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Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures
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A quantum-mechanical study of the magneto-oscillations in asymmetric heterostructures is presented
with the aim of clarifying the origin and the effects of the spin-orbit spin splitting in the conduction sub-
band. The magnetization of the two-dimensional electron gas at the interface of modulation-doped III-U
semiconductor heterojunctions is calculated as a function of applied magnetic field and carrier concen-
tration, taking into account both spin-orbit (zero-field) spin-splitting contributions: one due to the k
bulk term and one due to the lack of specular symmetry O.

q along the growth direction. Regular beating
patterns in the amplitude of the oscillations are shown to originate from the latter term. The k term in-

troduces a k-space anisotropy in the zero-field spin splitting. This leads to anomalous beating patterns,
related to the occurrence of a magnetic breakdown at special points of the Fermi surface with a small

spin splitting. Experimental evidence of regular beating patterns has been found in InAs-based hetero-
structures. The possibility of observing anomalous beating patterns in GaSb heterojunctions is dis-
cussed.

I. INTRODUCTION

Time-reversal symmetry at zero external magnetic field
guarantees the spin degeneracy of the electronic states
only in the presence of spatial inversion symmetry. The
spin splitting in the conduction band of zinc-blende semi-
conductor compounds, due to inversion asymmetry, has
been predicted long ago, ' and detected with different
measurements, one of its characteristic manifestations
being a beating pattern in the amplitude of the magneto-
oscillations. ' The conduction subbands in asymmetric
quantum wells are also spin split by the spin-orbit cou-
pling and a clear beating pattern in the Shubnikov-de
Haas data has been observed in such systems. The
question of whether the spin splitting comes from the in-
version asymmetry in the bulk potential (k term) or
from the lack of specular symmetry in the quantum well
(Rashba term ) has however found no definite answer.
This was in part due to the lack of comparison with com-
plete model calculations. In this paper, we obtain,
through a full quantum-mechanical calculation, the beat-
ing pattern in the magneto-oscillations from a model
Hamiltonian, which includes the two above-mentioned
spin-splitting terms and nonparabolicity corrections as
well.

The de Haas-van Alphen and Shubnikov —de Haas
effects are example of general magneto-oscillation s,
which are a pure quantum-mechanical effect due to the
Landau energy quantization in the presence of a magnet-
ic field. Such oscillations have been extensively used to
determine the electronic properties of bulk semiconduc-
tors and metals (Fermi-surface geometry, effective
masses, etc.). Magneto-oscillations observed in Si-
inversion layers have been the first evidence of the ex-
istence of a two-dimensional electron gas, "and continue
to be a very important tool in the study of these systems.
Here we are concerned with the effects of the spin split-
ting on the magneto-osci11ations.

Each discrete Landau level presents a degeneracy
g=eB/M per unit area, including spin degeneracy,
where 8 is the perpendicular magnetic-field strength.
With increasing field intensity, the electrons are redistri-
buted among a decreasing number of levels. The number
of occupied levels at zero temperature is n =n, /g, where
n, is the carrier concentration per unit area. It changes
by one whenever the inverse of the field changes by
b, (1/8 ) =e/n, M. When only the lowest subband is oc-
cupied [pure two-dimensional (2D) case], n, =23 /(2n ),
where A is the area in k space filled by the 2D Fermi see,
and the above period gives the celebrated semiclassical
Onsager expression for the period of the magneto-
oscillations. ' Measurements of this period are commonly
used to determine the surface carrier density n, . In-
clusion of the spin-orbit interaction modifies the above
picture by introducing the zero-field spin splitting and by
correcting the Zeeman coupling.

The spin splitting in the conduction subband of asym-
metric heterostructures is due to contributions from both
mechanisms, bulk k and Rashba asymmetry, ' but their
relative significance has not been sufFiciently investigated.
It appears that modulation-doped semiconductor hetero-
junctions with intermediate gap III-V semiconductor
compounds, like InAs and GaSb, are systems of particu-
lar interest to study the competition between them. In
this case, the degree of specular asymmetry of the
confining well is given by the electric field at the inter-
face. By changing it, one can vary the relative contribu-
tion of the two splitting mechanisms. The spin splitting
becomes strongly anisotropic as the two mechanisms be-
come comparable, ' and we will show that this leads to
anomalous beating patterns in the magneto-oscillations.
Here we will focus on heterojunctions based on InAs and
GaSb, grown on appropriate larger gap materials.

In Sec. II, a model for semiconductor heterojunctions
is presented in some detail and applied to both types of
heterojunctions. The results obtained for the oscillations
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in the magnetization are presented and discussed in Sec.
III. Conclusions are presented in Sec. IV.

ting in asymmetric heterostructures and the beating pat-
tern in the magneto-oscillations.

