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Using a microscopic local-field formulation, the linear optical absorption of a multiple-quantum-well
(MQW) structure associated with intersubband transitions is investigated. Taking as a starting point a
fundamental self-consistent integral equation for the local field, the p-polarized electric-field distribution
inside each quantum well in the MQW structure is studied. It is demonstrated that the local field is
essentially determined from a set of linear algebraic equations. Within the infinite-barrier approximation
with an effective well width, numerical calculations of the optical absorption spectra are presented for a
GaAs/Al,Ga,_, As multiple quantum well for different parameters such as the two-dimensional (sheet)
electron concentration, the angle of incidence, and the number of wells. The numerical results show that
the local-field effect leads to a notable blueshift of the peak-position energy in the absorption spectra as
the sheet density of the electrons is increased, and that for larger angles of incidence the electromagnetic
interaction among quantum wells gives rise to a significant broadening of the absorption peak when the

number of wells is sufficiently large.

I. INTRODUCTION

It is well known that quantum confinement of carriers
in a semiconductor quantum well leads to the formation
of discrete states in the conduction and valence bands.
An optical intersubband transition within the conduction
band involves the absorption of a photon causing an elec-
tron to be excited from one confined state to a higher
confined state. Such transitions have been investigated
experimentally by using inelastic light scattering tech-
niques! 3 and by a direct measurement of the optical ab-
sorption spectra.*”® A very large dipole oscillator
strength and a narrow linewidth of the resonance peak in
the absorption spectrum of a multiple-quantum-well
(MQW) structure were reported.*”® In addition, one of
the interesting aspects of these intersubband transitions
in systems such as GaAs/Al,Ga,;_,As MQW’s (Refs. 7,
9, and 10) and In, Ga,_, As/Al,Ga,_,As MQW’s (Ref.
11) is the observation of a blueshift of the peak-position
energy in the absorption spectra as the two-dimensional
electron density is increased. Such a blueshift was inter-
preted as being due to the depolarization and band-filling
effects by Ramsteiner et al.!® Pinczuk and co-workers’
suggested that this type of blueshift stems from the direct
and exchange intersubband Coulomb interactions. More
recently, Manasreh et al.” measured the optical absorp-
tion spectra of GaAs/Al, ;Gay ;As MQW samples at the
temperature 7=5 K as a function of the two-dimensional
electron density. A significant blueshift (~24 meV) of
the peak location in the spectra was observed when the
surface density of the electrons was increased from
3.25X10' t0 2.29X 102 cm ™ 2. They claimed that, in or-
der to describe quantitatively the results observed in their
experiment, it is necessary to incorporate many-body
corrections, depolarization, and excitonlike shifts in the
nonparabolic anisotropic envelope-function approxima-
tion calculations.’
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From a theoretical point of view, the resonance
features in the optical excitation spectra (e.g., optical ab-
sorption spectra, Raman scattering spectra, and so on) of
low-dimensional systems such as MQW and superlattice
structures are related to collective excitations of the en-
tire system. In previous treatments of the collective exci-
tations in MQW and superlattice structures, the self-
consistent-field formalism of Ehrenreich and Cohen!? has
usually been used. Based on this linear density response
theory, various collective modes such as quasi-two-
dimensional plasmons, intersubband plasmons, magneto-
plasmons, and phonon-plasmon modes were investigated
theoretically.!*>~!* The intrasubband and intersubband
plasmons have also been detected experimentally by in-
elastic light scattering techniques.! More recently, the
Ehrenreich-Cohen density response theory has also been
used to study the linear electromagnetic response of one-
dimensional quantum wires'® and quantum-dot arrays.!”
It is known, however, that although the exchange-
correlation effects and the image-charge effect due to the
dielectric mismatch can be conveniently incorporated in
the Ehrenreich-Cohen self-consistent-field formalism, in
this theory the electromagnetic interactions of the system
are treated essentially in the electrostatic limit.'® There-
fore retardation effects associated with the electromag-
netic coupling of the system are neglected in the density
response theory. Such effects play an important role in
the analysis of the optical reflection and transmission
spectrum; in particular, of the angular dependencies of
the reflection and transmission coefficients.

