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A sum rule for electronic intersubband transitions has been derived following Kane's model,
beyond the quadratic dispersion relations. The sum rule takes into account the efFects of non-
parabolicity and the different effective masses in the vrell and barrier materials; it depends on the
property of the ground state of the system and, as such, on the shape of the potential. The bound-
aries of the validity of matrix element computations are also discussed in the case where only the
conduction band is included. Experimental results are presented for bound-to-bound and bound-to-
continuum intersubband transitions in various types of A10.4sino. sgAs/Gao. 47Ino. ssAs quantum well

systems (single wells, coupled wells, and quantum wells with Bragg confinement); the agreement
with theory is excellent. In the last section of the paper, the effect of the electric field on the sum
rule is investigated.

I. INTRODUCTION

Optical transitions between electronic states within the
conduction band of doped semiconductor heterostruc-
tures have recently proved to be promising candi-
dates for the realization of infrared photodetectors,
frequency converters, and lasers, and a large efFort
has been devoted to the investigation of both the lin-
ear and the nonlinear optical properties of these sys-
tems. Particular attention has been paid to heterostruc-
tures with large values of the conduction-band ofFset

(b.E, ) 3QQ meV) due to the possibility of achiev-
ing higher transition energies. Experimental observa-
tion of "high-energy" intersubband transitions in quan-
tum wells has been reported for strained4 and lattice-
matched Ga„lnq „As/Al Inq As, GaAs/A1As, and
strained In„Gaq „As/Al Gaq As (Ref. 7) systems.

Theoretical predictions of the electronic energies and of
the optical transition strengths have been mainly based
on standard one-band envelope-function Hamiltonians.
While this is certainly a good approximation for energy
levels located near the bottom of the conduction band,
as soon as the conGnement energy becomes compara-
ble with the interband energy gap, the full valence- and
conduction-band structure has to be taken into account .
Although this is still an approximation (the whole band
structure of the bulk material should be considered in or-
der to obtain exact results within the envelope-function
approximation), this model, also referred to as the Kane
model, has been shown to work rather well in the cases of
interest. Its only drawback is the increase in the compu-
tational e8'ort and the loss of a "textbook" picture which
instead characterizes one-band Hamiltonians.

It has been recently proposed, however, that the
four-band Kane model can be reduced, as long as elec-

tron (conduction) states are considered, to an "effec-
tive" two-band model, which can in turn be recast into
a one-band model, provided an appropriate energy de-
pendence is given to the effective mass, thus recover-
ing the use of textbook Hamiltonians. Although elec-
tron energies calculated using this simple model turn
out to be in excellent agreement with the observed val-
ues, complications arise when the optical properties of
these systems are considered. ~o In fact, it can be shown
that the standard procedure for calculating the optical
transition strengths between electron states of a quan-
tum well is inapplicable in the presence of nonparabolic-
ity effects, and that a more refined theory is required.
The first aim of this paper is to compare the predic-
tions of this theory with experimental results obtained
in Gao 47lno 53AS/Alp 4sIno szAs multiple quantum wells

(b E, 51Q meV).
The issue of sum rules for the integrated intersubband

absorption will also be addressed. Sum rules for the in-
tegrated intraband absorption have a long history. Som-
merfeld and Bethe~ first pointed out that the sum of
the oscillator strengths for optical transitions inside the
conduction band of a metal (the Drude absorption) is
simply given by mo/m', where rn' is the efFective mass
of the conduction band. It was later recognized by Lax
that the same sum rule also applies to transitions be-
tween shallow-impurity states in semiconductors. Here
we generalize the intraband sum rule to include the ef-
fects of nonparabolicity and we report its experimental
veriGcation in semiconductors. We also observe, as ex-
pected, the invariance of the sum rule upon introduction
of an external electric Geld.

The work is organized as follows. In Sec. II we show
how reliable schemes for calculating energy levels can
be constructed starting &om the well-known four-band
Kane model. These schemes allow in a natural way the
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presence of nonparabolicity effects. In Sec. III we de-

velop, within these models, a theory for the intersubband
optical transitions which overcomes the inconsistencies of
the standard theory in the nonparabolic case. In Sec. IV
we derive a sum rule for the integrated value of the ab-
sorption coefBcient. Experimental con6rmations of these
predictions are presented in detail in Sec. V.

II. ENERGY LEVELS

We start by considering the envelope-function Hamil-
tonian in the Kane approximation. The in-plane mo-
mentum is assumed to vanish. As is well known, in this
case the heavy-hole state is decoupled from the original
4 x 4 Hamiltonian (8 x 8 reduced by spin degeneracy),
and we are left with the following 3 x 3 Hamiltonian:

~J. Eih(z)
PCV pT7L Q

Z-p )
mo z

E, (z) )
acting on the three-dimensional vector of envelope func-
tions Q = (P„Pu„P, ), where c, lh, and so label
conduction, light-hole, and split-off position-dependent
band edges, respectively. The momentum matrix ele-
ment p, between bulk Bloch states can be also writ-
ten as p,„=i gmoE~/2, where E„ is the Kane energy

( 20 eV in III-V semiconductors). Notice that we
are neglecting the diagonal "free-electron" term pz/2mo,
which can be shown to contribute only with terms of or-
der (E, —Eih, )/Ez « 1. If we are only interested in
the energy levels located above the edge of the conduc-
tion band, the problem can be solved using the second
and third rows of (1) to express the equation in the first
row as