A. Zero-magnetic fieM

II. MODKI.
FOR SEMICONDUCTOR HETERO JUNCTIONS

%'e consider heterojunctions in a range of carrier con-
centrations where only the lowest subband is occupied.
In such a case, a good model consists of independent elec-
trons in the III-V semiconductor compound, confined by
a triangular potential well formed by the constant electric
field E=en, /e„, along the growth direction, plus an
infinite potential barrier at the interface with a much
larger band-gap material (see Fig. l). The carrier concen-
tration n, is equal to that of ionized donors in the barrier
and e„is the semiconductor dielectric constant.

The semiconductor compound is described by the
eight-band k p Kane model and the solution for the
lowest conduction subband is obtained within the multi-
band efFective-mass envelope-function approximation.
This is the simplest possible model containing the
relevant physics for the study of the zero-field spin split-

We shall first consider the heterojunction in the ab-
sence of any external magnetic field. The solution at zero
field helps to elucidate the structure and origin of the k
dependent spin splitting in the first subband and is used
in the semiclassical analysis of the magneto-oscillations.
First, the eight-band Kane Hamiltonian is projected into
the 2X2 conduction-band space, and expressions for the
nonparabolicity and Rashba terms are derived. The bulk
k term, originating from interactions with remote bands,
will be considered separately.

1. Rashba spin-orbit spin splitting

We start from the Kane model. ' Let S, X, 1' and Z
denote the conduction- and the tree-valence bulk Bloch
functions at the zone center. As basis functions, we
choose the following linear combinations, which have
been shown to be particularly convenient for the hetero-
structure problem'

u, =St,

u~ =+—,'Z t+ —(iXl+ Yi ),
6

I—( iXl+—Y$),
2

Q 4
1—[ Yl —(Z —iX) $ ],
3

l II -V
u6= —Q —3ZL+ —(iX&+ Yl),

6

Q 7
1—( —iX i+ Yt ),
2

1—[Yf+(Z+iX)l] .
3

The arrows indicate the spin state with respect to the y
axis. Making use of the spherical symmetry of the Kane
model, we choose the parallel wave vector k along the x
axis and the growth direction along the z axis. The elec-
tron wave function will then be given by

Q(r)=e'"" g f, (z)u, (r),

where the f are the envelope . functions, and the
efFective-mass Hamiltonian is block diagonalized,

FIG. 1. Illustration of a modulation-doped semiconductor
heterojunction. The lowest two subbands are indicated. The
position of the Fermi level is determined by the occupancy of
the propagating states along the plane.

H+ 0
H=

with
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d k
dz 2

+ 'Pk
2 v'2 dz

d kP
dz 2

+ ~'Pk+
2

P
v2

V(z ) E—r

V(z } Es—

V(z ) Es ——5

(4)

where V(z ) is the confining potential, the momentum ma-
trix element P=Q —', A'/rn, (iS~p„~X)(m, being the bare
electron mass), Es is the band gap, and b, is the spin-orbit
energy splitting. The k free particle term has been
neglected in the diagonal matrix elements because the
small electron effective mass guarantees that the disper-
sion is given by the ofF-diagonal contribution.

So far, we have just extended the scheme introduced by
Marques and Sham' in order to include the split-off
bands. The split-off bands are, however, very important
in determining the spin-dependent efFects in the conduc-
tion band. This is indicated, for example, by the compar-
ison of the effective electron g factor as given by the
models with six and eight bands and the measured ones.
Table I shows how big an improvement one gets by add-
ing the split-off bands.

The multiband efFective-mass equation with Hamiltoni-
an (3) leads to two sets of four coupled equations for the
two groups of envelope functions. Eliminating the other
components, we arrive at the following Schrodinger-like
equation for the conduction-band envelope functions:

+
2 dz rn(z, e) dz 2m(z, s)

2Ptl

d2
+k +V(z}—e f =0

dz
0

with

I

The term linear in k gives the spin splitting. It is zero for
the bulk [ V(z)=const] and has expectation value equal
to zero for symmetric quantum wells. Note that the Kane
model gives no k splitting, so that only the asymmetry
of the quantum well contributes.

