill defined at d = 0.

It is instructive to establish the correspondence be-
tween screening in Fermi and Bose systems from the out-
set. While typical systems consider charged particles, so
that a restoring force is provided by a background of the
opposite charge, there is nothing like this in this neutral
dipolar Bose system. In contrast to the local charge neu-
trality condition in those systems, it is the fized average
dipole density which provides the screening in this case.
As each particle repels the others without a local back-
ground restoring force, the dipoles cannot fly away if we
insist on a fixed dipolar density. Local piling of these
Bose dipoles, or a local shortage of them, results in an
effective restoring force as we impose hard-wall boundary
conditions on the edges of the system “box.” Mathemati-
cally, this is equivalent to the requirement of cancellation
of the long-wavelength limit of the interaction potential,
just as it appears in a jellium model.1?

#(g—0) =

B. Self-consistent-field dielectric function

In this self-consistent mean-field approximation
(SCFA), the dielectric function is given by a Lindhard
expression: 1226

Re e(q w) =1+ ¢(q

1
1
_ dy | -1 —
+7/; y( +expT
/ d —1+ex l
Y+ Y PT
et 1
—Iv-l/ dy (—1+exp—[—u+
0 T

Im €(¢,w) = ~¢(q) . —7-

m 1 1
_ dy | — ~ |-
)2 hzq[7+/0 y( 1+expT ©+

v2R2(1— o2

2m

8717

Ep, ;) — f(Ep)
—+E~ + hw i 6 (")

(‘L )“1 —¢ )ZE__

Here, ¢(g) is the 2D Fourier component of the given in-
teraction potential, S is the area of the domain occupied
by the particles, f(E) is the Bose distribution function
for the particles with energy spectrum F, and the exciton
(center of mass) energy spectrum is taken to be isotropic
and with total effective mass m = me + mp:

K2 k2
2m

Ey = (8)
Correlation effects beyond this SCFA are neglected in this
picture and should be accounted for differently. However,
it should provide an adequate description of the system
for not-too-low temperatures, so that one can ignore de-
generate gas effects.!?

In the following we assume the dilute regime. This is
crucial for studying the problem in this approximation,
since excitons are taken to be Bose particles, and their
composite nature is neglected. Consequently, the aver-
age separation between excitons should be larger than
the radius of such a “polarized exciton.” The diluteness
of the system is also used explicitly when calculating the
chemical potential p(n,T). To the lowest order, interac-
tions are neglected and the chemical potential is assumed
to be that of an ideal two-dimensional Bose gas, which

can be written as
—27h%n
_ . 9
mT )] (9)

Here T is temperature, and n is the average 2D den-
sity of excitons. Interaction effects should be taken into
account in the chemical potential to go beyond the mean-
field approximation. Unfortunately, the approach similar
to the three-dimensional case is not applicable here, since
for the long-range interaction potential the 2D scattering
length is not well defined and cannot be used as a param-
eter in the perturbation expansion in two dimensions.®
The Lindhard expression leads to the following quadra-
ture formulas for the real and imaginary parts of the
frequency-dependent dielectric function:

L yz)] ) i
2m
bl

u="T ln{l——exp(

2m

—ut? iR (1+¢? )D-

2 R%(1 4 y?)

s
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Here, the functions y4 are defined by

-1, mw
Te=gE R (12)
These expressions allow us to explore the form of the
dielectric function analytically in various limits, and to
study its qualitative behavior by plotting the results of

numerical calculation for both parts of €(g,w).

III. RESULTS AND DISCUSSION

To check for the diluteness condition we need to find
the effective radius of a z-polarized 2D exciton in its
lowest energy state. For a simple estimate we minimize
the total energy as described by the Hamiltonian in the
center-of-mass reference system:

A2 62

2 kVdz +r2’

where x is the background dielectric constant and u
is the reduced mass for the electron-hole system, p =
memp [/(me + my). Using the uncertainty relation yields
the following extremum condition for the exciton radius:
r? T\

1+d2_K(d) , (14)
where d is the separation between the neighboring layers
of charge carriers. In the two limits, when the parameter
K = (d/ao n)2/3 is either small or large (with ao being
the Bohr radius, agp = h®/ue?), one finds the effective
radius and the corresponding energy for the ground state
as follows.