(2)

with the energy- and position-dependent effective mass

1

m(E, z)

1 2 E~ 1 Ep+-
mp 3 E —E]h(z) 3 E —E (z)

The solutions of the difFerential equation (2) give the con-
duction component P, and the energy of the stationary
states. We must recall, however, that the total station-
ary wave function is given by the three components P,
Pih, and P, , weighted with their corresponding Bloch
functions, so that the only knowledge of the conduction
component is insufEcient for the complete physical de-
scription of the stationary state. Moreover, while the to-
tal Hamiltonian operator (1) is Hermitian, its restriction
(2) to the conduction component is not Hermitian due
to the energy dependence of the mass. Therefore Eq.
(2) cannot be assumed, alone, as a Schrodinger equation
of the system. For example, Eq. (2) does not guarantee
either completeness or orthogonality of its eigenfunction
set. '0

Nonparabolicity effects have been also introduced
through a I%. dependence of the electron Hamiltonian
(and a constant effective mass), with appropriate
boundary conditions for the wave functions. The con-
troversy on the equivalence of the two approaches has
been 6nally resolved and tested numerically with a
transfer-matrix method.

As far as electron states are considered [we define elec-
tron states as all those states whose energy E exceeds the
minimum of the conduction-band edge E,(z)], the three-
band model can be further simplified through a unitary
transformation which allows one to replace light-hole and
split-ofF bands with an "effective" valence band v. As
shown in the Appendix, the resulting 2 x 2 Hamiltonian
acting on the two-component wave function (P, P ) is
given by

(4)

where E„= (2E~h + E»)/3. Electron energies and wave
functions will difFer from those obtained using (1) by
terms of order (6/~E, —E„~)2, with 6 = ~2(Eih —E, )/3.
For typical III-V semiconductors this factor is quite
small; in GaInAs, for example, we have (b, /~E, —E„~)z
0.04.is We stress, however, that this efFective band is a
pure formal artifact which cannot be used to describe,
for example, the hole states of the system.

Similarly to what has been done in the 3 x 3 case, we

obtain from (4) the differential equation (2), where now
the energy-dependent effective mass is simply given by

E —E„(z)
m(E, z) = mp

While a two-band model simply obtained neglecting
the split-off componentis has been shown to be too
crude an approximation, i7 the improvement obtained by
this effective valence-baud model is remarkable. In the
empirical approach of Ref. 9, the parameters E, —E„
and E~ are determined from measured values of m* =
m(E = E,) of the constituent materials and from the
knowledge of their nonparabolicity coefficient, defined as

= 2m'~E, E„~/5 . Moreov—er, since in the envelope-
function approximation the value of E„is taken to be the
same in the well and and in the barrier, 2O only the knowl-

edge of m' is required for the barrier material. Equiva-
lently, one could choose, instead of p, the measured value
of ~E —E„~, and determine E~ through the knowledge
of m'. Although the two methods yield slightly different
values of E and E„, they are both correct within the
two-band approximation, provided the mutual relation-
ships pm'[E, —E„[= 5 /2 and m* = E~/~E, —E„j are
maintained.

In the specific case of our GaInAs/A1InAs quantum
wells, calculations have been performed following Nel-
son et a/. , i.e., using m' and p as input parameters.
For the GalnAs wells their values are m' = 0.043mo,
and p = 1.13 x 10 cm; for the AlInAs barriers
m* = 0.072mo. These parameters give a Kane energy
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E„=18.3 eV and an e6ective energy gap IE, —E„I =
0279 eV, which are in fair agreement with the tabulated
values E„=21.9 eV and IE, —E„I = 0.93 eV [we recall
that E„=(2E)h+E, )/3]. Vice versa, the use of the tab-
ulated E„and IE, —E

I
as input parameters would yield

the same value for m' but a slightly smaller value of the
nonparabolicity coefficient, p = 0.95 x 10 cm2. The
reason for the choice of the method of Nelson et a/. is
that the experimental values of m' and p are in principle
determined by the whole band structure, and they could
therefore introduce phenoinenologically the effects of re-
mote bands in the Kane formulation. Moreover, equal
masses and slightly di8'erent nonparabolicity coefficients
do not alter qualitatively the calculated energies. Finally,
the conduction-band ofFset has been fixed at 0.51 eV.

III. OPTICAL TRANSITIONS

Optical transitions between stationary states of a
system are commonly described in terms of oscillator
strengths f, defined as

g' EO

where g( ) and @(*) are stationary states and P is the
momentum operator. In the matrix notation adopted in
the preceding section, the momentum operator p corre-
sponding to the Kane Hamiltonian (1) is given bys

0

are ill-defined. Second, in the one-dimensional subspace
of the conduction component, any expression of the type
[H, z] = ip, /m [which is required to express (6) in terms
of dipole moments] is meaningless due to the energy de-
pendence of m. Therefore, nonparabolicity corrections to
the oscillator strengths cannot formally be accounted for
using dipole moment matrix elements between conduc-
tion components. As a matter of fact, however, empiri-
cal procedures based on the orthogonalization of excited
states provide results which are comparable to the correct
ones within experimental accuracy.