In order to solve Eq. (5), we make use of the fact that
we are interested in the conducting states of the first sub-
band, which have e (the energy measured from the bot-
tom of the conduction band), much smaller than the ener-

gy parameters entering the model, i.e., E and b, . A sim-

ple and particularly transparent solution is obtained ex-
panding 1/m (z, s) and a(z, e ) in powers of'9

e —V(z)
Es+6

which is in fact, as shown below, for the bound states we
are interested in, a very small parameter in most hetero-
junctions of interest. The zero-order term in the expan-
sion gives the parabolic approximation,

+ V(z)T-a(z, s)k —e f+ =0 (5)
i}lz Es(Es+5)
P~ 3Es+2k

(10)

(f+ =f, and f =f5 ) where s is the electron energy,

=P' 2 1

m(z, s) (if e —V(z)+E s —V(z)+Es+b,

and no spin splitting. The zero-field spin-splitting ap-
pears only in first order in 5, together with the nonpara-
bolicity. The energy in the conduction subband can be
written as

and

P d 1a(z, e)=
2 dz s —V(z)+Es

1

e —V(z)+E +5
fi d +k~ —a

2tH dz

+ V(z)vak~f, ),

2m

2
2

+k
dzz

6x6' 8X8b Expt. '

TABLE I. Electron effective g factor as given by diferent
k.p models. The bulk parameters used are given in Table II.

where a, the nonparabolicity constant, is given by

2(Ez+b. ) +Eg

Es(3'+ 2h, )
(12)

InAs
GaSb

—41.5
—22.7

'Obtained from Eq. (22}when h~ ~.
bAs given by Fq. (22}.
'Landolt-Bornstein tables.

—14.4
—7.43

—14.7
—9.1

and the spin-splitting parameter

2E +6
2m' Es (E sb+)(3 Es2+h)

(13)

is identi5ed with the Rashba spin-orbit coupling parame-
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ter in the case of a constant electric field E[V(z) =eEz].
This leads to an isotropic spin splitting given by
6, =2ak. By letting A~~, we recover the six-band
model expression for u, obtained in Ref. 14. Allowing for
different momentum matrix elements, i.e., using the ex-
perimental band-edge effective mass in both cases, we find
that the Rashba spin-orbit coupling parameter in the
eight-band model is reduced by a factor of -0.6 with
respect to that given by the six-band model, for both
InAs and GaSb.

Equation (11) contains explicit analytical expressions
for the spin orbit and nonparabolicity corrections, which
is an important simplification with respect to Eq. (5)
where m and a depend on the energy value c. Equation
(11) is amenable to a simple variational approach because
the lowest subband of such a triangular well can be well
described with the Fang-Howard trial function,

y (z)=&b'/2z e b'"- (14)

fi be(k)= +k
2m* 4

IrI /4m'

Eg +5 16 2 b

where b is determined by minimizing the total energy of
all the electrons, which, assuming that the electric field is
only due to the electrons themselves and given by
E =en, /e„, amounts to minimizing 'e= (ek) 3eE/2—b
(the last factor corrects the double counting in the e-e in-
teraction ), with the spin-independent single-particle en-
ergy given by

PP0 +I I I I
t

I I I

InAs

180

160

140
I I I I I I I

160

140

120

100
0 1

k (10 ciTI )

FIG. 2. Spin-orbit (Rashba) split lowest subbands with non-
parabolicity in InAs- and GaSb-based heterojunctions, both
with n, =6.0X10" cm . The Fermi energy and the parabolic
approximation (dashed lines) are also shown. The zero of ener-

gy corresponds, in each case, to the bottom of the bulk conduc-
tion band.

2. Bulk k contribution

H„,=y[cr„k„(k k, )—

As mentioned in the Introduction, another important
contribution to the zero-field spin-splitting in III-V semi-
conductor compound quantum wells derives from the in-
version asymmetry of the zinc-blende crystal structure of
the host material. It is well known that, in lowest order
in k, this splitting is described in the bulk by a term of
the form '

+o k (k, —k„)+cr, k, (k„—kr )], (16)
The dispersion relation of the split subbands is given by
e+(k)=e(k) Wak. The value of the variational parame-
ter b will obviously depend on k. This is the well-known
coupling between the motions perpendicular and parallel
to the interface due to nonparabolicity. The dependence
however is weak. In all the cases considered here, as k
increase from zero up to kz, b never changes by more
than 10%.