In the present paper, using a newly developed micro-
scopic local-field formalism in which the retardation
effects associated with the electromagnetic interaction are
taken into account (for a review of this formalism, the
reader is referred to Ref. 19), we investigate the linear op-
tical absorption of a MQW structure in connection with
intersubband transitions. It is shown that the local-field
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effect in the MQW structure can lead to a notable blue-
shift of the peak location in the optical absorption spec-
tra as the sheet electron density is increased. Also, we
demonstrate that the electromagnetic interaction among
quantum wells in the MQW structure can give rise to a
significant change in the peak location, the linewidth, and
the shape of the absorption peak when the number of
wells is sufficiently large.

The paper is organized as follows. In Sec. II, starting
with a self-consistent integral equation for the local field,
we analyze the p-polarized electric-field distribution
within each quantum well in a MQW structure. It is
demonstrated that the local-field calculation essentially is
to solve a set of linear algebraic equations. By using
infinite-barrier wave functions some analytical results are
obtained for the local-field calculation. In Sec. III, taking
as a numerical example a GaAs/Al Ga;_,As MQW
structure, we calculate the optical absorption spectra for
different parameters such as the sheet electron concentra-
tion, the angle of incidence, and the number of wells in
the MQW structure. A discussion of the local-field effect
on the optical absorption and of the importance of taking
into account the electromagnetic coupling among quan-
tum wells in the MQW structure is given.

II. THEORY

A. General result

Let us consider the case in which a monochromatic (a
cyclic frequency ) p-polarized plane wave is incident at
an (internal) angle 6 on a multiple-quantum-well struc-
ture consisting of N quantum wells embedded in an
infinite medium with the relative dielectric constant
€5(w). Described in a Cartesian xyz coordinate system,
the surface normal of the structure points along the z
axis, and the scattering plane is placed parallel to the xz
plane, as illustrated in Fig. 1. Furthermore, let us assume
that the barrier layer in the MQW structure is so thick
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FIG. 1. Schematic diagram showing the reflection (E®) and
transmission (E7) of a p-polarized incident field (Ey) from a
MQW structure having N wells. The shadowed areas represent
the well layers. The thickness of each well layer is d, and the
spatial period of the structure is A. The Cartesian xyz coordi-
nate system used in describing the MQW system is also indicat-
ed.

that the overlap of the wave function of the electrons be-
longing to different quantum wells can be neglected. Asa
consequence, the electronic properties (wave functions
and eigenenergies) of the MQW structure are determined
essentially from a single quantum well. For simplicity, in
this work we only consider the situation in which each
quantum well in the MQW structure has only two bound
states within the conduction band. Of these one is locat-
ed above and the other below the Fermi level (e) of the
system. Thus, taking advantage of the translational in-
variance of the MQW system parallel to the well (xy
plane), one realizes that the z-dependent local electric
field E"(z) within the nth quantum well is determined
from the following inhomogeneous self-consistent in-
tegral equation:!'*2°

N Ed
E"(2)=Eqy(2)—ipgw 3, ff( Glg,2)F ™z, 2") Bz dz"dz' (1)
m=1 m

where the mark “(m)” under the integral symbol means
that the integrations run over the mth quantum well.
The first term on the right-hand side of Eq. (1), i.e.,

