
PHYSICAL REVIEW B VOLUME 50, NUMBER 12 15 SEPTEMBER 1994-II

Current-voltage characteristic in narrow channels and low-voltage breakdown
of the quantum Hall effect

0. G. Balev
Institute of Physics of Semiconductors, Academy of Sciences, g5 Prospekt Nauky, kiev 25p650, Ukraine

P. Vasilopoulos
Department of Physics, Concordia University, 1)55 de Maisonneuve Boulevard 0,

Montreal, Quebec, Canada, H3G1M8

E. V. Mozdor
Institute of Physics of Semiconductors, Academy of Sciences, $5 Prospekt Nauky, Kiev MM50, Ukraine

(Received 23 March 1994)

Low-voltage breakdown of the quantum Hall eB'ect is considered in narrow quasi-two-dimensional
channels subjected to a strong perpendicular magnetic 6eld. The interaction of electrons with
acoustical (deformation or piezoelectric) phonons leads to a substantial dissipation at the edges of
the channel, due to electron transitions between the edges states. It is the main dissipation if the
channel width W is not too large. Nonheating negative difFerential conduction, dj /dE & 0, when
an electric Beld E is applied along the channel, is possible for drift velocities vn smaller (v~ & s)
or much smaller (vn « s) than the speed of sound s as well for vo ) s. The current-voltage
characteristic (CVC) j, = j (E ), evaluated numerically for a number of qualitatively difFerent
cases, is substantially nonlinear if v~ is not too small. The results are in good agreement with
the experimental results by von Klitzing et al. for low breakdown velocities (v& s/20) in metal-
oxide-semiconductor (MOS) structures. An increase by orders of magnitude in the dissipation,
before breakdown, as observed, e.g. , by Komiyama et at. is explained as well. The anisotropy of
the electron-phonon interaction in MOS structures and its substantial in6uence on the CVC and
breakdown velocities is also considered. The dissipation depends very strongly on the frequency 0
of the confining potential if v& is not too large. In contrast with Martin and Feng [Phys. Rev. Lett.
64, 1971 (1990)j, for sufficiently small 0, an exponential suppression of the dissipation occurs due
to intralevel-intraedge acoustic-phonon-assisted transitions.

I. INTRODUCTION

The understanding of the breakdown the quantum Hall
effect (/HE) still evolves as more experimental and the-
oretical results are obtained. A comprehensive review of
the literature on this breakdown is given in Ref. 3 and
earlier reviews are given in Refs. 4 and 5. The breakdown
is usually associated with electron-phonon interaction.
Reference 6 proposed another theory of the breakdown
of the /HE in wide channels. It is associated with a non-

heating negative difFerential conductivity under electron-
phonon interaction, if the drift velocity vD = E„/B is
larger or equal to the speed of sound 8 that leads to an
instability of the almost dissipationless regime. Here B
is the magnetic field, and E„=EH the Hall 6eld.

For narrow channels, when the main dissipation is due
to the electron-phonon interaction related with electron
transitions at the edges of the channel, it has been shown
that low-voltage breakdown, due to negative difFerential
conduction (NDC), is possible for v~ & s and in par-
ticular vD &( 8. In Ref. 7 the current-voltage charac-
teristic (CVC) with NDC in analytic form was obtained
only for v~ + s/4, if fiuctuations in the confining poten-
tial are neglected. This agrees well arith the maximum
values of a threshold drift velocity vD in many experi-

ments on GaAs/(A1Ga)As heterostructures. z s's In ad-
dition, some essential features of an experiment were
explained. However, in some interesting cases the be-
havior of the CVC could be estimated only very approx-
imately, e.g. , the possibility of breakdown related with
NDC in some ranges of vD. This treatment cannot be
applied directly to the experimental conditions of Refs.
1 and 9 where in a Si(100) metal-oxide-semiconductor
(MOS) structure with channel width 80 pm (Ref. 1)
and 10 ym (Ref. 9) the maximum v~ for breakdown
was about s/20 (see also Ref. 5), i.e. , much lower than
the speed of sound s = 8.4 x 10s cm/sec in silicon. s'~o

This drawback of the analytical treatment is related with
the absence of a small parameter b,E/E && 1, where
AE = AEJI gives an estimate of the possible NDC region
and E = E~ is the typical value of E~ in that region, "
see also below. Here, apart Rom a numerical treatment
of CVC s in qualitatively interesting cases, which can-
not be studied analytically, we also take into account the
anisotropy of the electron-phonon interaction in Si(100)
MOS structures. Due to this anisotropy, in some cases
the interaction with TA phonons is more important than
that with LA phonons in determining the CVC. More-
over, the anisotropy can enlarge the region of NDC or
promote its appearence in new regions in comparison
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with the case where this interaction is isotropic.
The possibility of low-voltage breakdown due to

electron-phonon interaction at the edges of the channel is
related with finite but not too high temperatures. ~ Phys-
ically, in a narrow channel electron states (and transi-
tions between them) are more pertinent at the edges of
the channel than at its interior. Indeed, at the edges
of the channel the Landau levels are tilted upwards
by the confining potential and the Fermi level crosses
them. So the states in the vicinity of the edges are close
to the Fermi level and at low temperatures they con-
tribute to dissipation, via the electron-phonon interac-
tion, much more than the "bulk" states (at the interior
of the sample) since they lie far below the Fermi level.
In fact, it has been observeds that the contribution of
these inner states, lying b„below the Fermi level, de-
creases exponentially with temperature if the condition
exp( —6„ /k~T) (& 1 is satisfied.