The above solution for the first conduction subband of
a semiconductor heterojunction is seen to have kept the
analytical simplicity of the one-band model, taking into
account important effects as nonparabolicity and spin-
orbit spin splitting. %'e show in Fig. 2 specific examples
in order to compare with the parabolic approximation.
The values of the parameters used are listed in Table II.
The accuracy of this approximation depends on the
smallness of 5, which increases with both k and n, . %e
have estimated it by computing its expectation value at
k~ (on the Fermi surface). For the largest carrier concen-
tration we consider here, i.e., n, =10' cm, we find

5~» ——0.003 and =0.03, for GaSb- and InAs-based
heterojunctions, respectively, so that the approximation
adopted is fully justified, at least within 10% accuracy.

where o,. stands for the Pauli spin matrices, y is a materi-
al constant, and the coordinate axis are now assumed
parallel to the crystallographic cubic axis. This k split-
ting is much smaller than the quantized energy e of the
confined electrons and its effects can be treated within
first-order perturbation theory. ' ' ' In this case, all one
has to do is to replace k, and k, by the expectation
values of id /dz a—nd d ldz, re—spectively, in the first
unperturbed conduction subband.

Eg (eV) 6 {eV) m* (m, ) y (eVA ) &sc

InAs
GaSb

0.418
0.813

0.38
0.75

0.023
0.041

130'
187'

12.2
14.4

'Estimated here, following Ref. 17.
Reference 18.

TABLE II. Bulk parameters. Except for y, the parameters
we use, listed below, are the low-temperature 6gures in the
Landolt-Bornstein tables.
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H,~;„=tr.(y«+ak Xz ),
where k is bidimensional, and

b 2 2

«=k k — x+k —k y .b
x y y 4 x

(17)

(18)

We denote the eigenvalues of H, ;„bykb, , /2, with the
total spin splitting h„given by

b b
b, (k, 8)=2 y +a k +ya k — k sin28

16 2

k4 .+yi(ki —b2} sjn228
4

(19)

where 8 is the angle between the parallel wave
vector k and the x axis of the cubic crystal. The total
single-particle eigenenergy is given by e+(k, 8)
=e(k)+b, ,(k, 8}/2. Note that the + spin states refer
now to a direction of angular-momentum quantization,
which depends on both k and 8, as indicated in Eqs. (17)
and (18). We have plotted in Fig. 3 the total zero-field
spin splitting b,, at three difFerent points of the Fermi
surface along three different directions in k space, as a
function of carrier density. The dashed line gives the iso-
tropic contribution from the Rashba term, which is seen
to be, in this range of carrier concentration, the dominant
one in the case of InAs. A small degree of anisotropy ap-
pears only at high carrier concentration. The spin split-

3. Total zero ji-eld spin splitting

In our case, we can then use the expressions (11) and
(16}to write the total spin Hamiltonian for an arbitrary
direction of the two-dimensional k vector using the Rash-
ba symmetry argument. We obtain

ting in GaSb-based heterojunctions is found to be some-
what smaller but much more anisotropic.

The anisotropy in the zero-field spin splitting of both
GaSb- and InAs-based heterojunctions is not simply due
to the k term as assumed in Refs. 24 and 26, for the case
of GaAs quantum wells. Though the Rashba term is
spherically symmetric, a contribution to the anisotropy
originates from the interference between the k and the
Rashba terms; this is responsible, for instance, for the
broken symmetry between directions [11] and [11], as
can be seen in Fig. 3.

The zero-field spin splitting manifests itself more clear-
ly producing the already-mentioned beating pattern in
the amplitude of the magneto-oscillations; the quantum-
mechanical description of which starts with the problem
of the electronic states in a magnetic field.

B. States in a perpendicular magnetic field

We turn now to the problem of the electronic states
when a magnetic field perpendicular to the interface is
applied. The stationary states are the eigenstates of the
Hamiltonian operator obtained from the one at zero field

by simply adding the Zeeman term and substituting
everywhere k —+ iV+—(e/A) A, where A is the vector
potential of the applied field. In the present case, start-
ing from the 8X8 Hamiltonian (3) with the addition of
the magnetic-field contribution, we carry out the same
procedure as before and project on the conduction states
to obtain the following Hamiltonian:

e(k)+ ,'pg*(k)B —yQ(k)+iak

yQt(k) —iak+ s(k ) ,'ling '(k )B——(20)

where e(k) is given by (15), a by (13), and a reduced
effective g-factor operator g' has been introduced to first
order in 5,

2E +b,
(21)

the bulk band-edge effective g factor being

0

1,5

C4

0.5

3E +2k

Finally, k+ =k haik and

$2
Q(k) =

—,'(k+ k k+ —k ) —k+4 + — + — + 4

(22)

(23)

0 2 4 6 8 10

n, (10 cm )

FIG. 3. Zero-field spin splitting at three points of the Fermi
surface along different directions in k space (indicated in the
case of CxaSb), as a function of the carrier density n, . The
dashed line gives the isotropic contribution of the Rashba term
alone.