Ey(z)=E(cos6,0, —sinf)e . @)

represents the incident field, where E, is the amplitude of
the incident wave, and ¢, =V €¥(w)(w/cy)*—q? is the
wave-vector projection perpendicular to the surface, g
and ¢, being the parallel component of the wave vector
and the light speed in vacuum, respectively. The tensor
& ™(z',z") appearing in Eq. (1) is the linear nonlocal
conductivity response function of the mth quantum well.
Within the random-phase approximation (RPA) and in
the long-wavelength (q,—0) and low-temperature
(T —0) limits, the linear conductivity response tensor

r

takes a diagonalized form, and the relevant diagonal ele-

ments for a two-level quantum well are given by the fol-

lowing well-known expressions:20 ™22

ie2 (62‘_61)(61:—61)2
o [Hlo+i/T)]?—(6,—¢€,)
x¢(m)(z')¢(m)(zu) , (3)

(m)
xx (

o Z’,Z”):

ie? (e,—€)ep—€)
2rm*o [fHlo+i/T)P—(e,—¢€,)?

XM (z)DM(z) . 4)

0(22")(2’,2”)=

In the equations above, €, and €, denote the eigenenergies
of the two bound states (1 and 2) within the conduction
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band, and 7 is the relaxation time of the electrons associ-
ated with the intersubband transition between these two
states. The charge and effective mass of the electrons are
denoted by —e and m*, respectively. For brevity, we
have also introduced the quantities

¢'M(z)=1(2)P,(2) , (5)

and

'lll d¢1(Z)

'™(z)=,(z)—— —1/12( z (6)

where ¢,(z) and 1,(z) are the corresponding (real) wave
functions of the eigenstates €; and €, of the mth quantum
well. Note that in obtaining Egs. (3) and (4) we have
neglected the conduction-band nonparabolicity effect.

The retarded Green’s function G that enters Eq. (1) is

given in dyadic form by?**
iq lz—2'|
> "Ne— e
G(z,z") ——_—Ziql
X[eye, +O(z—z")e;e; +0(z'—2z)e,e,]
o 2
+1€8(@)] ! [;" ] e,e,8(z'~z), (7)

where e, =(0,1,0),

e =(co/0)(q,,0,—q,)/Ve,
and

Cr=(C0/CO)( —ql,O, —q) )/‘/-G—B
are the relevant unit vectors, ® is the Heaviside unit step
function, and § is the Dirac 8§ function. On the right-
hand side of Eq. (7), the first term [proportional to
expliq, |z—z'])] is the direct propagating part (from z’ to
z) of the electromagnetic propagator, and the second
term [proportional to 6(z'—z)] is the so-called self-field
part of the propagator.?* Therefore one should notice
from Eq. (1) that, although the electronic interaction of
quantum wells is neglected, the electromagnetic interac-
tion among them is included via the propagating part of
the Green’s function.

By inserting into Eq. (1) the explicit expressions for the
conductivity response tensor given in Egs. (3) and (4) one
finds that the local field takes the form

N
E"(z)=Ey(2)+ 3 [a(w)F™(z)T{™
m=1

+b(w)F™(z)T{™] , (8)

and

N
E{"™2)=Ey(2)+ 3 [a(o)F(z)T{™
m=1
+b(0)F™(2)T™] 9

where
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2 (e;—€ ) ep—€)
B0 e B L LA (10)
i [Hlo+i/T)) —(e,—¢€,)

e? (e,— €, €p—¢€;)
blo)=—L2 T (an
2rm* [flo+i/7)]*—(e;—¢€)
F@)= [ Gulzz)$™(z)dz' , (12)
F)(é")(z)=f( )ze(z,z’)q)(’")(z')dz' , (13)
Fim(z)= f( )sz(z,z’)eﬁ"”)(z’)dz’, (14)
FP@=[ G, (zz)0" (2" , as)
r(m)= (m)( 0 E(m) "\dz" 16
p f(m)¢ (z")E,™ (2" )dz (16)
and
rim= [ @'™(z")E™(z")dz" . (17)
(m)