(i) If K < 1, that is, when the separation between
layers is small compared to the Bohr radius of an exciton,
one obtains r &~ kag, and we have the three-dimensional
result E/Ry* = — [1 — (d/aox)?], where the usual en-
ergy unit is defined as Ry* = pe*/2h%k2.

(ii) If K > 1, then r = (d%aok)/* and E =

(1 - \/m) e?/kd.

In case of the GaAs-based double-well excitons in Ref.
15, which are formed by electrons and (heavy) holes with
effective masses m, = 0.067m¢ and my = 0.377mo, re-
spectively (where my is the free electron mass), one gets
1 = 0.057my, and for a typical separation d = 50 A, and
background dielectric constant k = 12, it all results in a
Bohr radius ap = 9.1 A, and K ~ 0.6. The exciton radius
is equal to the interwell separation d within a numerical
factor of order 1. The typical exciton density achieved by
optical pumping in these systems is n < 10*! cm™2, and
the diluteness condition is definitely satisfied for these
parameters: n=/2 > d~ 7.

In this dilute exciton limit one can study various ¢ and
w limiting cases of Eqgs. (10) and (11), as discussed in the
following sections.

(13)

A. Static limit: w =0

In the static limit, the expression for the dielectric
function simplifies to

1
o) = 1+ ()35 [ dv

2 2 -1

h 4 (1—y2)]) . (15)

8m

1
X (——1+expf [—u+

From this, the static dielectric function is readily ob-
tained in the long-wavelength limit (hq/ VmT <« 1):
m 1
2mh? [~1+ exp (—p/T)]
(16)
Using the chemical potential of the ideal (noninteracting)

Bose gas, Eq. (9), the dielectric function for low momenta
can be expressed as

2mh?
€(g = 0,w=0) = 1+¢(q)2:;2 [exp( ;T'n) - 1} .

(17)

e(g = 0,w=0)=1+¢(q)

Thus, physically distinct limits in this case are the high-
temperature limit (27h%n/mT < 1):

né(q)
T b

e(g—0,w=0)~1+ (18)

and the low-temperature limit (2rh%n/mT > 1):

m 2nnh?
Py exp ( g > . (19)

The high-temperature limit is independent of statistics
— Eq. (18) is exactly the same for a 2D fermion system,
calculated for example in the mean-field approximation
with the chemical potential of the ideal Fermi gas (see
Ref. 1). The high-temperature limit corresponds also
to the classical Debye problem, which is independent of
the statistics, and does not contain the Planck constant.
The inverse temperature dependence corresponds to the
fact that thermal motion of the particles prevents them
from effectively screening the external potential. On the
contrary, at low temperatures the external potential is
strongly screened in the two-dimensional Bose-system via
the exp(1/T) dependence (see Sec. IIIC). We empha-
size, however, that this result was obtained for the chem-
ical potential of the noninteracting Bose gas. The low-
temperature behavior of the chemical potential can be
changed by interparticle interactions, which should im-
pose an upper limit on the dielectric function as T' — 0,
for dipole interactions.

On the other hand, the high momentum behavior of
the static dielectric function is seen to have the following

dependence (fg/2vmT > 1):

€(g = 0,w =0) = 1+ ¢(q)

4mn
h""q2 '

e(g,w =0) =1+ 4(q) (20)
Here, the limit is somewhat similar to the high-
temperature dependence, but the physical role of the
temperature is played by the kinetic energy of the ex-
citon with a given momentum hq. Note that this expres-
sion also describes the static dielectric function for all
momenta in the extreme case of zero-temperature limit.