Following Ref. 7 we will study the breakdown of the
/HE in a narrow channel, of finite thickness and of
infinite length, in the presence of a strong perpendic-
ular magnetic field B such that hu, » kgT, where

~e~B/m' is the cyclotron f'requency, m' the ef-
fective mass, and e(( 0) the electron charge. We ne-
glect a random static potential as well as the interac-
tion between electrons. The only scattering we consider
is electron-phonon interaction in relatively weak applied
electric fields (along the channel) when the condition
~E /E~ ~[

&( 1 is satisfied due to the strong magnetic field.
The heating of the two-dimensional electron gas (2DEG)
is neglected. We assume that E~ is not large enough
to cause interlevel transitions. In the case of Si MOS
structures we take the z axis along the (100) direction.

The paper is organized as follows. In Sec. II we present
some basic relations from Ref. 7, for the convenience of
the reader, and additional formalism related with the
anisotropy of the electron-phonon interaction in Si(100)
MOS structures. In Sec. III we calculate the CVC for
the isotropic electron-phonon interaction. In Sec. IV we
treat the influence of the anisotropy of this interaction

I

on the CVC for Si(100) MOS structures. Finally, in Sec.
V we present a discussion and the concluding remarks.

II. BASIC RELATIONS

A. Channel characteristics

We consider a 2DEG confined in a narrow channel, in
the (z, y) plane, of width W, of length I, and of finite
thickness d. For W & 0.1 ym we can take the confining
potential along y as parabolic: V„=m'02yz/2, where 0
is the confining frequency. However, as explained in Ref.
7, all the results can be directly extended to the more
realistic potential (W ) 1 ym) V'„= 0 for yi & y & y„,
V„' = m*02(y —y„)2/2 for y ) y„) 0, and V'„=
m'0 (y —yi) /2 for y ( yi & 0. We point out that yi
and y„are not exactly the left and right edges of the
channel. However, for W ) 1 pm, we have W y„—yi,
see also Ref. 12. Below, we will consider mostly this
case; the results can be easily extended to the case of
V„. For the confinement in the z direction we consider a
parabolic well of frequency u, or the standard triangular
well. As explained in Ref. 7, when an electric field E
is applied along the channel and a strong magnetic field
B along the z axis we should include the Hall fleld E~
in the one-electron Hamiltonian. The components of the
current density averaged over a statistical ensemble and
the dimensions of the channel are given by~

j„=o»(Egg)Err+os E =0,

i =&.„Ea.0

Here, the superscript 0 in oo = —o „oc ez/2zh de-
notes the absence of electron-phonon interaction. The
term o»(E~)E~ in Eq. (1), labeled j~ to remind that it
expresses the dissipation, is given, when only the lowest
Landau Level (N = 0) is occupied, for isotropic electron-
phonon interaction by

jq = o»(E~)E~ =
2

', dq, dk q [q v) +'[f(Eo(k )) —f(Eo(k —q )))
ieger, c'

1

1 —ghsq 6/k~T
1

1 —e[@o(i'.)—@o(a.—&.)]/i ~T

(qzggg (-2 1)/4) -q V[1+A+{6 —1}/2)/2

where Eo(k~) = hu/2+ h k2/2m+ E,o and

q 6)0, 6 )1.
Here c' is a constant related with the strength of electron-
phonon interaction C~, ~ = (~ +0 ) /, m = m ~ /0,
and E 0 is the eigenvalue of the lowest subband related
with quantization of motion in the z direction. In line
with most experimental situations we assume that the
2DEG occupies only t¹~s level. Rxrther, m = 1 or
—1 for standard acoustical (DA) or piezoelectrical (PA)

phonons, C2 = (c'/L L„L )q+i, and. ~~ = sq is the
phonon kequency, q = (q + qz + q, )i/2. Moreover,
f(Eo(k )) = 1/(1 + exp([Eo(ka) —Ez]/kaTj) is the
Fermi-Dirac function, Ey is the Fermi level, Io(2:) is the
modified Bessel function, v = v —(gq /2m's)(0/g)2,

(h/m'G)i/2 is the renormalized magnetic length,
and A~ = 1 + E2/E2. The factor v = v(k, ka) = h(k +
ka)/ms is a dimensionless number which, for 0 m 0, re-
duces to the ratio of the drift velocity to that of sound,
v -+ Egg/sB, and k@ ——~e[w, E~/h0 F2or d finite and
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Bjg
gE lEH(E, ) & 0~ (6)

respectively. Criterion (6), which follows from
Bj /t9E & 0 and Eqs. (1)—(3), is a condition for the

V = m ru zz/2 we have E2 = h/m*~ && I2 if ~
For typical values q &( f the result for matrix element"
F(q, ) is almost equal to that obtained from the vari-
ational wave function Xo(z) = z(bso/2) ~ exp( —boz/2)
if E, 2 = b02/6, i.e., I"(q, ) = [1 + q2/b02] s; in this
case the average thickness is 3/bo In the former case
F(q, ) = exp( —q2E2/2).