It is evident from Eqgs. (8) and (9) that in order to obtain
the final result for the local-field distribution inside the
quantum wells the so-far-undetermined quantities T'{"
and T{"(n=1,2,...,N) need to be calculated. To do
so, we multiply both sides of Egs. (8) and (9) by ¢'")(z)
and ®™(z), respectively, and integrate the resulting
equations over z across the nth quantum well. It immedi-
ately follows that the 2N unknowns " and T'"” can be
uniquely determined from the following 2N linear inho-
mogeneous algebraic equations:

N
=3 [a(@KEP™TM+b(o)K ™ T ]=S" ,

(18)
N
I\(zn)_ 2 [a(w)Kz(;"""l";"”+b(w)Kz‘,'"”"F‘z”‘)]=SZ"" ,
m=1
(19)
where
K(mm= f( )¢<"’<z>F;;"’(z>dz, (20)
K(mm= f ¢‘"’(z>F;;"’<z)dz, 21)
K(n,m).—.f( <I>("’(z)Fl(x’")(z)dz , 22)
Kimm= f( )Q‘"’(Z)F,‘z'"’(z)dz, (23)
S(n)= (n) E, d , 24
{ fmqs (2)E o (2)dz (24)
and
S = f( )q)‘"’(z)Eo,(z)dz. 25)

When the number of wells is not too large, the algebraic
equations in Egs. (18) and (19) can be solved numerically.
Once the local field inside the quantum wells has been
obtained, the optical reflection, transmission, and absorp-
tion coefficients of the MQW structure can be easily cal-
culated. To this end we first calculate the complex ampli-
tudes of the reflected and transmitted electric fields. By
letting the observation point z be located in space z <0
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one obtains from Eqgs. (8), (9), and (12)—(15) that the am-
plitude of the reflected field is given by

ER(0)=(—1,0,—tand)EX(0) , (26)
where
R — il (m)p(m) (m)p(m)
EXO)= S [a(@)RIT™ +b(w)RI™TI™] 27)
m=1
with
Co iq,z'
R(m)= _J 1% 4(m) d. I, 28
= | g, e, o
2
Co q“ iq, 2’ ,
R(m)= V| 2 1 q,(m) dz’' , 29
x ) Zier(m)e (2")dz 29)

the wave-vector projection parallel to the surface being
q,=[€%)]"*@/cy)sind .

Note that the minus sign appearing in Eq. (26) originates
in our convention of the positive direction of the
electric-field vector in the xyz coordinate system, cf. Fig.
1. This convention has been used in deriving the Green’s
function given in Eq. (7).2*

When the observation point z lies in space
z>(N—1)A+d (cf. Fig. 1), where A and d are the spatial
period and the well width, respectively, we obtain the fol-
lowing results for the amplitude of the transmitted field:

E”(0)=(cos8,0, —sin8)E,+(1,0,—tan8)EJ(0) ,  (30)

As a definition, the Fresnel reflection (r ) and transmxs-
sion (¢,) coefficients of the MQW structure are given by?

r,=—E{0)/(Eqcosh) , (34)
and
t,=1+E(0)/(Eycosb) . 35)

Thus the energy absorption coefficient (absorbance) is
defined as

_1— 2__ 2
A,=1—=|r, 21, (36)

B. Infinite-barrier approximation: Analytical result

As has been discussed in the preceding section, to cal-
culate the energy absorption coefficient of a MQW struc-
ture having N wells one has to solve 2N linear algebraic
equations. This immediately means that one needs to cal-
culate 2N X2N matrix elements (K\»™, K{»m) glmm)
and K™™). Since each element is determined by a dou-
ble integration [cf. Eqs. (20)-(23)], it is apparent that a
purely numerical calculation takes a lot of computer
time. In order to facilitate the calculation, it is desirable
to obtain analytical expressions for these elements. To
this purpose, in the following, we shall adopt the so-
called infinite-barrier approximation with an effective
well width.?® In this approximation, the wave function of
a finite-barrier well having a real well width L, is re-
placed by the infinite-barrier wave function with an

