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In this paper we present a scattering-matrix formalism to study electron transport in a mesoscopic sys-

tem such as a lateral antidot array with a strong modulation potential. We show that the physically im-

portant and less localized states are allowed to dominate in the implementation of the formalism and,
therefore, the problem of the numerical instability that one often encounters in the application of the
transfer-matrix method to lateral electron transport has been solved. As an example of its application,
the formalism is used to calculate the electron transmission in one-dimensional {1D) antidot arrays
defined in a narrow two-dimensional electron-gas (2DEG) constriction. We show that when the modula-

tion potential of antidots is weak the conductance bands can appear at the edges of the conductance pla-
teaus of the narrow 2DEG constriction. In the case of strong modulation the calculated conductance of
the 1D antidot arrays are seen to be characterized by two kinds of strong fluctuations, namely, the slow

and rapid fluctuations, in high Fermi-energy range. The slow fluctuations result from wave interferences
and the formation of the electron minigaps in the arrays and are insensitive to the temperature up to a
few Kelvin, while the rapid fluctuations reflect the formation of the electron minibands and can be easily

smoothed out by thermal averaging. Due to strong overlaps between the minibands associated with

different 1D paths in the strongly modulated antidot arrays, the effects of the regular miniband forma-

tion may only be observed in the low Fermi-energy range, even at very low temperature.

I. INTRODUCI'ION

It has been expected that in a lateral superlattice
defined by a periodic potential in the plane of a two-
dimensional electron gas (2DEG), minigaps of zero densi-

ty of states and minibands may form if the potential
varies periodically in one or both directions. These la-
teral superlattice effects may be studied in the linear-
response regime of a small applied voltage by varying the
Fermi energy (EF ) or the strength of the periodic poten-
tial by means of a gate voltage. The conductance is ex-
pected to vanish if Ez is in a minigap. The experimental
observations of this minigap effect in such two-
dimensional (2D) lateral superlattices were reported first
by Ismail et al. and then by Smith et al. However, no
conclusive observations of the miniband structure of 2D
lateral superlattices have been reported. This has been
argued as being due to the diSculty in distinguishing be-
tween the true miniband effect and the quantum interfer-
ence effect within a single unit cell. The miniband struc-
ture has, however, been observed in a one-dimensional
(1D) quantum-dot superlattice realized by means of pat-
terned split-gate technique.

With use of the transfer-matrix method, a number of
exact quantum-mechanical calculations ' have been
made for ballistic transport through 1D lateral superlat-
tices. However, only weakly modulated structures have
been considered so far. The reason is that the transfer-
matrix method is numerically unstable for systems in-
volving strong modulations (e.g., strong antidot scatters,
open quantum dots in large sizes, etc.). The origin of the
failure can be traced to the coexistence of the exponen-

tially growing and decaying waves as a result of including
evanescent states in the formulations as demanded by
completeness.

In this paper, we present an alternative formalism for
treating electron transport in lateral quantum systems,
based on the scattering matrices. " Previously, a
scattering-matrix formalism was presented by Ko and
Inkson' for multilayered semiconductor heterostructures
where (effective) electron potential varies only in one di-
mension along the growth direction. The method proved
to be numerically stable in the calculations of resonant
tunneling in GaAs/Al„Ga, „As multilayer systems. '

However, the method has not been applied to electron
transport in laterally patterned and/or confined struc-
tures for which the problems have to be formulated in
two or three dimensions. Therefore, the power of the
method has not been justified for the systems other than
1D cases. The purpose of this work is to generalize the
method to electron transport in multidimensional struc-
tures and to explore the numerical power of the method
in the calculations for more complicated quantum sys-
tems. In the present paper, we will mainly consider the
generalization of the method to laterally patterned and
confined 2DEG systems.