As a rule we will calculate Eq. (3) numerically and
compare the results with those of Ref. 7 or our new
analytical ones. Then we will need the characteristic
wave numbers k, = (u/hA)[2m'b, ~]i~2, where A~
(Ego —hu/2) and Ego ——Ey —E,o, in the case of
parabolic potential V„channel width W = 2h~, k, /m'~,
i.e., it is proportional to k, . Notice that in the latter case
f(Es(+k, )) = 1/2; thus k, corresponds to the intersec-
tion of the Fermi level and of the Landau level. It can be
seen that k, determines the characteristic electric field
E, = h02k, /[e[u, defining the inHuence of the channel
boundaries (see also below) on the edge states.

From Eqs. (1) and (3) we can express E~ as function
of E, E~ = Egg(E ). Then from Eq. (2) the CVC,
j =j (E ), and the condition for NDC, Bj /BE & 0,
are written as

breakdown of the @HE. The more general condition
jq g 0, which leads to a weakly dissipative regime and is
necessary for breakdown as well, is treated numerically.
We will assume 0 « [~,~, i.e., that the confining poten-
tial affects the eigenfunctions very little but it substan-
tially changes the eigenvalues. This condition is usually
fulfilled if the magnetic field is not too weak, for more
details see Sec. V. We also assume that EH is not strong
enough to cause interlevel transitions.

From Eqs. (1) and (2) it follows j~E& = j E, i e.
after determining jg it is not difficult to obtain dis-
sipation in the channel. Because of the relationship
E~ = j~(EH)/o „=oz„(EH)E~/o, the construction
of the CVC E = E (j ) is equivalent, in relative units,
to that of the dependence jg = jd(EH) We .have the re-
sistivity p = E~/j ~ j~/E~(rr„) For .definiteness,
we will suppose EH ) O, B ) 0. In Eqs. (1) and (2)
we have o'0 = e2/2xh. For simplicity we neglect the

spin and valley dependence of the filling factor~ v unless
stated otherwise.

B. Anisotropic electron-phonon interaction

In Si(100) MOS structures we have, for LA and TA
phonons, respectively, ~Cq[ in the form ' BOI, q( aI,+-
q2/q2) 2/V and BOT q(q2/q2) (1 —q2/q2)/V, where V =
L L&L„aL, = — d/:-„= 2/3, :-g ———6 eV, =„=9 eV,
Bol. y = 5:-„/2psr, T, and p is the density of crystal. For
interaction with LA (TA) phonons sL, (sT ) is the corre-
sponding sound veloscity. Then for LA and TA phonons,
when only the lowest Landau level N = 0 is filled, we
obtain

dq dk q, [f(EO(k )) —f(EO(k, —q ))]

1

1 —e[Eo(le )—Eo(k —q )I/k&T
e q.~ ti+(~+ i)(& 1)l/

haq v/IC~T

x{A, ' v Io(qE~A (v —1)/4)e ~

+Pz' (v —1)4(2,2; —
q / A (v —1)/2) + As' (v —1) v 4'(2, 3; —q E A (v —1)/2)), (7)

where 4'(o. , p; z) is the confiuent hypergeometric
function. Further, Az ——aL, Az ——0, A&

———aL„
AT2 = 1/2, A~s = 3/8, A+s = —3/8, and conditions (4)
are imposed. We will use the values ' 8L, ——8.4 x 10
cm/sec and s~ = 5.8 x 10 cm/sec.

Notice that Eq. (7), for LA phonons, coincides with
Eq. (3) if we suppose "„+0 and hence aL, ~ oo and
Bor, a&~ —+ c'. An analytical treatment of Eq. (7) shows
that the anisotropy of the electron-phonon interaction
leads to a NDC at least for low voltages. If we take
1/E2 = bo2/6 we obtain~ P/E2 + 1 in line with usual
experimental conditions.

III. ISOTROPIC EI ECTRON-PHONON
INTERACTION

First, we will study how the suppression of the
dissipation at the left edge of the channel (yi,E
—h(u, k /m'~ & 0, for V„) affects the CVC with in-
creasing EJr for E, ) E, ; here E, = u sB/u, As.
pointed out in Ref. 7, this can in principle lead to NDC
in the low-voltage region. In Fig. 1 we represent the
CVC for T = 1.7 K, B = 10 T, and 8 = 7.1 x 10
cm/sec, m' = 10 2s g. Here the material parameters are
intermediate between those of a Si MOS structure and
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those of a GaAs/Al Gai As heterostructure. We do
this to demonstrate the difference in the CVC between
DA phonons (two dashed curves) and PA phonons (two
solid curves) for similar conditions. In Fig. 1 the upper
dashed (solid) curve corresponds to t = (A+ —1) i = 2
and the lower dashed (solid) curve to t = 1. We have

taken D = 02/u2 = 5 x 10 s, b, = b,~/k~T = 26,

g = hG/kgyT = 68, and xT ——hs/E kgyT = 3.84. We
have also introduced the dimensionless electric fields
E~ = k~& = E~/(«'/Iel~. e), E. = E./(hn'/lel~«) =
xT*/gD. Notice that EH = E, (as well as Etf = E,)
corresponds to vD ——8, if we neglect small corrections
oc 02/~ . As pointed out in Ref. 7, for E, & E, and