where effective well width d. The effective width is adjusted so
N . .
Ty — (m)yn(m) (m)~(m) that the eigenenergy of the ground state is equal to that
E;(0) m2= . [a() T T+ b)) T T, (B calculated within a finite-barrier model. For a semicon-
ductor quantum well d is usually larger than L, since,
with when the barrier height of the quantum well is finite, the
o wave functions of the electrons can leak into the barrier
Tim= |0 THE gm0 dz (32)  region.
® 21€B By use of the infinite-barrier wave functions?® and by
2 combining Eq. (7) with Egs. (12)-(15) and Eqgs. (20)-(25),
T(m = _ So | 9 e“qiz'q,(m)( 2dz' . (33) we obtain, after some tedious calculations, the following
X o | 2ie Y m analytical results:
J
coqid 2
B [X++21qld(l+e )X-] , n=m
Kinm = 37
x %q d 2 xq 1 Aln—ml
6 [1+Cos(qld)]X ’ n#m >
37 202 i
Y taig,d(1+e X2, n=m
2iePdw?
Kgpm=—Kpm= 2,2 (38)
. 3mcog,49, ig,Aln —m|

7 2 [1+cos(g,d)]X2e
‘o

, h¥m ,
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5w 3miclq? d
3 02 0q2" 5 ql Y+6 (14e"%)x2 n=m
d’w?  2iePq,d%w
Kz(zn »m) = 4 2 (39)
9m'c i -
—?Oq¢[l+cos(qld)]X2_e'qlAl'l ml , n¥m,
ieBw’q d?
SMW=iq dE,cos0(1+e 1 x _ MMV (40)
Sin= —%Eosme( 1+ x_e MMl @1
[
where width d was found to be d =128.5 A, and the eigenenergy
1 1 separation between the two lowest levels was
X,.= > 7 (42)  €,,=€,—€,;=102.7 meV. In the calculation an effective
9’ —(q,d)?  *—(q,d) mass of the electrons of m*=0.0665m, has been used,
and where m, is the mass of the free electrons. Since the fre-
1 9 quency range of interest in the present work is much
= 5+ 5 - (43) higher than the resonance frequencies of the optical pho-
97 —(q,d) m—(q,d) nons for GaAs, we shall neglect the frequency depen-
: . dence of the dielectric constant of the background medi-
Finally, from Eqs (28), (29), (32), and (33) one obtains um, and take it to be e#~10.0. For the relaxation time
( Co q 24 iq,d ig, Alm —1) of the electrons associated with the intersubband transi-
R'= = |— “6’3‘( I+e ™" )X _e ’ (44) tion between the two lowest-lying bound states, we have
chosen 7=0.2 ps. The Fermi energy for the MQW sys-
317-2q" iq,d ig, Alm —1) tem is determined from the charge neutrality condition of
RimM= 2 ” eB(1+ )X _e ) (45)  a single quantum well, since the quantum wells in the
! structure are assumed to be electronically isolated.
. _; _ Therefore, assuming that only the lowest level (¢,) is oc-
4 ‘11 d ig, Alm—1) s 1
T\m=— _wo_ "2—‘(1"’ X _e ™ » (48 cupied, one finds that the Fermi energy in the low-
temperature limit (T—0) is determined from?°
31'r q Al h
(m)— _ I ~ig,d g Alm = €r=¢€,+——N, , (48)
T,; > 2d€B(l+ )X_e P& s
(47) Where N denotes the two-dimensional electron concen-

In the next section we shall use Egs. (18), (19), and
(37)-(47) to calculate the absorption spectra of a
GaAs/Al,Ga,_, As MQW system.