The usual way to diagonalize Hamiltonians of this type
is to make use of an expansion in harmonic-oscillator
functions. ' It is easy to verify that the operators
a =(l/v 2}k+ and a=(1/i/2)k, where l=&fi/eB is
the magnetic length, satisfy [a~,a]=1. It then follows
that they generate a complete set of functions satisfying
a P„= n +1/„+,and aP„=v'nP„„with$0 being
given by a/0=0. The eigenfunctions of H can then be
expanded as:
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(24)
dE&

dB n,
' (25)

The matrix elements of H in this basis can be easily calcu-
lated and the eigenvalues are obtained, for every value of
B, by diagonalizing numerically a sufficiently large matrix
to obtain convergence on the lowest states. The conver-
gence in our case, for the number of Landau levels need-
ed to accommodate all the electrons, was reached using a
maximum number of basis functions of around 300 in the
low field and high n, limit. Figure 4 shows a typical fypica an

iagram with the first few Landau levels. As compared
to usual fan diagrams, it is interesting to note, besides the
overall nonparabolic bending, a structure of smooth an-
ticrossings at small fields (see inset), which is due to the
spin-orbit coupling in the presence of the above-described
asymmetries.

III. RESULTS AND DISCUSSIONS

A. Oscillations in the magnetization

Besides the Shubnikov —de Haas measurements men-
tioned above, there have been also investigations on mag-
netothermal oscillations of the two-dimensional electron
gas (2DEG}. We have chosen to look at the analogous
de Haas —van Alphen oscillations in order to study the
beating pattern in the magneto-oscillations of 2DEG, be-
cause the magnetization can be calculated in a more
direct way than the resistivity. Oscillations in the mag-
netization of a 2DEG have been first measur d b

~ 0 34Stormer et al. We consider the magnetization at zero
temperature because the experiments are done at very
low temperatures, but our reasoning would not be
modified by taking into account the statistical distribu-
tion. The magnetization (perpendicular to the interface}
is given by

cF(,B)
Ez-= gj9& c dq (26}

is the total energy of the 2DEG. The dependence on the
magnetic field comes both from the Fermi energy cz and
from the density of states Dti(e), which, by assuming a
Gaussian broadening of the Landau levels, reads

g/2 [.—c„Ix))2rir2&
(27)

I A

where the sum is over all spin-resolved discrete levels and
g is the degeneracy of the Landau levels. The broadening
width is taken field dependent and of th f
r =r& e orm

B, where I o is a parameter which depends on
the quality of the sample. Finally, the Fermi energy is
determined from:

c~(,B )

n, =f Ds(e)de . (28)

Figure 5 shows a typical example of how the total ener-

gy, the Fermi energy, and the magnetization vary with
the magnetic field. The oscillations in the total energy
and in the magnetization follow the oscillations in the
Fermi energy. A few Landau levels are also plotted. The
Zeeman splitting shows up only in the high-field limit.
The beatings are due to the zero-field spin splitting,
which can be studied by Fourier analyzing the magneto-
oscillations as functions of 1/8.

The magnetization as a function of 1/8 presents
periodic-modulated oscillations. In Fig. 6, we have plot-
ted, together with their power spectrum, the oscillations

I I I I ( I I I I I I I I I '
I I I

l
'''I

150

zoo —"I"
14 184:

F

I I

I I I

180

O5 1

FIG. 4. FFan diagram for an InAs heterojunction with
n =6.0X10" cm . Shown is also the oscillating Fermi ener-
gy. The inset shows a detail of the low-field limit with smooth
anticrossings.

FIG. 5- Typical result for the variation of the total ener E
{in arbitrary units), the Fermi energy EF {in meV), and the mag-
netization M {in units of 10" meV/T cm ) as a function of the
applied magnetic field B. A few Landau levels are also shown
{I0=0. 1 meV).
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I

I I I

n, =4.
(x 10" cm '}

I I I I I I I I I
1 I I 111 111 111 I

n, =6.

0

I L

obtained for InAs heterojunctions with different carrier
densities. The power spectrum is the absolute value
squared of the Fourier transform of the magnetization
and is shown in units of surface densities; as given from
the semiclassical expression v=n, fin/e, the frequency in
Teslas is v[T]=4.13n, [10"cm ]. One should first note
that the oscillations in 1/B, within this range of carrier
concentration, present a quite regular beating pattern.
The power spectrum shows two near frequencies corre-
sponding to the total number of carriers, which occupy
the two spin-split subbands. Such frequencies occur at

2 4 6 0 2 4 6 810
1/B (T ') n (10" cm ')

FIG. 6. Oscillating magnetization of a 2DEG at the interface
of an InAs-based heterojunction with different carrier concen-
tration n, (4, 6, or 8X10" cm ). On the left panel, the beating
pattern is clearly evident. On the right panel, we plot the
respective power spectrum in terms of surface density n. The
oscillation frequencies are shown as strong peaks. They are
close doublets, the sum of the two corresponding to n„and
higher harmonics.