E ' —1 = (2b,Dg/zT, ) / —1 (8)

we can have NDC in the characteristic region AE~-
b,E with E lying approximately in this region. For z2 )&
1 we have

b,E/E, = max(A k~T/m's ir, kgyT/hsk, j,
and for zT & 1 we have

(9)

6E/E, = max(hA /m'sE~, k~T/hsk, ). (10)

vD/S

12.0

0.0 0.175
I

0.35

Then for Fig. 1 we obtain from Eqs. (8) and (9)
E/E, = 0.095, AE/E, = 6v~/s = 2.3 x 10 2, and
b,E/E —0.24. These estimates are in good agreement
with Fig. 1. Indeed, both CVC's for interaction with PA
phonons represent NDC for 0.10 & v~/s & 0.14, i.e., in
the region of EH that compares well with estimates ob-

tained from Eqs. (8) and (9). As can be seen in Fig. 1,
in this region both CVC's for DA phonons do not show
NDC. However, their dependence E = E (j ) becomes
already very sublinear or even (for t = 1) quasifiat. We
can see &om Fig. 1 that the Gnite thickness of the chan-
nel (i.e., smaller t) promotes the appearence of the NDC
region. This is similar to the dependence of the break-
down velocity vD on d in the cases treated in Ref. 7.

In Fig. 2 we represent CVC's for the same conditions
as in Fig. 1 except for the temperature T which is twice
smaller (T = 0.85 K). We have g = 136, h = 52, and
xT = 7.68. From Eq. (8) we obtain that E lies close
to the beginning of the NDC region in Fig. 1 and to its
center in Fig. 2. Notice that in Fig. 2 for PA phonons
we have NDC for minimum vD at least 20% smaller than
in Fig. 1. A comparable reduction is seen for the maxi-
mum vD pertaining to the NDC region. The total width
of the latter is almost unchanged as it should be for the
case corresponding to Eq. (10). Moreover, we see that
NDC has appeared in the corresponding low-voltage re-
gion for interaction with DA phonons. We empasize that
for the most interesting regions in Figs. 1 and 2, the
CVC can be calculated only numerically. Nevertheless,
an analytical treatment shows that decreasing T favors
the appearance of NDC due to a more abrupt suppres-
sion of the dissipation at the left edge of the channel.
Figures 1 and 2 clearly lend support to such a conclu-
sion. For not too large zT & 3, Eq. (9) gives only order
of magnitude estimate of LE. Thus, for zT 1 the de-
pendence of b,E on T should become much weaker than
linear. This can be seen by comparing the curves for PA
phonons in Figs. 1 and 2. According to the estimate
given by Eq. (9) the width of the NDC region in Fig.
2 should be twice smaller than that of Fig. 1. This is
obviously not the case. A more elaborate treatment gives
for xT )& 10 an additional logarithmic factor lnzT, to
the estimate given by Eq. (9). Finally, for xT & 3 we

estimate 4E = 6E/(M2/lelur, l) as

10 jd/jo oc E

8.0—
rr rr rr r

2.0

0.0

tPD/S

0.175
I

0.35

4.0—

0.0

0.0
I

1.0
I

2.0
I

3.0 4.0

10'jd/j0 Oc E 1.0—

EH oc j~

FIG. 1. Current-voltage characteristic for the PA (solid
curves: m = —1) and DA (dashed curves: m = 1) interaction
corresponding to Eq. (3) for T = 1.7 K, B = 10 T, s =
7.1 x 10 cm/sec, and m' = 0.07ms, further, g = 68, b = 26,
xT = 3.84, D = 0 /u = 0.005, and g 1.1. The upper solid
and dashed curves correspond to t = 2, the lower ones to
t = 1. Here js = lel&u, c'/(4m Asm'~ Wf. + ) and E~ = 1
corresponds to E~ = 62 V/cm.

0.0
0.0

I

1.0
I

2.0
I

3.0 4.0

EHoc j
FIG. 2. Same as in Fig. 1 for T = 0.85 K (g = 136,

b = 52, zT = 7.68).
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For x& + 10 the logarithmic factor is related with a
power-series decrease, approximately oc T (both for PA
and DA phonons), of the contribution to the total dis-
sipation &om the left edge of the channel, when T de-
creases, for the Hall fields inside the region determined
by Eqs. (8) and (ll). This decrease is in addition to the
usual temperature behavior. When E,/E, ) 1, for low
temperatures zT )& 1 the dissipation variesr as T for
PA phonons and as T for DA phonons. For zT )) 1,
similar dependences on T were obtained for the dissipa-
tion of a degenerate 3D-electron gas which occupies only
the N = 0 Landau level and interacts with PA or DA
phonons. ~s Further, from a comparison of Figs. 1 and 2,
for E(( outside the region determined by Eqs. (8) and
(11),we see that jg T for PA phonons and jg T for
DA phonons. Also, the curves for t = 3 will practically
coincide with those for t = 2.