III. RESULTS AND DISCUSSION

In this section we present detailed numerical calcula-
tions of the linear optical absorption spectra of a MQW
structure for different parameters such as the sheet elec-
tron concentration, the angle of incidence, and the num-
ber of wells. In this paper we shall take a typical semi-
conductor GaAs/Al,Ga,_, As quantum well as a numer-
ical example, although the theory developed above can be
applied to other n-type two-level quantum wells. The pa-
rameters used in the calculation for this semiconductor
structure are given as follows. The real well width is
L,=100 A and the thickness of the barrier layer is
L,, =100 A. Thus the spatial period of the MQW struc-
ture is given by A=L,+L,=200 A. For the
conduction-band discontinuity Vo between GaAs and
Al,Ga,_,As, we have chosen ¥;=300 meV. Using a
square-well potential model with the barrier height ¥,
and the well width L, chosen above, the effective well

tration. It is clear from Eq. (48) that the position of the
Fermi level relative to the lowest level €, can be displaced
by varying the impurity-doping concentration in the
structure, since the surface density of the electrons in the
MQW is proportional to the donor concentration. As
will be seen below, a change of the Fermi level leads to a
shift of the resonance peak in the absorption spectra.

In Fig. 2 we show the optical absorbance 4, of the
MQW structure as a function of the photon energy %o
for different sheet electron concentrations, i.e.,
N,=0.5X10"%, 1.0X10"2, 1.5X10'%, 2.0X10%, and
2.5X10'? cm™2. The angle of incidence was 6=17.1°,
which is equal to the angle of refraction when light is in-
cident on GaAs from vacuum at the Brewster angle
(~ 3“) as was usually done in optical absorption experi-
ments.* "% The number of wells was N=100. It appears
from Fig. 2 that for each sheet electron concentration the
absorption spectrum exhibits a pronounced resonance
peak somewhat above the energy separation €,,. As the
surface density of the electrons is increased, the absorp-
tion peak position is upward shifted. The blueshift of the
absorption peak location originates in the local-field reso-
nance associated with the electronic intersubband transi-
tion.?2% Since the local field inside each quantum well in
the MQW structure is not only determined by the current
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FIG. 2. Optical absorbance A4, as a function of the photon
energy #iw for different surface densities of the electrons (in 10'?
cm~2): 0.5 (curve a), 1.0 (curve b), 1.5 (curve ¢), 2.0 (curve d),
and 2.5 (curve e). The tick mark indicates the energy separation
€, between the two lowest levels.

oscillation inside this quantum well driven by the in-
cident field, but also determined by the current flows ac-
companying the change in the wave function of the elec-
trons between the two levels when the intersubband tran-
sition occurs, the resonant optical excitation of the sys-
tem in general does not take place at the exact energy €,,.
It happens only when the local field inside the quantum
well is resonantly enhanced. The resonance condition is
that the determinant of the coefficient matrix of the
homogeneous part of Eqgs. (18) and (19) is equal to zero.
One also notes from Fig. 2 that, as the surface density of
the electrons is increased, the maximum absorbance is in-
creased as well. This is to be expected since the current
density oscillation of the quantum well increases in mag-
nitude when more electrons are available to contribute.
To sustain such strong current oscillation in the quantum
well it is required to absorb more photons. By comparing
Fig. 2 with Fig. 1 in Ref. 7, one sees that the present
local-field calculation qualitatively accounts for the main
features of the experimental findings.’

In passing, one should stress that in the present theory
many-body effects (electron-electron Coulomb interac-
tions and exchange-correlation effects) are not taken into
account in the calculation of the electronic properties of
the quantum well in the absence of the electromagnetic
radiation. It is known that the many-body effects modify
the single-particle wave functions and eigenenergies, and
hence the energy splitting between the two lowest lev-
els.”®!* As the sheet electron density is increased, the
subband splitting tends to either increase or decrease, de-
pending on whether the well or the barrier layers are
doped. However, in the range of electron density used in
the present calculations, the change in the energy separa-
tion due to the many-body effects is expected to be small
in comparison to the local-field blueshift.?