The correct procedure for calculating oscillator
strengths must be derived from their exact definition to
be free of inconsistencies. In principle, one should solve
Eq. (2), derive light-hole and split-ofF components mak-
ing use of (1), and evaluate oscillator strengths with the
use of (7). In practice, one can show, after some alge-
bra, that the momentum matrix element in (6) is simply
related to the conduction components of the total wave
function as

('z 0 0)
Z= Oz0

(0 0 «)
(9)

(y(o) IpIy(')) y(o) p
0 + mo

& y(*)

(8)
with m(E) given by (3). An alternative form for the os-
cillator strength expressed in terms of appropriate dipole-
moments can also be derived starting from (6). In fact,
if one defines a dipole-moment matrix as

0 j
(7) it is straightforward to show that Z satisfies the well-

known commutation relation

In order to be consistent with Hamiltonian (1), where the
free-electron term was neglected, we have dropped the
diagonal p, term in the momentum matrix. Although
many attempts to deal with the nonparabolicity problem
made use of Eq. (2) to correctly determine energy eigen-
values, the relevance of the valence components in the
evaluation of oscillator strengths has never been stressed,
except in the work by Leavitt, where the problem is
correctly examined, although in an empirical two-band
model. In the following we will extend his results to the
full three-band Kane model. In particular, the standard
use of dipole matrix elements (z) between the solutions
of (2) (our conduction components) is not justified for
at least two reasons. First, conduction components be-
longing to different stationary states are not orthogonal
functions, so that dipole matrix elements between them

I

P = „'['R,Z] . (10)

Notice that, unlike the single matrix element (P, I«IP, ),
Z is not ill-defined, due to the orthogonality of the total
wave function. Inserting (10) into (6), we obtain

, (E' —Eo) IH'"'Izl&")
I

.

Although the dipole-moment expectation value in (11)
can be useful for making comparisons with experimental
results, it is worth stressing that expression (11) may
not be defined in infinite systems. Moreover, expression
(8) only requires the knowledge of the solutions of (2),
and not of the full wave function, as in (11). In using
(8), however, one must recall that (]), is a solution of (2)
normalized so that

(0'cI4'c) + (4')hI4')h) + (WsoI4'so) —((t' I1 +c3Pz [@( ) @ ( )]2pz + 3pz [@('i) Q ( )]Zpzl4'c) (12)

It is straightforward to check that in the limit of
IE, —E)h soI » E —E, the standard efFective-mass treat-
ment of the intersubband transitions is recovered. We
first notice that in this limit m(E;, z) m(EO, «)

I

m'(z). We also observe that the additional expectation
values in (12) vanish, so that (P,IP,) = 1. We then write
down explicitly the oscillator strength (6) using (8) and
we obtain, as expected,
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mol(4"I p.m'(z) '+m*(z) 'p. ] I4'")I'
2

or, in terms of dipole moments, as

,' (E' —E.) I (O'."I 14'.")I'.

The scaled oscillator strength f' = (m*/mo) f is also
commonly defined in the literature in connection with
the sum rule which will be discussed in the following sec-
tions. It must be observed, however, that the dependence
of m' on the position does not allow one to extract m'
out of the expectation value in (13), nor to multiply it
as an external factor, unless the same effective mass is
chosen for different materials.

We now turn our attention to the two-band model and
we examine how optical transitions can be described in
this model. The unitary transformation adopted in the
preceding section to simplify the three-band model gives
for the momentum matrix

25
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FIG. 1. Oscillator strength of the 0 ~ 1 transition for a
GaInAs/AlInAs single quantum well of variable width, as a
function of the ground-state energy, calculated using Eq. (6)
(solid line), and using the standard dipole-moment technique
(dashed line).

as shown in the Appendix.
It is straightforward to show that the momentum ma-

trix elements in the two-band model agree with expres-
sion (8), provided the form (5) is chosen for the effective
mass, as shown also by Leavitt. ro Again, the conduction
component must be normalized in such a way that

this empirical procedure has always shown good agree-
ment with the experimental data, we may argue that the
appropriate use of standard dipole moments still provides
acceptable results.

IV. f-SUM RULE

with

1 2

2m(E(*'), z) [E(') —E„(z)]
E(*) E.(z)
E(') —E„(z)

Notice that the expectation value of T~'~ is proportional
to the kinetic energy of the considered state, and is there-
fore a positive quantity.

In Fig. 1 we show the theoretical results obtained for
the 0 ~ 1 transition in an A1InAs/GaInAs single quan-
tum well of variable width, expressed as a function of
the ground-state energy. The oscillator strengths calcu-
lated with our procedure (solid line) are compared with
those obtained &om the standard dipole-moment tech-
nique (dotted line). Although the dipole moment is in
general ill-defined due to nonorthogonality, in symmetric
structures the orthogonality of diferent wave functions is
restored by parity. As can be seen, the standard dipole
procedure typically overestimates the exact result only by
about 5—10%%uo. A systematic reduction of the observed
oscillator strengths with respect to the calculated ones
has indeed been reported in many experimental works.
In asymmetric structures, the unphysical dependence of
the dipole matrix elements on the choice of the origin is
commonly overcome by imposing the excited-state wave
functions to be orthogonal to the ground state. Since

While it has been known since the dawn of quantum
mechanics that the total sum of the oscillator strengths is
unity22 regardless of the details of the system, the prob-
lem of evaluating partial sums of oscillator strengths has
always attracted considerable interest, 2 due to the lim-
ited portion of the spectrum accessible to stand. ard spec-
troscopic techniques. As far as metals are concerned,
for example, a clear physical distinction can be made
between transitions involving free and bound electrons,
the latter requiring much larger photon energies than the
former. The mo/m' sum rule found by Sommerfeld and
Bethe for intraband transitions in metals was then ex-
tended by Lax 2 to shallow impurities states in semicon-
ductors, where the ratio mo/m* typically exceeds unity
by more than one order of magnitude. Extensions of
the Lax sum rule have been recently reported by Peeters
et al. in the case of superlattices, and by Dave and
Taylor in the case of a position-dependent effective
mass.