The conditions used in Figs. 1 and 2 compare rather
well with the experimental ones in Refs. 1 and 9 (see
also Secs. IV and V). It is seen from Figs. 1 and 2 that
we have the breakdown of the almost "dissipationless"
current for minv~ & 0.09s = 6.4 x 104 cm/sec. This
value of v~ is in good agreement with the experimen-
tal one. ~'s This result lifts a ban, on a substantial role
of acoustic emission in the breakdown in Si-MOS struc-
tures, stated in Ref. 9 since it contradicted earlier models
that predicted v~ & 8. The ban was based on an exper-
imentally determined average drift velocity v~ that was
much smaller [about 5 x 104 cm/sec (Refs. 1 and 9)] than
the speed of sound in silicon. 9 We note in passing that
some of the results of Ref. 9, show clearly a section with
negative differential resistance.

In Fig. 3 the same curves as in Fig. 1 are represented
for substantially wider regions of current densities j (oc

E~). Because of an abrupt increase of the dissipation at
E~/E, —E,/E, + 1 = 2.1, we represent CVC's in Fig.
3 for comparatively low fields and in Fig. 4 for larger
EJI. As seen &om Figs. 1 and 3, one CVC can have
three different regions of NDC: (i) for EH/E, = E,/E, —
1 = 0.1, (ii) for E,/E, + 1 ) EH/E, ) 1, and (iii) for
EH/E, ) E,/E, + 1 = 2.1. Notice that in case (iii) the
dissipation is practically independent of T (for zT & 1)
because a finite phonon emission at the right edge of
the channel takes place even for T = 0, when phonon
absorption is absent. In the transition region &om (ii) to
(iii), the CVC can be calculated only numerically. As can
be seen, in this region the dissipation increases sharply by
about two orders of magnitude. For the PA interaction
in (iii) with rI = E,/E, & 1, zsT/2 ) 1, and rly = (EH +
E,)/E„we have E(( —E, & E, . Then assuming [rl2—
1] « 1, we obtain

jg ——I'~m[2 + A+ (rl' —1)]

where I' = ~e]ur c'/2n'2h sEuW. The corresponding
curves in Fig. 4 agree rather well with Eq. (12). For
large t (smaller thickness of the 2DEG) we have a slower
decrease as predicted by Eq. (12).

In contrast with Figs. 1—4, where g ) 1, the re-

sults represented in Fig. 5 correspond to g & 1. All

curves in Fig. 5 are for interaction with PA phonons in a
GaAs/(AlGa)As heterostructure with m' 7 x 10 2~

g,
s 2.5 x 10s cm/sec. For curves 1—4 we suppose B —ll
T. Curves 1 and 2 are for T = 0.95 K, and curves 3 and 4
for T = 1.9K. Curves 1 and 3 correspond to g = 0.8, with
D = 10 4, and curves 2 and 4, with D = 5.625 x 10
to q = 0.6. Notice that the vertical axis (oc E ) is loga-
rithmic. We can see from Fig. 5 that for EH/E, & 1 —ri

with increasing EH we have a linear increase of logqoE,
the angle of which becomes larger for smaller T. Thus,
for curves 1—4 we have, for EH/E, & 1 —rl, the following

dependence on EH, T, and g

8.0

0.0

6.0—

I'jd/j~ ~ E. 4.0—

0.65
I

Vg/S

1.30
I

1.95

jd/jO

3.0

2.0—

1.0—

(
I

I(
I(
II
II
I(
I(

I
I

I

2.44
I

2.92

2.0—

0.0
0.0

I

5.5
I

11.0
I

16.5 22.0

0.0
22.0 27.5

EH OC jz

33.0

FIG. 3. Same as in Fig. 1 for a larger region of the current
density j .

FIG. 4. Same is in Fig. 3 for another region of the current

density. Notice the difFerence (10 ) in the vertical scales of
these figures.
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1.0

0.0 0.1
I

0.2
I

0.3
I

0.4
I

0.5
I

0.6

-1.0— / If

lOglP(jd/jP ) OC E

-5.0—

-7.0—

I
I
I

I
I

I
I
I

I
3I
I
I

-9.0

0.0
I

0.1
I

0.2
I

0.3
I

0.4
I

0.5 0.6

A

EH/E, = tID/~ tx j~

FIG. 5. Current-voltage characteristic for the PA interac-
tion in a GaAs/(AlGa)As heterostructure (m' = 0.07mp, s
2.5 x 10 cm/sec), with m = —1, corresponding to Eq. (3)
for t = 1. Curves 1—4 are for B = 11 T; curves 1 and 2 are
for T = 0.95 K and 3 and 4 for T = 1.9 K. Curves 1 and 2