In Fig. 3 is shown the peak-position energy in the ab-
sorption spectra as a function of the two-dimensional
density of the electrons, N,. The number of wells was
N =100, and the angle of incidence was the same as used
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FIG. 3. Peak-position energy in the optical absorption spec-
tra as a function of the surface density of the electrons.

in Fig. 2. The maximum value of the surface density of
the electrons was chosen so that only the lowest level is
occupied. It is quite clear from Fig. 3 that the peak loca-
tion of the absorption spectra is blueshifted as the surface
density of the electrons is increased. A 20-meV relative
blueshift in the peak-position energy was found when the
surface density of the electrons was increased from
1.0X 10" t0 2.5%X 102 cm 2. In comparison with the rel-
ative blueshift observed in the experiment’ the calculated
value is somewhat smaller. This may be partly attributed
to the neglect of many-body effects in the present calcula-
tions.

In Fig. 4 we present the absorbance of the MQW struc-
ture having 100 quantum wells as a function of the pho-
ton energy for different angles of incidence, namely,
6=20°, 40°, 60°, and 75°. In the calculation a surface
electron concentration of N, =2.0X10'? cm~2 was used.
One sees from Fig. 4 that the absorption spectrum at a
small angle of incidence (9=20°) reveals an almost sym-
metric resonance peak around the photon energy
#fiw=120.5 meV. When the angle of incidence is in-

0.6 A

0.2 4 2

0.0 T T T T T
0.09 0.10 0.11 0.12 0.13 0.14 0.15

hw (eV)
FIG. 4. Optical absorbance 4, as a function of the photon

energy fiw for different angles of incidence, i.e., =20° (curve 1),
40° (curve 2), 60° (curve 3), and 75° (curve 4).



50 LOCAL-FIELD EFFECT ON THE LINEAR OPTICAL ...

creased, the absorption peak is obviously broadened, and
the shape of the absorption spectra in the vicinity of the
resonance peak is also changed. The absorption peak be-
comes more and more asymmetric with an increase in the
angle of incidence, and the peak position moves towards
the lower energy. The strong angular dependencies of
the absorption spectra are attributed to the electromag-
netic interaction among quantum wells in the MQW
structure. This is so because the local field inside each
quantum well is determined not only from the current
density oscillation in this well, but also from the current
density oscillations of the remaining quantum wells. The
coupling among them is included via the propagating
part of the electromagnetic Green’s function. In addi-
tion, one can also see from Fig. 4 that, as the angle of in-
cidence is increased, the optical absorption coefficient
first increases and then decreases. This can be more
clearly seen from Fig. 5. In this figure we plot the ab-
sorption coefficient of the MQW structure as a function
of angle of incidence at the photon energy fiw=120.5
meV. It is evident from Fig. 5 that the optical absorption
is very small at small (near 0°) and large (near 90°) angles
of incidence (4, =0 at normal and grazing incidence). In
between the two limits a maximum appears around
6=50°. This is so because, when the angle of incidence is
near zero, the z component of the local field almost van-
ishes, and thus the current density oscillation strength as-
sociated with the intersubband transition is very weak [cf.
Eq. (41)]. When the light is incident on the MQW struc-
ture at large angles of incidence, the incident light is al-
most totally reflected. Therefore the optical absorption
must be very small.

As has been discussed above, the electromagnetic in-
teraction among quantum wells in the MQW structure
can lead to a significant broadening of the absorption
peak and to a notable change in the shape of the spectra.
To illustrate this effect more clearly, we calculated the
optical absorption spectra by varying the total number of
quantum wells, since one would expect that the more
quantum wells contribute, the stronger the electromag-
netic coupling among them is. In Fig. 6 are presented the
absorption spectra of the MQW structures having 20, 50,