Both the Sommerfeld-Bethe and the Lax results rely
on Bloch's idea that electrons located at the extrema of
a band respond to large-scale perturbations as particles
with a scaled effective mass given by the curvature of the
corresponding band extremum. As soon as the parabolic-
band picture of the electron dynamics fails, as in our
case, the previously established intraband sum rules lose
their validity. In this section we are going to present a
new sum rule for the oscillator strengths of intrahand
transitions in semiconductors which includes the e8'ects
of hand nonparabolicity.
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We start by defining the quantity S as

S=) fo;,

where fo; has been defined in (6) and i runs over all eigen-
states of the Hamiltonian (1) or (4). The quantity S can
be simply evaluated using the same procedure adopted
for the evaluation of the f-sum rule, 22 namely,

(y{o)lply{i))(@{i)lply{o))—
mo ) E{;) E{o)

simplicity, @re adopt here the e8'ective two-band model.
We also make the simplifying assuinption that conduc-
tion and valence bands display a "specular" band align-
ment, i.e., that they are just mirror images with respect
to the center of the gap. This assumption is not exact
in general, since it depends on the specific choice of the
conduction-band oHsets, but yields, as we will see, to
a very simple expression for S . This expression will be
anally compared with the exact sum of the intraband
oscillator strengths to establish its degree of accuracy.

The sum rule for the allowed transitions can be written,
using the total sum rule as

(19)
(21)

) fo;+
i allowed

) fo, ——S +Sf=0,
i forbidden

(20)

since [Z, P] = 0, as can be obtained from their defini-
tions. The same conclusions can be reached in the two-
band model, provided the two-dimensional analog of (9)
is considered.

We must pay attention to the, fact that we have
summed over all the eigenstates of the system, i.e., also
over valence states (which, in this context, can be de-
fined as states with energy E & E„). In spite of the
fact that transitions to valence states are essential to for-
mally obtain the result in (19), as a matter of fact all the
valence states are filled, so that transitions to them are
not allowed by the Pauli exclusion principle. As a conse-
quence, only those states which lie higher in energy from
the ground state go can be experimentally observed. By
splitting the sum into allowed (intraband) and forbidden
(interband) terms as follows:

where v runs over all valence states. A specular band
alignment for conduction and valence bands implies that
once the conduction states g{'l are obtained, the valence
states Q{"I can be simply derived exchanging the two
components of the conduction state as follows:

g{e) = (p{v) p{e)) —(p{c) p{c))

Using (15) and (22) we obtain

(@{o}lPly{)) b p (P{o)ly{o)) (y{o)ly{o))

(23)

where the Kronecker b arises Rom neglecting nonorthog-
onality between conduction components (calculated over-
laps never exceed 5%%uo in our systems). The sum over v in
Eq. (21) is therefore restricted to the single term

we immediately argue that the sum over the forbidden
interband transitions is given by the opposite of the sum
over the observed intraband transitions. Since the os-
cillator strengths to valence states are negative [due to
the energy denominator in (6)], the sum over the allowed
transitions is greater than zero, as expected. This en-
hancement effect due to the Pauli principle is also well
known to occur, for example, in alkali metals, although
on a smaller scale. In other words, forbidden interband
transitions can be viewed, within this framework, as the
physical origin of the strong mo/m' enhancement of
intraband transitions.

Incidentally, since the Hamiltonian (4) is formally
equivalent to the Dirac relativistic Hamiltonian for the
electron (providing that p,„jmo -+ c and m' + 2mo),
our sum rule (19) coincides with the results of Levinger
et a/. , who obtained a vanishing sum rule for the Dirac
Harniltonian on the basis of its linear dependence on
the momentuln. In other words, the weH-known total
f-sum rule of linear optics can be seen to arise, as in
our case, from the contribution due to forbidden transi-
tions to filled electron states with negative energy (empty
positrons) .

Using Eq. (20), we now give an estimate of the sum rule
S for intraband transitions in the general case where
nonparabolicity effects are not negligible. For sake of

2 I&-I' («"'I&'") —(&'"l0'")
E(o} E(o,~)fAo

E —E ' l = Inlll(E{ l —E,AE )

where the band-edge energies E and E refer to the well
material and AE„= 20 meV in our case. Notice that
this value of the band offset refers to the band alignment
of the effective valence banco, and bears no relationship
with the real valence-band onset. Since conduction and
valence components of the conduction ground state can
be related, using (4), as

a(o) ~ " ~(o)
0~ @ +~~c

V

we also have

(26)

where E{o'"& is the energy of the valence ground state. In
the case of specular alignment E~ ' & would just be given
by E„—(E{ l —E,). However, as a crude attempt to take
into account the actual nonspecular alignment (valence-
band offsets are typically smaller than conduction-band
offsets in III-V semiconductors) we force the valence-
ground-state confinement energy not to exceed the value
of the valence-band oHset AE, i.e., we set
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further confirms the expectation that the integrated ab-
sorption only depends on the properties of the ground
state.