(g = 200, b, = 100, zT = 2.5) correspond to g = v~/s = 0.8
(D = 10 ) and q = 0.6 (D = 5.625 x 10 ), respectively.
Curves 3 and 4 (g = 100, b, = 50, zT = 1.25) correspond
to g = 0.8 (D = 10 ) and g = 0.6 (D = 5.625 x 10 ),
respectively Curv. e 5 (g = 40, b, = 60, xT = 0.75; B = 3.78
T, T = 1.9 K, E, 95 V/cm) corresponds to D = 4.2 x 10
and g 0.60. The parameters pertain to the experiments of
Ref. 2 and E~/E, = v~/s.

ja/j o, i oc E oc ex—p(aIeIEIr/rik~T),

where a = (6.5 + 0.25) x 10 cm and jo
IeIu, c'/(4n zhsm'uzWE™+4). Qualitatively, Eq. (13)
compares well with the empirical relation observed in
Ref. 2 for some other conditions (v = 4, B = 3.78 T)
for difFerent E~ and temperatures. For E~/E, & 1 —g,
the curves 1 and 2 compare well with the analytical treat-
ment of Ref. 7. Because of the very fiat behavior of the
CVC for 0.23 & E~/E, & 0.60, for curve 1 the begin-
ning of the NDC region is substantially better obtained
(at E~/E, = 0.48) than in the corresponding curve in
Fig. 4 of Ref. 7.

To treat the observed2 increase of dissipation by ap-
proximately two orders of magnitude (from 0 10
ohm i to o. 10 ohm; o = p~~o „=jg/Err)
at T = 1.9 K, B = 3.78 T (v = 4) for E~ in the interval
from = 38 V/cm to = 40 V/cm, for which lnE oc EH
[as in Eq. (13)], we suppose that it is related with in-
tralevel transitions at the "edges" of the N = 0 Landau
level. Transitions take place due to interaction with PA
phonons. That is, we will assume that the intralevel con-
tribution &om the N = 1 Landau level and the interlevel
contributions are not essential. Indeed, to be in accor-
dance with other experimental results on this sample, we
should assume E,o/E, = 0.60 (in E,~ the subscript N
denotes the N = 0 or 1 Landau levels). Then E,i/E,
0.6/~3 = 0.35 if we assume the same effective confining

potential for the N = 1 and N = 0 Landau levels, where
E, = 94.5 V/cm. Hence, for EH/E, & 1 E—,i/E, —0.65
the intralevel contribution &om the N = 1 Landau level
should be exponentially small and at least negligible for
EH/E, & 1 —E,o/E, = 0.40. For simplicity we neglect
spin splitting. As regards the interlevel contribution, it
can be neglected for 0 /u « 1 and relatively small EH
and temperature . Then, using Eq. (3), we obtain curve

5 in Fig. 5 with g = 40, 6 = 60; D = 4.2 x 10
and xT ——0.75. This curve shows the exponential be-
havior of Eq. (13), with a/i1 = 3.8 x 10 4 cm; this
value compares well with the observed one. It is inter-
esting to compare the order of magnitude of the dissipa-
tion in this region, curve 5 in Fig. 5, with the experi-
mental curve. For usual parameters c' = h(ehi4) /2ps,
hi4 ——1.2 x 10 V/cm, and p = 5.31 g/cms, we obtain
o 7.4x10 (E,/E~)jq/jo i ohm ', where we have
used the potential Vv', since W = 50 pm, and included
a spin factor 2 . Here the preexponential factor is only
about 5 times smaller than necessary for agreement with
the experimental result. We consider this difFerence, for
such approximate treatment, as nonessential. Notice that
for E~/E, & 0.44 (i.e., E~ & 41.6 V/cm) curve 5 rep-
resents NDC, i.e., breakdown of the weakly dissipative
regime of the quantum Hall e8ect.

With regard to curve 5 in Fig. 5, the important as-
sumption g & 1 for all occupied Landau levels in the
experiment of Ref. 2 (for B = 3.78 T) is well justified
from Fig. 2 of this work: for B = 3.78 T and a small
E~ = 2.5 V/cm, the experimental curve shows clearly
an exponential dependence of dissipation on 1/T with a
rather large activation energy (2.26 meV) for T & 4 K.
Indeed, for g & 1 the intraedge-channel contribution to
dissipation should be oc T (notice that zT & 1 in Fig.
2, Ref. 2) for E~ between zero and at least Err & 100
V/cm for the present parameters.

IV. ANISOTROPIC ELECTRON-PHONON
INTERACTION

In this section we consider the CVC for interaction
with LA and TA phonons in Si(100) MOS structures.
As we will show, the 2DEG interacts substantially with
both kinds of phonons. We will treat in more detail the
observations of Refs. 1 and 9. Below, supposing g & 1,
we will treat only the low-voltage CVC's (vD & s) related
with the suppresion of dissipation at the left edge of the
channel and the dependendence of the electron-phonon
interaction on the typical angle 8, counted &om the z
axis, of the wave vector of phonons which provide the
most substantial contribution to dissipation.