111
I

11

E=0.O

than for InAs and in this range of magnetic fields it leads
to only one beat.

We can increase the number of beats by applying an
external electric field along the growth direction, thus in-

creasing the contribution of both splitting terms, still
preserving a high degree of anisotropy. Figure 7 shows
the calculated oscillations for a n., =6.0X10" cm in

GaSb heterojunction with zero and 50 kV/cm of applied
field. The oscillations are clearly characterized by anom-
alous beating patterns. The separate peak in the power
spectrum, which is seen to build up at n, /2, correspond
to magnetic breakdown at the small spin-splitting point
along the [11] direction. A richer structure, with up to
five peaks in the power spectrum, is seen to appear when
using a bulk parameter y twice as big. For GaAs, the
values of y quoted in the literature vary by almost a fac-
tor of 2. Figure 7 shows that the power spectrum of the
magneto-oscillations is very sensitive to y, and this may
be of help in its experimental determination. We would
also like to mention that the power spectrum in the case
of anomalous beating pattern depends on the range of
magnetic fields.

The only (free} parameter in our calculations is the
Landau-level broadening parameter I o. The magneto-
oscillations are very sensitive to I o. The few oscillations
at high magnetic fields observed in Ref. 34 are repro-
duced well here with 10=1.2 meV. The obtained ampli-
tude with the nominal carrier concentration is only a fac-
tor of 2 larger, which is probably due to the distribution
in carrier concentration. We show in Fig. 8 how the
magneto-oscillations for an InAs heterojunction evolve
with increasing Landau-level broadening. One can see
that, as expected, the oscillations present a decreasing
amplitude and are broadened out at small fields. The cal-

n+= J dke[s~ —ez(k))
1

(2m }
(29)

I 1 I I I

I 1 I I I

E=50.

[e(x ) is the Heaviside function], which are the densities
in the split bands. Their separation produces the beat-
ings, which increase with total carrier density as a result
of the increasing spin splitting at the Fermi energy, as
shown in Fig. 3.

The almost isotropic spin splitting, dominated by the
Rashba term, in the case of InAs, explains the obtained
regular beating pattern. Anomalous beating patterns,
due to magnetic breakdown at the points with a smaller
spin splitting, are expected when the spin splitting is an-
isotropic. With increasing n„the oscillations become in
fact more irregular as the degree of anisotropy increases,
as can be observed in Fig. 6.

The expected oscillations in the case of heterojunctions
made with GaSb help us to understand the relation be-
tween anisotropy in the spin splitting and anomalous
beatings in the amplitude of the magneto-oscillations.
The spin splitting in the case of GaSb (see Fig. 3) is much
more anisotropic. It is, however, also somewhat smaller

0
65
N

~ ~

bQ
Q5

I ~~ 0l

!
I

I
I I 11111111 11111111

2 4 6
&/a (T )

2 3 4 5
(10 cm )

FIG. 7. Anomalous magneto-oscillations for a n, =6.0X 10"
cm GaSb heterojunction under zero and 50 kV/cm of applied
electric fields. The parameters are as given in Table II. In the
two lower panels, we have used a value of the material parame-
ter y twice as big and have traced with envelope curves the
semiclassical fittings (see Sec. III B).
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FIG. 8. Effects of the Landau-level broadening on the
magneto-oscillations. Magneto-oscillations of a n, =4.0 X 10"
cm InAs heterojunction with three different values of the pa-
rameter 1"0 (in meV).

FIG. 9. The 2D Fermi surfaces for the GaSb heterojunctions
corresponding to the lower two panels of Fig. 7. The two curves
correspond to the two spin-split subbands and give the two
sheets of the Fermi surface.

culated oscillations with I o=1.0 meV reported in Fig. 8

are quite similar in shape to the observed ones in an InAs
asymmetric quantum well with nearly the same carrier
concentration. The split peaks in the power spectrum
remain always well defined in this range of broadening
parameter, though their amplitude is reduced with in-
creasing broadening. The multipeak structure in the
power spectrum connected with the anomalous beating
pattern here obtained is, therefore, expected to survive at
larger broadenings.

B. Semiclassical analysis

The anomalous beating pattern obtained above can be
rationalized in terms of a semiclassical picture allowing
for magnetic breakdown. ' The semiclassical analysis
relates the frequencies of the magneto-oscillations to the
areas in k space occupied by the electron gas in zero field
(see Fig. 9) and the probabilities of magnetic breakdown
to the shape of the Fermi-surface sheets at the points
where the spin splitting is smaller (breakdown junctions).