50 DIELECTRIC FUNCTION AND COLLECTIVE MODES OF TWO- . ..

B. Finite frequency: w # 0

The overall behavior is changed at finite frequencies, as
it is seen in the figures. Qualitatively, Fig. 1 shows that a
nonzero imaginary part of the dielectric function exists,
which narrows as T' — 0 and turns into a sharp §-like
function. The real part, on the other hand, has a res-
onancelike behavior in the zero-temperature limit, with
the “resonance” occurring at hw = h?q?/2m. The tem-
perature has the effect of smearing this picture in the
vicinity of the jump, providing smooth and continuous
connection of the two branches. The height of both peaks
decreases with growing temperature, while they become
wider. In particular, this behavior means that longitu-
dinal collective excitations are possible in this system at
low enough temperature, when the low-g branch of Re ¢
crosses through zero and the width of the imaginary part
becomes less than the separation between the position

' ]
4 a .
3
o 1
\GJ/ .
[0}
o
3.0
"3\ J
o
\w/ —
g ]
)
]
2.5

FIG. 1. (a) Real and (b) imaginary part of the dielec-
tric function for Bose dipole system. For low temperatures
Re €(g,w) has a resonance-type behavior, which is smeared at
finite temperatures around the jump position fiw = h%¢?/2m.
(Dashed lines shows T = 0 limit; solid curve is for 0.1
K.) Imaginary part has J-like behavior for the same fre-
quency, with increasing broadening at higher temperatures.
Qo = 10% cm ™! is defined in text.
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of this zero and the position of the “resonance.” In Fig.
2, the function Im[e~!(g,w)], which provides a measure
of the “oscillator strength” of the collective excitations,
and for example describes the signal intensity for an elec-
tron energy-loss experiment, shows a peak which becomes
more pronounced and shifts towards the T — 0 result,
indicating the existence of well-defined collective modes
for ¢/qo =~ 1. Here, and for all the curves, the units for
the momentum, frequency, particle density, and tempera-
ture are chosen naturally for the experimental conditions,
such that 27h%n/mT ~ 1 at T = 1 K, when the density
no is taken equal to 101° cm~2. Similarly ¢2 ~ mT/h®
provides units for the wave vector go = 10 cm™?!, and
for the frequency: wo =~ g2h/2m = 102 s™1.

Different q dependence is accounted for by the func-
tions 74, so that a qualitatively different limit occurs
when the frequency is comparable to or higher than the
momentum such that h%g? /2m = hw. At low tempera-
ture one can get the following expression for the dielectric
function:

E

Re €(g,w) = 1 — 2n¢(q) m)-zq_—Eg )

(21)

with E, = h%q?/2m. This result turns into the expression
for the dielectric function obtained for charged bosons in
two dimensions for T' = 0 (see, for example, Ref. 5), for
#(g) corresponding to the Coulomb potential. Equation
(21) allows us to calculate the dispersion of the longitu-
dinal collective excitations possible in the system of po-
larized excitons for sufficiently low temperature, so that
they exist as a well-defined feature in the spectral func-

tion Ime™1,

() o\ 2 1/2

ne\q q

= — . 22
? [ m + (2m) ] (22)
From this equation, it is clear that the dispersion rela-

tion for collective excitations in this 2D dipole gas system
is acoustic (linear g dependence) at small momenta, since

2 1
:
"3\ 8 :_ T7=0.1 K _;
o L )
\ku/ L <
~ 6 7
g f ]
= Ar 0.25 K | ]
2F 05K 1| .
1K 77 1
0 D S 1

0.5 1.0 1.5 2.0

9/
FIG. 2. Imaginary part of inverse dielectric function.

Peak position indicates frequency of collective mode, which
becomes damped at high temperatures.



8720

#(q — 0) is a constant [see Eq. (6)]. Notice also that a
transition from linear to quadratic ¢ dependence occurs
at ¢° ~ ne’dm/h? ~ 10'2 cm~2, and the temperature is
required to be less than min[n¢(q); hw] for the validity
of these analytical expressions. The picture for higher
temperatures is smeared around the “resonance point”
hw = h%¢? /2m, with the same qualitative behavior, until
the “oscillator strength” of the mode eventually vanishes.