In Fig. 6 we plot the CVC's for interaction with LA
phonons (solid curves 1—3) for T 1.5 K, B 10 T,
m' = 0.19mo, D = 0.02, and s 8.4 x lps cm/sec, in
the low-voltage region. We have 4 = 10, 20, and 30
for curves 1 and 4, 2 and 5, and 3 and 6, respectively. In
addition, g = 40, xT ——5.13, E, = 6.41. For the same pa-
rameters, we show the curves 4—6 (dashed) for isotropic
electron-phonon interaction. For DA phonons we rep-
resent jg/joi and for LA phonons the dimensionless
value je/j or„where jol, = IeIor, Boi,/(4x2hisl m'~2WIs)
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FIG. 6. Current-vo1tage characteristic corresponding to
Eq. (7) (solid curves 1—3) snd to Eq. (3) (dashed curves
4—6) for T 1.5 K, B 10 T, m' = 0.19mo, D = 0.02,
sL, = s = 8.4 x 10 cm/sec, t = 1, g = 40, D = 0.02, zT
5.13, snd E, = 6.41. The solid (dashed) curves correspond to
interaction with LA phonons (DA phonons). For curve 4 the
units are 5 x 10 jq/joi snd for curves 1—3 10 gg/&pi„where
g« = lel~.a.&/(4~'~8&~'~'ws')

FIG. 7. Current-voltage characteristic corresponding to
Eq. (7). The solid curves (1—3) correspond to interaction with
LA phonons (si, = 8.4x 10 cm/sec, x@1.= 5 13, E~z, = 6 41)
snd the dashed curves (4—6) to interaction with TA phonons
(aT = 5.8 x 10 cm/sec, gTT = 3.54). The other parameters
are the same as in Fig. 6. Curves 1 and 4 correspond to
6 = 10, curves 2 and 5 to 4 = 20, and curves 3 and 6 to
6 =30.

Curve 4 shows no NDC whereas curve 1 does in addi-
tion to showing a much slower increase above E~ —1.0.
That is, the anisotropy causes the appearence of NDC.
It is due to the factor (—2/3+ cos28)2, which decreases
with increasing E~ for E~ & 2 under the stated condi-
tions. Notice that curves 1 and 4 are for g 0.78 and
for EH & (1 —g)E, 1.4 we have a strongly nonohmic
behavior (compare with Fig. 5). Curve 2 shows NDC for

very small fields EJr (0.8 & E~ & 1.4) that as a result of
the anisotropy. Indeed, for curve 5 NDC is absent but in
the same region the CVC becomes rather fiat. The typi-
cal Hall field for this region is well estimated by Eq. (8).
Thus the breakdown of the weakly dissipative quantum
Hall regime due to NDC here is possible for much smaller
ratios EIr/E, 0.12 than for 6 = 10. For b, = 30,
curves 3 and 6 have the same qualitative behavior; here
NDC appears for E~/E, more than twice larger than
for b, = 20 in accordance with Eq. (8). The peak-to-
valley ratio in the NDC region of curve 3 is approximately
1.8 times larger than the corresponding value of curve 6.
Since all parameters are the same for both curves this
increase results 6..om the anisotropy of the interaction.

The numerical results represented in Fig. 7 correspond
to the same conditions as those in Fig. 6; the only difFer-
ence is that the dashed curves correspond to interaction
with TA phonons, obtained from Eq. (7). Here we have

x~L, ——5.13, xT~ ——3.54. Notice that for A = 10,
due to the difference in speed 8 between the LA and TA
phonons, for LA phonons g & 1 and dissipation due to
them is negligible at the left edge of the channel, while
the opposite holds for TA phonons. In addition, curve 4

shows no NDC whereas the corresponding curve 1 does.
For curves 2 and 5 (b = 20), the corresponding maxi-

mum values of E~ are substantially different: —0.80 for
LA and —1.80 TA phonons. Such a substantial diifer-
ence for the onset of NDC also takes place when 6 = 30,
see curves 3 and 6 in Fig. 7. Prom Fig. 7 it is seen that
interaction with TA phonons can play the main role in
the occurence of NDC and is in competition with the con-
tribution of the LA phonons. Note that for TA phonons
we can obtain substantially lower Hall fields for break-
down with other A. For instance, if 6 = 15 we obtain
NDC in the region 1.3 & E~ & 2.3 .

The numerical results represented in Fig. 8 correspond
to the same conditions and notations as those in Fig. 7
except for the temperature, T = 0.5 K. Vfe have g = 120,
xT L, ——15.39, zTT ——10.62; the corresponding values for
6 are three times larger. In comparison with curve 2 of
Fig. 7, curve 2 in Fig. 8, that corresponds to interaction
with LA phonons for 4 = 60, shows a substantially larger
peak-to-valley ratio in the NDC region; the latter starts
at lower voltage and is narrower. However, in contrast
with curve 1 in Fig. 7 showing NDC due only to the
anisotropy, for EH ) 3, curve 1 in Fig. 8 shows no
NDC; we have a1most a constant dissipation due to LA
phonons with increasing j . Curves 3 and 5, in Figs. 7
and 8, show the same qualitative behavior. The typical
values of dissipation in Fig. 8 are approximately 120
times smaller than in Fig. 7. This is in line with the
discussion above and the dependence (x T .