%e choose for analytical convenience a model that il-
lustrates the semiclassical approach for a two-
dimensional electron gas. Let the density of states (per
spin per unit area) in the presence of a magnetic field be
given by

eF(B )

n, /2= I Ds(e)dE

[F(B)
—a sin[F(8 )]I,eB

(2lr) A'

where

(31)

EF (32)

F(B ) sin[F(8 —
) ] I . (33)

Since the semiclassical expression for the oscillating mag-
netization is

ppF @gal(pF)
Msc(B ) sin

2~ A eB
(34)

where A (eF ) is the area in k space filled by the 2D Fermi
sea in zero field, given by

27Tm

From Eqs. (25) and (26), the magnetization can be written
as

de~(B) EFi&i dDs(e)M(8)= eF(8)Ds[—eF(B)] —I e de
dB o dB

ae B „[2—2cos[F(B )]
(2n. ) I*

NZ
Ds(E) =

27762
(30)

using expression (32), we obtain
2Am1+a cos F. lr O(e), —
fieB

where a parameter a(0&a & 1) describes the broadening
of the Landau levels and all complications such as non-
parabolicity and spin splitting are omitted. Then, the
Fermi energy eF(8 ) is given in terms of n, by

e BMsc(8)= F(B)sin[F(B)],
4n m*

where F(8) can be computed from expression (31). In
the limit of large quantum numbers, F)) 1 and Ms~
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agrees with M (apart from a numerical factor of order
unity); in the same limit, the magneto-oscillations are ap-
proximately given by

eon,
Msc — sm

2Am

(2n. ) Rn,

2eB
(37}

which is the 2D version of the Onsager expression dis-
cussed in the Introduction.

In our case, because of the spin splitting, the Fermi
surface has two sheets that come close together both at
two equivalent points along the [11]and [11]directions
and at two equivalent points along the [11] and [11]
directions (see Fig. 9). At such breakdown junctions,
where the spin splitting is smaller, an electron moving
along a semiclassi. cal orbit may tunnel from one sheet of
the Fermi surface to the other. To calculate the
magneto-oscillations, all possible ways in which an elec-
tron can complete one turn (switching or not from one
sheet to the other at the four junctions) are to be com-
bined. At each magnetic-breakdown junction, there is a
probability amplitude p=e ~ for the electron to tun-
nel and q =i(1—p )'~ for the electron to remain on the
same sheet, where F is the so-called magnetic-
breakdown field, ' which can be roughly estimated by

W= 't/(b, k } /(a+5), (3&)

where hk is the distance in k space between the two
Fermi-surface sheets at the junction, and 1/a and 1/b are
their radii of curvature. The anomalous beating pattern,
which gives the envelope of the fast oscillation expressed
by Eq. (37), is described by the so-called magnetic-
breakdown function ' G(8), which in our case is given
by

G(8)=qiq2 cos —5
2%A

J

+4p,pzq, qi cos —5/2
e8

(39)

where p„q, (pz, qz) are the above-defined B-dependent
amplitudes for the two couples of breakdown junctions,
4b, is the difFerence between the k-space areas of the
outer and inner sheets of the Fermi surface, and 25 is the
difference between their Onsager phases. The first term
on the right-hand side of Eq. (39) corresponds to the beat-
ing between the orbit that always stays on the outer sheet
and the orbit that always stays on the inner one; the
second term corresponds to the beating between the four
orbits that stay for —,

' of a turn on the outer sheet and for
—' of a turn on the inner one and the four orbits that stay
for —,

' of a turn on the outer sheet and for —,
' of a turn on

the inner one; the last term corresponds to the six orbits
that stay for —,

' of a turn on the outer sheet and for —,
' of a

turn on the inner one. In Fig. 7, the thick solid lines
show the fit to the anomalous beating patterns obtained
from the semiclassical analysis embodied in G(8). The
parameters used are listed in Table III along with their

TABLE III. Fitting parameters used in the semiclassical
analysis of the anomalous beating patterns shown in Fig. 7; in

parentheses are the corresponding values estimated from the
Fermi "surface" geometry (see text).

E (kV/cm) 46k/e (T) W) (T) 8' (T) 5/m

0.0
30
50

6.71(5.72) 0.064(0. 12) 0.18(0.29) 3.06
10.15(8.84) 0.074(0.01) 0.62(1.3) 0.33
11.95(10.92) 0.21(0.07) 0.94(2.2) 3.98

values estimated from the Fermi-surface geometry (the
phase difFerence 25 cannot be readily evaluated). Thus,
the semiclassical analysis allowing for magnetic break-
down provides a good interpretation of complex anoma-
lous beating patterns.