While the first factor in (27) decreases linearly with the
inverse of the ground-state energy, the dependence of the
kinetic factor on the considered quantum well structure
is less evident. In order to clarify to which extent the
kinetic factor can vary in different structures, we have
reported in Fig. 3 the dependence of the sum rule on
the ground-state energy for three different structures,
namely, a single, a double, and a triple quantum well.
For the last three structures the ground-state energy was
changed only by varying the width of the thickest well.
The parameters of these structures are reported in the
captions of Figs. 4 and 5. The choice of the ground-state
energy as the independent variable implies that any dif-
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FIG. 5. Measured absorbance, at 10 K, and band diagram
of bound-to-bound transitions in asymmetric coupled quan-
tum well structures. (a) Two-coupled well; sample parame-
ters: thick well 59 A, coupling barrier 13 A. , thin well 24 L,
sheet density p, = 1.2x10 cm, number of periods N = 20,
number of passes n~ = 8. (b) Three-coupled well; sample pa-
rameters: well widths, looking at the inset from left to right,
46 4, 20 4, 19 A., coupling barriers 10 A, p, = 3.2 x 10
cm, N = 40, n„= 8.

ference in the results of Fig. 3 must be attributed to
the kinetic factor. In particular, it turns out that this
factor is more efFective (stronger reduction) in a single-
quantum-well structure and that its contribution may
even increase for increasing energies, as in the case of
the triple quantum well. This is clearly at variance with
the naive expectation that the kinetic energy increases
for increasing total con6nement energy.

V. EXPERIMENTAL RESULTS

ln(10) logio(T~~/T&)w =
'II;„t (28)

where L;„t is the total interaction length in the quantum
wells de6ned-as-

The most natural and direct way to measure the os-
cillator strength of optical transitions is by means of ab-
sorption experiments. o In the first part of this section we
will show how the oscillator strength is related to the area
under the absorption peak; we will then compare the ex-
perimental results with the theory for various structures,
trying to encompass the most signi6cant cases concerning
intersubband transitions in bounded systems. At the end
we will present data, associated with an appropriately de-
signed heterostructure, showing unmistakable evidence of
a sum rule which is in excellent agreement with our the-
oretical calculations.

The absorption spectra were measured with a Nico-
let 800 Fourier-transform infrared (FTIR) spectrometer.
The samples were mounted in a liquid-helium fiow cryo-
stat, where the temperature can be varied between 5 and
300 K. Only the component normal to the layers of the
electric field of the incident wave significantly contributes
to intersubband transitions. Thus in order to increase
the net absorption we fabricate a multipass waveguide
by cleaving a bar and polishing both cleaved ends at a
45 angle. One of these edges was then illuminated at
normal incidence. To obtain a very fiat base line, our
spectra were taken following a three-step procedure. (1)
We measure the ratio of the absorbance between the po-
larization in the plane of the layers and the polarization
normal to the plane of the layers, logio(T~~/T~), to re-
move instrumental, substrate, and free carrier contribu-
tions to the absorption; (2) we repeat the same measure-
ment without the sample in the cryostat to determine
the spectral dependence of logio(T~~/T~) due to the many
optical components (mirrors, windows, beam splitters) in
the FTIR, which may have different dispersion for S or
P polarization; (3) we subtract the spectrum of point (2)
from the spectrum of point (1) minimizing then all the
contributions which do not come &om the quantum wells.
Special care has to be taken also to avoid any ellipticity
of the light typically introduced by the ofF-axes parabola
mirrors. To reduce this effect we use two polarizers, one
before and one after the sample. It is easy to show that
the absorption coefficient of the quantum wells is related
to the absorbance by
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L~XnI
int cos 0

where I~ is the total quantum well thickness plus that of
the thin coupling barriers, N is the number of periods, n„
the number of passes, and 0 the angle of incidence with
respect to the normal to the plane of the layers (45 in our
case). The area under the absorption peak corresponding
to the 0 ~ j intersubband transition multiplied by ln(10)
is the integrated absorption strength I~. The latter is

given, in eV units, by

vrhp, Nn„csin 8
A— oj

2moeoen cos0 (30)

where p, is the sheet electron density in the wells, n =
3.34 is the re&active index, mo is the electron mass, and
c is the velocity of light in a vacuum. ' Thus &om the
integrated absorption strength and the knowledge of the
other quantities in Eq. (30), one can deduce the oscillator
strength fo' of the transition.

Our AHnAs/GalnAs structures, grown lattice matched
to a semi-insulating (100)InP substrate, consist of several
periods (from 20 to 40). In order to avoid any superlat tice
eKect each period is separated from the others by thick
undoped A1InAs barriers, typically 200 A. All the struc-
tures are doped n-type with silicon in the wells; in the
case of multiple quantum wells only the thickest well of
the period is doped. The doping concentration, varying
between 2 x 10 and 1 x 10' cm, is always such that
the Fermi energy Ey lies well below any excited level; all
the observable transitions at low temperature are then
the ones from ground to excited states. All structures
are provided with n+ 4000 A. cladding layers which can
be used as contacts if an electric Geld has to be applied.
More details on the individual structures are given in the
Ggure captions.