In Fig. 9 we represent CVC's that correspond to the
sum of the LA and TA phonon contributions to dissi-
pation for the cases represented in Figs. 7 and 8. For
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FIG. 8. Current-voltage characteristic corresponding to
Eq. (7) for T = 0.5 K. The solid curves (1—3) correspond to
interaction with LA phonons (zTL, = 15.39) and the dashed
curves (4—6) to interaction with TA phonons (2:Tr = 10.62).
The other parameters are the same as in Fig. 6. The 4
assignment of the curves is the same as in Fig. 7 and the 4
values three times larger. .

g = 40, the region of NDC for 4 15 has the minimum
E~ about twice smaller than in Fig. 8, see also the dis-
cussion of Fig. 7. Notice that in curve 6 a new region of
NDC, at E~ 2.1 has appeared in comparison with the
corresponding high-temperature curve 3.
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FIG. 9. Sum of the LA and TA phonons contributions to
the current-voltage characteristic for the cases represented in
Fig. 7 (solid curves 1—3) aud in Fig. 8 (dashed curves 4—6).
The dashed curves have been multiplied by an additional fac-
tor 10 . Curves 1—6 are obtained vrith A = 10, 20, 30, 30, 60,
and 90, respectively.

V. DISCUSSION AND CONCLUDING REMARKS

One of the main results of this paper is the qualita-
tively difFerent behaviors of the CVC's of narrow chan-
nels at the beginning of the low-voltage region, that in-
cludes E~ (or j ) just above zero, for (i) E, & E, and (ii)
E & E„cf.Ref. 17. This is seen, e.g. , by comparing the
ohmic behavior of the CVC's in Fig. 1 for vD/s « 0.1
with that for small vD/s in Fig. 5. The results depend
strongly on the parameter 0 characterizing the smooth-
ness of the confining potential. This is practically the
only unknown parameter in our model that is necessary
to compare the theoretical with the experimental results.
However, our study shows that such an uncertainty in 0
can be reduced substantially since the range of 0 val-
ues can be deduced from the usual measurements such
as those of Ref. 2. In particular, our results, as well as
those of Ref. 7, show the possibility of an exponentially
strong suppression exp[—6(1 —rt2)/r12] of intralevel
inelastic scattering due to acoustical phonons. For the
experimental conditions of Ref. 2 discussed above, this
suppression is stronger than exp( —hu /k~T). This in
sharp contrast with the results of Refs. 18 and 19 that
do not show any possibility of such a strong exponential
suppresion. Notice that rl = E /E, —= vs/s, where vs is
the group velocity of an edge state. In all figures, be-
cause of 0 « cu, we have & cu, and E, in t = 8 /E„
almost coincides with the magnetic length. Moreover,
8, is approximately equal to the thickness of the 2DEG.
Assuming a suKciently smooth confinement, such that
vs/s = 0.6, we have obtained good agreement with the
observed2 strong exponential increase in the dissipation
for small increase in E~ (before the breakdown). This
is clear by comparing curve 5 in Fig. 5 with the corre-
sponding results of Ref. 2 and has been detailed in Sec.
III.

The activated temperature dependence of the resistiv-
ity minimum in Fig. 1 of Ref. 1 (from T —4.2 K to
T = 2.7 K), for B = 10.3 T does not contradict our as-
sumption E, ) E, This is be. cause (i) for T = 3.3 K
and B 10 T the contribution &om the edges to the to-
tal resistivity should be at least two orders of magnitude
smaller than the observed value of the resistivity, related
most likely with the contribution of the inner part of the
channel, and (ii) the breakdown was perfectly observed
for T = 1.5 K, when the inner contribution should be

3 x 10 times smaller than that for T = 3.3 K but
the edge-intralevel contribution only —50 times smaller.
Thus for T = 1.5 K the main contribution to the total
dissipation in the channel should result &om intralevel
transitions at the edges.

%le have assumed a uniform Hall field in the chan-
nel. For not too low current densities j this comple-
ments rather well with the experiment of Ref. 20 in a
GaAs/(AlGa)As heterostructure: for current densities
j~ & 10 2 A/m, a linear increase of the Hall voltage
over the entire width of the sample was observed even in
the center of the plateau (v = 4; B = 5.1 T, T = 1.5
K). The current density that corresponds to the region
EH/E, —0.4 in curve 5 in Fig. 5, is j = 0.64 A/m
(v~ = 1.1 x 10s cm/sec), i.e., j is practically two orders
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of magnitude larger than j for which in Ref. 20 an almost
linear increase of the Hall potential over the sample width
was measured. For a recent discussion of the spreading
out of the current density in a Hall bar see Ref. 21. In
this work even for a very small current and hard-wall con-
fining potential, a substantial bulk current was obtained.
For smooth confining potentials this speading out of the
current density should be further enlarged. This type
of confining potential appears more realistic.

Finally, we mention that a recent comprehensive nu-
merical studyz4 of anisotropic deformation potentials (for
intravalley scattering) in Si emphasizes the difference be-

tween numerical results for =T~(8) and:-r. ~(8) and those
&om analytical model. ' The most important diKer-
ence is related with at least 1.6 times smaller 0 at wich
:-TA(8) has a maximum. This should lead to more pro-
nounced NDC regions in the CVC's for v Dis ( 0.1 for
the total contribution of both TA and LA phonons.
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