08 |
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0.0 ) e L 1 L
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FIG. 5. Angular dependence of the optical absorbance at the
photon energy #iwo=120.5 meV.
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100, and 150 wells, respectively. A surface electron con-
centration of N,=2.0X10'> cm~? was employed. The
angle of incidence was =60°. It is apparent from Fig. 6
that with an increase in the number of wells the optical
absorption is increased, and the shape of the spectra is
changed as well. The absorption peak is almost sym-
metric for the MQW structure having a small number of
wells. But it becomes more and more asymmetric when
more quantum wells are involved. In addition, as the
number of wells is increased, the peak-position energy is
downward shifted. From Fig. 6 one also notices that,
when the number of wells is larger than 100, an addition-
al small peak, which stems from the resonant local-field
interactions in the MQW structure, emerges in the spec-
tra (see curve 4 in Fig. 6). The appearance of the second
peak is due to the broadening and distortion of the reso-
nance absorption line as the electromagnetic coupling
effects become stronger. This result shows that because
of the existence of the strong electromagnetic coupling
among quantum wells in the MQW system it is in general
difficult to interpret the peaks appearing in the absorp-
tion spectra simply as being due to the intersubband tran-
sitions.

Before closing the present section, let us address the is-
sue that the electromagnetic interactions in the MQW
structure become important only when the following two
conditions are satisfied: (i) the local field has a large z
component, since the intersubband transition is excited
only by this component of the local field, and (ii) the local
field within the barrier layers is a propagating wave along
the z axis, i.e., the perpendicular component of the wave
vector g, is real (the imaginary part of ¢, must be small if
the background medium possesses weak absorption). The
first condition requires that the angle of incidence be
large [cf. Eq. (41)]. The second condition stems from the
fact that the coupling coefficient between two quantum
wells is proportional to exp(ig,!), where I denotes the dis-
tance between the two quantum wells [cf. Egs.
(37)-(39)]. Therefore one can easily see that in the elec-
trostatic limit (c,— ), or in the case where the in-plane
component of the wave vector ¢, is much larger than

1.0

0.6
0.4
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O-O -l 1 1 1 1
0.09 0.10 0.1 0.12 0.13 0.14 0.15

hw (eV)

FIG. 6. Optical absorbance A4, as a function of the photon
energy fio for different numbers of wells, namely, N =20 (curve
1), 50 (curve 2), 100 (curve 3), and 150 (curve 4).
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(w/co)[€®(®)]'?, q,—+ig,, and hence the coupling
coefficient decays exponentially with an increase in the
distance /. The electromagnetic coupling effects, there-
fore, are weak in this case. In the previous optical
transmission experiments,* % the light was incident
directly from vacuum onto the MQW structure, and so
the refraction angle (corresponding to the angle of in-
cidence in the present work) is usually small even when
the incident angle is equal to the Brewster angle for the
vacuum/GaAs system (~73°), as was used in experi-
ment.*”® Therefore, in order to observe strong elec-
tromagnetic coupling in the MQW structure, it is desir-
able to increase the internal angle of incidence by use of
other experimental configurations.

IV. SUMMARY

In the present paper the local-field effect on the linear
optical absorption coefficient of a MQW structure in con-
nection with intersubband transitions has been investigat-
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ed. By neglecting the wave-function overlap between
quantum wells, but taking into account the electromag-
netic interaction among them, the linear optical absorp-
tion coefficient of the MQW structure having only two
bound states is derived from a self-consistent integral
equation for the local field. Numerical calculations of the
optical absorption spectra of a GaAs/Al,Ga,;_,As
MQW structure are presented for different angles of in-
cidence and numbers of quantum wells. The results show
that the local-field effect leads to a significant blueshift of
the absorption peak compared with the energy separation
between the two levels as the two-dimensional density of
the electrons is increased. In the case where the angle of
incidence is around 50°, and the number of wells is
sufficiently large, the electromagnetic coupling among
quantum wells was found to be of importance. Our nu-
merical results demonstrate that the electromagnetic in-
teraction can give rise to a significant broadening of the
absorption peak and to a notable change in the peak-
position energy and the shape of the spectra.
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