Figures 4—6 show the measured absorbance
(= —log[transmission]) spectra, at cryogenic tempera-
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FIG. 6. Measured absorbance, at 10 K, and band diagram
of bound-to-continuum transitions in a potential well; sample
parameters: well width 30 A, sheet density p, = 3 x 10 '
cm, number of periods N = 40, number of passes np: 6.

ture (T = 5 K), for three diferent classes of structures.
Figures 4(a) and 4(b) display spectra of transitions for
symmetric potential wells. Figure 4(a) is the spectrum
of a single quantum well where the transition arises be-
tween bound states below the barrier height. In Fig.
4(b) the confinement of the excited state is achieved us-

ing two high reBectivity quarter-wave stacks for the de
Broglie electron wavelength corresponding to the energy
of the first transmission resonance above the quantum
well. The physical mechanism providing the high re-
flectivity necessary for the localization of the wave func-
tions is constructive interference of the waves partially
reHected by the interfaces of the stacks. ss s4 Figures 5(a)
and 5(b) exhibit a diferent class of transitions. In this
case the structures are asymmetric and the separation
between the centers of charge of the wave functions, for
some transitions, can be comparable to the extension of
the wave function itself (40—50 A.). One can easily see,
looking, for instance, at the band diagram of Fig. 5(a),
that the first and third states are essentially confined
by the thick well while the second is approximately con-
fined by the thin well. Similarly for the structure of Fig.
5(b), the first and the fourth states belong to the largest
well while the second and third are localized in the thin-
ner wells. For this potential, all transitions are allowed
since the parity of the wave functions is broken by the
asymmetry. Thanks to this property, these asymmetric
coupled wells have been recently studied as nonlinear op-
tical materials in the mid-infrared. " Figure 6 shows
the absorption spectrum for bound-to-continuum tran-
sitions. In this case the well width has been reduced in
order to obtain onIy one bound state in the quantum well.
The transitions occur between the confined state and the
extended states in the continuum. Here the shape of the
peak is primarily controlled by (1) the value of the transi-
tion matrix elements between the ground and the scatter-
ing states and (2) the density of states in the continuum
part of the spectrum. The broadening mechanism (impu-
rity scattering, interface roughness, etc. ) are still present
but they are efFecting the spectrum solely by reducing
the sharpness of some features such as, for instance, the
cutofF at energy hv = AE, —Eq where the peak begins
to rise.

In Sec. III we derived an expression for the momentum
matrix element (P) oz ——(QI l ~P~QI'l) [Eq. (8)] associated
with a single transition from the ground state to the jth
state. It is important to remark that, even though we still
are in a three-band model, the result is only dependent
on the conduction component $„which comes from the
solution of the difFerential equation (2) together with the
correct normalization given by (12). This is a salient
and very operative result which allows us to calculate the
oscillator strength in a three-band model only in terms
of the conduction component. Equation (8) also clarifies
the dependence of the intersubband transitions on the
nonparabohc e8'ective mass. This gets in the formula
at the denominator, as reduced mass of the ground and
final state, appropriately weighted by the wave functions
in the wells and in the barriers.

As discussed in the previous sections, the standard
procedure to evaluate matrix elements for intersubband



50 NONPARABOLICITY AND A SUM RULE ASSOCIATED WITH. . . 8671

transitions in the presence of nonparabolicity is based on
an ill-defined dipole operator. We have instead shown

that the correct expression for the dipole operator in the
presence of nonparabolicity must account for the efFects
due to the nonvanishing valence components of the total
wave function. In spite of the fact that in our formalism
the matrix elements are more easily computed using the
momentary operator, due to the widespread use of the
dipole-matrix elements in the literature, we prefer to re-

port, beside the oscillator strengths, the dipole moment

(Z)o~ of a given transition, as deduced from the commu-
tation relation (10). It will then be easier to compare
these results with previous reports. The experimental
and theoretical values of ~(Z)oi~ are quoted in Table I.

We are now in the position to comment about the total
oscillator strength related to these structures. First it is
important to notice that for intersubband transitions the
oscillator strength decays very rapidly with increasing
energy (e.g. fo; Eo, for a square well). For this reason
the measurable absorption peaks, where 95% or more of
the oscillator strength is contained, are all concentrated
in a short spectral range, at most of the order of the band
discontinuity between the two components ( 500 meV
in our material).

Our data cover the entire spectral range, measuring all
the relevant transitions from the ground to the accessible
states. This is a remarkable difFerence between these data
and those for interband transitions, where data refer to
a specific subset of the spectriim and the sum rules
are verified only as normalized value to the examined
range. To be more accurate we have to make clear that,
for those structures where the transitions occur among
bound states (Figs. 4 and 5), in fact a small portion of
the oscillator strength is involved in transitions to the
continuum. However, this quantity never exceeds 2% of
the total oscillator strength and, being below the sen-

sitivity of the measurement, is within our experimental
error.