C. Comments on other syin-sylitting measurements

The beating pattern in the amplitude of the magneto-
oscillations have been studied here as the main probe of
the zero-field spin splitting. Other kinds of measure-
ments in semiconductor heterostructures have recently
been explained with the zero-field spin splitting. Raman-
scattering measurements of intrasubband excitations have
shown spin-flip single-particle transitions between spin-
split subbands of an asymmetric modulation-doped
GaAs/Aio 33GaQ 67As quantum well. Anisotropy in the
spin splitting has also been detected. The calculated
spectra with only the bulk k term showed, however,
poor agreement with experiment.

The other recent experimental probe of the zero-field
spin splitting is connected with the phenomenon of an-
tilocalization. The spin dephasing responsible for the ob-
served negative magnetoresistance (due to antilocaliza-
tion) has been shown to be due to the precession of the
electron spin around the spin-splitting efFective magnetic
field. ' The spin dephasing rate in this case follows the
following motional narrowing low:

(40)

where ( ) means average over the Fermi surface, t, is the
transport (or elastic} scattering time, and a is a parameter
of the order of unit that depends on the scattering mecha-
nism. The average spin splitting ( lL, ) at the Fermi ener-

gy has then been estimated for different heterostruc-
trues. Even though our model is not expected to give
an accurate value for the Rashba coupling parameter in
the case of GaAs (where interaction with higher conduc-
tion bands should not be neglected' ), we compare in Fig.
10 the computed values of (6, ) using our procedure
with the experimental values obtained by Dresselhaus
et al. from fitting of magnetoresistance measurements
in GaAs inversion layers. We can see that the observed
dependence on n, is better reproduced when including
both k and Rashba contributions. We have checked
that the k term alone with any pair of parameters y and
a, within their uncertainties, is not able to give a good fit
of the experiment; in Fig. 10, we have used y =17 eV A
and a =0.5. This is in agreement with recent criticisms
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the interpretation of time-dependent and polarization-
resolved optical measurements.

IV. CONCLUSIONS

5 6 7

n, (10 crn )

FIG. 10. Comparison of the computed average total spin
splitting with that obtained from Dresselhaus et al. ' antilocali-
zation data in GaAs/Ga& „Al„Asinversion layers using
a =0.5. Two theoretical cases are shown; one with both contri-
butions to the spin splitting and one with only the k . The pa-

0 3
rameters used were y =17 eV A, m =0.067 m„E~=1.52 eV,
5=0.341 eV, and esc=12.85.

of the original explanation by Santos and Cardona.
The usually neglected Rashba contribution to the spin

splitting in GaAs inversion layers has an increasing im-

portance with increasing carrier concentration. We be-
lieve that it should also be invoked in order to completely
understand the experimental results in Ref. 38. One can
see from Fig. 10 that the bigger contribution from the
Rashba term at higher values of n, tends to bend up the
curve getting it closer to the experiment. We have also
compared our results for an InSb inversion layer with the
experiment of Greene et al. and have obtained good
agreement.

Finally, the understanding of the spin-dependent elec-
tronic properties of these heterostructures is important in

We may summarize our results as follows. We have
found the conduction states in asymmetric heterostruc-
tures from an eight-band model, taking full account of
the spin-orbit interaction, and including two types of
spin-splitting contributions, one due to bulk inversion
asymmetry and the other to the absence of specular sym-
metry.

Detailed calculations have been carried out for hetero-
junctions of InAs and GaSb with larger band-gap materi-
als for different electron densities. The resulting spin
splitting is shown to be strongly dependent on carrier
concentration and to be anisotropic, the amount of an-

isotropy depending on both splitting contributions.
We have computed the magnetization and its power

spectrum as functions of an external magnetic 6eld. The
de Haas-van Alphen oscillations are shown to display
clear beating patterns corresponding to two main reso-
nance frequencies associated to the two spin-split sub-
bands. We find anomalies in the beating patterns due to
the anisotropy in the spin splitting; their dependence on
carrier density and on the con6ning potential is shown.

The quantum-mechanical results are interpreted using
a semiclassical analysis with magnetic breakdown at the
points of the Fermi surface with small spin splitting.

Other experimental probes of the spin splitting have
also been discussed for the case of GaAs/Ga, „Al,As
heterojunctions, and the importance of considering both
contributions to the spin splitting of the conduction sub-
bands has been suggested.
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