Similarly, the imaginary part of the dielectric function
nearly vanishes everywhere in the zero-temperature limit
and behaves like a § function:

Im €(w,q) = m;;fzq) 5(% (f;:: — hw) ) , (23)

so that at low enough temperatures the collective excita-
tions are not suppressed by thermal effects.

C. Screened potential

The static dielectric function provides all the necessary
information to calculate the effective interaction poten-
tial between the particles as modified by screening effects:

oo -1
banlr) =27 [~ daasan) (s +x@) (2
Here, the dielectric function is expressed as

e(g) =1+ ¢(a)x(a), (25)

where ¢ g is the dressed or effective potential, and the
polarization part x(g) does not depend on the particular
choice of the interacting potential:

1

m
=" [ 4
X(q) k2 A Y
~1
1 h2q?
“Nep+r 2L a-yy| - .
X (exp T u+ S 1-yv%) 1 (26)

Asymptotic behavior of the bare potential is readily re-
covered [setting x(g) = 0 in the equation above], for large
distances:

p?
and for short distances:
2
p°1

[These results are obtained after two integrations by
parts, and the use of the various limiting expressions
for ¢(q), as well as the relation for Bessel functions
zJy = d(zJ1)/dz.] As usual, the asymptotic form of
the screened potential at large distances is governed by
the long-wavelength behavior of the Fourier component
of the bare potential, but the low-temperature limit de-
pends strongly on the order in which these two limits are
taken. For T = 0, the dielectric function is singular at
q = 0 (¢ < 1/d), which leads to a faster decay of the
screened potential [where Eq. (20) has been used in the
T — 0 limit]
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This result is similar to the calculations on the screened
potential for charged bosons,® where similar change of
the bare potential to a rapid power-law falloff is found.
Under realistic experimental conditions, however, this
T — 0 limit is not a suitable one: the characteristic
length corresponding to thermal motion of the excitons
at T = 1 K is comparable to the charge separation

(I ~ y/h*/8mT =~ d), and one should then look at the

zero-q limit for low but finite temperatures. In this case
the result is drastically different:

1= (5750 (o [252] )

The functional form of the screened potential remains
the same, and screening effects only reduce the strength
of the interaction. As the temperature is lowered, the
prefactor becomes vanishingly small and the crossover
into the r~7 dependence is eventually reached.

Quite generally, from these results one can observe a
major qualitative difference in the screening by systems
of reduced dimensionality: just as in the 2D charged
Fermi systems the screening does not lead to a short-
range effective interaction potential, characterized by
an exponential decay at large distances.! At best, the
screened potential decays as an inverse power law with
some characteristic length or scale, which depends upon
temperature and particle density. However, at the same
time, the screening is more pronounced in Bose systems
(for a given interaction potential), as accounted for by
the singular behavior of the polarizability at ¢ — 0.

2

(30)

IV. CONCLUSION

In summary, we have presented calculations of the di-
electric function for the 2D interacting dilute Bose gas
in the self-consistent mean-field approximation. It is
shown that the obtained analytical expressions are con-
sistent with available asymptotic limits, such as the high-
temperature regime for the two-dimensional electron gas
and the low-temperature limit for charged bosons. It
is shown that in the low-temperature limit the collec-
tive excitations are always possible for repulsive interac-
tion between the particles (such that the two-dimensional
Fourier component of the interacting potential is non-
negative for all ¢), and the corresponding dispersion re-
lation is found. For long wavelengths, an acoustic disper-
sion is obtained for the case of polarized dipoles. Results
of numerical evaluation of the obtained quadrature for-
mulas are also shown for both real and imaginary parts
of the dielectric function, as well as for the quantity
Im ¢~ !(g,w). We also show that screening in this sys-
tem of spatially separated electrons and holes does not
lead to an effectively short-range interaction potential,
but only to a faster power-law decay.
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