Obviously the total oscillator strength is proportional
to the sum of all the areas under the absorption peaks
of the spectrum. In the case of bound transitions we es-
timated the areas fitting the peaks with Lorentzian line

shapes, while for bound-to-continuum transitions we sim-

ply took the value of the integral under the curve directly
f'rom the data, without any particular fitting procedure
In Table I we give a comparison between experimental
results and the results of our model using formulas (6),
(9), and (27), respectively, for the oscillator strength, the

dipole matrix element, and the sum rule. As one can
easily see from Eq. (27), the sum rule for intersubband
transitions is not a constant, depending upon the prop-
erties of the conduction-band component of the ground
state. It is clearly shown in Fig. 3 that this dependence
is also a function of the kinetic energy of the ground
state. So given two different potentials, exhibiting com-
pletely different absorption spectra, they will have the
same value of the total oscillator strength only if their
ground states are identical both in energy and shape.
This condition, which is in principle impossible to satisfy
using two difFerent structures, is indeed realizable apply-
ing an electric field to a suitably designed heterostructure
where varying the field we can observe dramatic changes
of the absorption spectra due to modifications of the ex-
cited states. However, since the ground state is not sig-
nificantly altered, the sum rule ensures the conservation
of the integrated absorption in the presence of the field.
This result was experimentally demonstrated using an
A1InAs/GaInAs heterostructure like the ones described
above (more details about this structure are given in the
caption of Fig. 7). We measured electronic intersubband
transitions in thin quantum wells sandwiched between a
A/4 refiector barrier and a conventional rectangular bar-
rier. Quantum confinement of the first resonance above
the well is obtained in the presence of a strong electric
field of the appropriate polarity. This produces a dra-
matic narrowing of the spectrum; in the opposite bias
polarity, the latter is instead strongly broadened.

Figure 7(a) shows the conduction-band diagram of a
portion of this structure at zero bias. Indicated are the
energy levels and the modulus squared of the wave func-

tions. From the shape and spatial extension of the ~g~
's

one sees that the first continuum resonances shown in

Fig. 7(a) represent, from a physical point of view, quasi-
bound states at energies above the barrier of the doped
well plus thick barrier combined. They are spatially con-
fined to this region by the AlInAs/GaInAs ultrathin lay-
ers which act essentially as high refiectivity (& 0.90)
quarter-wave electron stacks in the energy range from
0.52 eV (top of the barrier) to 0.64 eV measured from
the bottom of the well. These multilayer barriers were

designed in order to be high refIectivity electron mirrors
also in the presence of electric fields (0 ( Il ( 4.8 x 104

V/cin). This ensures that the first continuum resonance
does not appreciably penetrate in the region to the left
of the thick well in Fig. 4, when a bias is applied.

At zero bias the absorption spectrum includes mainly

TABLE I. Experimental and theoretical values of the total oscillator strength ftot, of sum rule

(SR), Eq. (27), and of the oscillator strength foi of the strongest transition, in five difFerent quantum
well structures; the parameters of the five structures are given in the text or in the corresponding
figure captions.

Single QW
Double QW
Triple QW
Bragg QW
QWIP

~tot
15.8
15.4
14.1

11.3

f(th)
tot

14.8
16.1
15.9
13.3
12.3

SR
13.8
15.3
15.0
12.0
11.5

&(exp)
Iox
15.8
10.7
10.5
9.6

f(th)
01

14.8
10.8
10.3
9.7

(z).':"(A)
15.3
16.4
18.6
10.1

(z),","' (A)
14.8
16.5
18.4
10.2
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the transitions from the ground state to the Grst three
resonances in the continuum (states 3, 4, and 5 in our
notation, state 5 is not indicated in Fig. 7). Because of
the close spacings of the latter the spectrum is broad-
ened into a band. As the Geld is raised, for positive po-
larity [Fig. 7(b)] the localization of the first resonance
above the center well is increased. This has the eKect
of enhancing the matrix element of the 0 ~ 3 transi-
tion and hence the corresponding oscillator strength fos
and absorption coefficient. An opposite effect occurs for
the second continuum resonance, which becomes increas-
ingly localized in the barrier, thus reducing the spatial

E2
E)

E4

F3

overlap with the ground state and therefore also the os-
cillator strength. This is similar to the behavior of the
ground and first excited states of a rectangular well in an
electric field. The centers of charge distributions for the
two states are shifted in opposite directions by the elec-
tric field. In summary, an increase of the electric field in
the positive polarity should lead to greatly enhanced ab-
sorption for the 0 —+ 3 transition and strongly decreased
absorption for the 0 ~ 4 and 0 ~ 5 transitions, produc-
ing an overall narrowing of the spectrum. In the opposite
bias polarity instead there is negligible overlap between
the resonances, now localized in the A1InAs barrier, and
the ground state. The absorption spectrum is then con-
trolled by transitions to extended states at energies above
the barrier and is therefore expected to be broad.

The absorption spectra of Fig. 8, taken at different
electric fields, confirm the above physical picture. At
negative bias the spectrum is very broad, while for posi-
tive bias it narrows with increasing field. A more detailed
study of the spectra is reported in Fig. 9, where the ar-
eas under the absorption curves is plotted versus applied
field. From these data one acknowledges the indepen-
dence of the integrated absorption on the electric field
within the experimental error (8'). There are also other
transitions: those &om the ground state of the thick well
to the confined states of the A/4 stack, i.e., the energy
levels Ei and Ez [Figs. 7(a) and 7(b)], which are not
included in the measured integrated absorption strength
obtained &om the area under the peaks of Fig. 8. These
transitions have a small oscillator strength ( 6% on
each) because of their diagonal nature in real space and
are not observed in our spectra. However, the contribu-
tion of these transitions to the total integrated absorption

Eg
0.8 i i i &

[
i i i &

]
t ) i i }

Ep 0.6—

0.4—
U)0

FIG. 7. (a) Energy band diagram of the structure show-

ing the calculated energy levels and the modulus squared of
some of the corresponding wave functions (Eo ——204 meV,
E~ ——310 meV, E2 ——351 meV, E3 ——511 meV, E4 ——520
meV). The thickness of the widest GaIuAs well is 34 A. The
A/4 stack on the left of this well comprises two 17 L thick
GaInAs wells snd two AlInAs barriers, 36 A snd 42 A, respec-
tively. Each period is repeated 40 times (number of periods
N = 40). The thickness of the barrier on the right of the 34
A well is 270 A. (b) Energy band diagram of the structure in
s strong electric field (4.8 x 10 V/cm, positive bias polarity).
Indicated are the calculated energy levels and the modulus
squared of some of the corresponding wave functions. Note
that the first continuum resonance (Ez) has been strongly lo-

calized above the well while the second one (E4) has been
mostly confined to the barrier.
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FIC. 8. Absorption spectra at 10 K taken for various bias
conditions: (a) 4.8 x 10 V/cm; (b) 1.2 x 10 V/cm; (c)
—3.6 x 10 V/cm. The positions of the peak, for positive
polarity, are in good agreement with the calculated energy dif-

ferences (Eq Eo ——316 meV st 1.2 x—10 V/cm; E3—Eo ——332
meV st 4.8 x 10 V/cm). In the opposite polarity the absorp-
tion is peaked near the onset of the continuum (b E —Eo)
and is broadened towards lower energies by tunneling effects.
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FIG. 9. Measured integrated absorption as a function of
the electric Seld (dots). On the right y axis the value of the
areas are reported, as measured from the spectra, in units
of (meVxabsorbance). On the left y axis the areas are con-
verted in oscillator strength following Eq. (30); on the axis
it is possible to compare the data with the results predicted
by the sum rule. The dashed line is the sum rule calculated
from Eq. (27); the solid line represents the sum rule minus the
amount of oscillator strength involved in the transition kom
the ground state to the energy levels Ez and Ez in Fig. 7.

VI. CONCLUSIONS

We have derived a compact formula for the sum of the
oscillator strengths for intersubband transitions. This
formula, which is an appropriate average performed on
the ground state, takes into account the eH'ects of non-
parabolicity and diferent effective masses in the well and
barrier materials. The analysis, based on the envelope-
function formalism in the Kane approximation, has been
supported by experimental results in a number of difFer-

ently shaped quantum well structures. The main conse-
quence of nonparabolicity has been shown to be an over-
all reduction of the oscillator strengths which can be half
of the value mo/m' predicted in the parabolic case. The
dependence of the sum rule on the specific quantum well

shape has been analyzed in few illustrative cases, and
one of its consequences, namely the invariance of the in-
tegrated absorption strength upon application of a weak
external electric field, has been verified experimentally.
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APPENDIX

is not negligible. In Fig. 9 we display the total oscilla-
tor strength (dashed line), calculated using the sum rule

(27). As we were expecting this is almost a constant as
a function of the electric field, varying by 3'%%uo within a
bias range of 100 kV/cm. Nevertheless, the comparison
with the experiment is not satisfactory. We can attain
better agreement if we subtract from the total oscillator
strength the amount of it "lost" in the diagonal transi-
tions (solid line). Notice that this correction does not
afFect the conservation of the integrated absorption in
the range of the observed transitions. Actually for this
quantity the variation across the range of applied electric
field is even reduced below 1'Fp.

In this structure the electric field significantly modifies
high energy states and almost does not afFect the ground
state. This effect is the opposite of the one we would
expect when an electric field is applied to wide quantum
wells, which basically alters only the states at low energy
closer to the bottom of the well. To understand the pecu-
liar behavior of our structure we have to remember that
the states which are more perturbed by an electric field
are those closer to the band edge. The singular design
of our potential sets the ground state at almost 200 meV
&om the bottom of the well whereas the excited states,
i.e., the continuum resonances, extend mainly above the
thick barrier at a very close energy from the top (Fig. 7).
When an electric field bends the band edge, it immedi-
ately modifies the excited states in the continuum letting
almost unperturbed the states confined in the thin well.

We start by defining the new valence components P„
and P„~ through the unitary transformation

4'ih

4'ih +
(A1)

It is readily seen that the transformed 3 x 3 Hamiltonian
acting on the vector (P„P„,P„~) can be expressed as

'R = —"'"p E (A2)

It can be easily seen from the third row of (A2) that
~

= 4/(E —E„)IP I
& b, /(E —E )IP I. Since the

contribution of P„ to the second row of (A2) is given by
AP„~, we can immediately observe that this contribution
is a factor of b, /(E —E„}(E—E„)—& /(& —& }
smaller than other terms of the same row, where E
is the average of the valence-band energies. The same
conclusion can be reached for the normalization of the
total wave function, where P contributes with a term
which is a factor of (6/(E, —E„)]2smaller than the con-
tribution of P„. For typical III-V semiconductors this
factor is quite small. In GaInAs, for example, we have
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[b,/(E, —E„)j = 0.04. We can thus neglect the pres-
ence of P„and consider the reduced 2 x 2 Hamiltonian
(4) acting on the two-dimensional vector (P„P„).

As for optical transitions, it is readily seen that the
unitary transformation (Al) gives the new momentum
matrix

0 p.„o)
'P= —p 0 0

0 0 0)
Therefore the P„~ component does not contribute to op-
tical transitions.
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