In what follows, we first give a general scattering-
matrix formulation for electron transport in a lateral
quantum system. Based on this formulation, we then
show explicitly that the physically important states are
allowed to dominate in the calculations, and the method
remains numerically stable and accurate even in the limit
of strong modulations and consisting of a large number of
quantum dots and antidots with large sizes. As an exam-
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pie of its application, we present the results of the calcu-
lations for ballistic transport in both weakly and strongly
modulated 1D antidot arrays defined in a narrow 2DEG
constriction. In particular, we are concerned about the
miniband and minigap structures of the antidot arrays
and the effect of wave interferences on electron transport
in the systems. We will explore them by computing the
conductance of the systems as a function of the Fermi en-
ergy EF.

4'(x,y) =g 4„(y)g d„' [b' e
n a

—ik' (x —xo)+c'e

where x 0 is the reference coordinate along the x direction
for the strip region i and has been specified in Fig. 1, d„
are the expansion coef6cients obtained by searching for
eigenvalues E' from the system

II. FORMALISM

Let us consider a lateral ballistic constriction of width
m, having electrons confined along the y direction but al-
lowed to move along the x direction, and being connected
with two perfect semi-infinitely long leads with equal Fer-
mi energy and with widths wL and wz, respectively.
Without loss of generality, we assume that mL =wz =u
with w w, . When a potential difference is applied, the
two perfect leads will serve as the reservoirs of emitter
and collector. We further assume that the lateral quan-
tum constriction can be divided along the longitudinal x
direction into transverse strips, which are thin enough so
that the potential in each strip region is of transverse y-
direction dependence only. This is illustrated in Fig. 1

where the quantum constriction has been partitioned into
X transverse strips. The Schodinger equation of motion
of an electron with energy c. in the transverse strip region
i can then be written as

8 8+ + V, (y)+ Vb(y) 0"(x,y)
2m ax By

= s%'(x,y),
where rn ' is the effective mass, the confinement potential
V, (y) is zero inside the constriction and infinite outside,
and Vb(y) describes the electron potential in the strip re-
gion. Expanding the wave function 4'(x,y) in terms of
the transverse eigenstates j4„(y}] of the two perfect
leads with eigenvalues j s„ I gives

y j(s„—E'. )5„+&@.(y)l V, (y)+ Vg(y)l@' (y) &Id'.

n =1,2, 3, . . . .

The quantity k' can be expressed in terms of E' and the
energy c, of the electron injected into the region,

1/22m*(s —E' )k'=
a $2

(4)

where B' and C' are coeScient vectors containing j b'
)

and j c' I, respectively. It has been derived in Refs. 9 and
10 that the transfer matrix M(i, i + 1) can be written as

We note that for a fixed c the quantity k' can be either
real or imaginary, and we use the convention ( —1)' =i
when k' is imaginary.

Obviously, we have a set of unknown coeScients b'
and c' in the expansion of the wave function 4'(x,y} in
each transverse strip region. However, the connection
between the coefFicients in any two transverse strip re-
gions in the constriction can be achieved by a matrix
method. In the transfer-matrix method, the expansion
coeScients b' and c' in the strip region i and the expan-
sion coeScients b'+' and c'+' in the strip region i +1
are related by a transfer matrix M(i, i + 1),

g&+~
=M(i, i +1);+&

Mi&(i, i+1) M&2(i, i+1) pi+&

M (i i+1) M (i i+1)

I

I

u ~ ~ ~ i--1 i i+1 IV —1C N wR

y' 0
M(i, i +1)=

1 T(i,i +1),

where y' is the diagonal matrix with elements given by

~2 3.3
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t ~ —1 ~ $i ) )i+1
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0 0 0

) iiV —i~ ~iV ~
iV ~B
0 0

(y') =exp(ik' I'),
and T(i, E +1) is the matrix defined by

r

pi pi pi +1 pi +1
FIG. 1. Schematic representation of a finite 2DEG constric-

tion of width w, in which the electron potential varies along
both the transportation x and the transverse y directions. The
constriction is connected with two perfect semi-infinitely long
2DEG leads with equal Fermi energy and with widths wL and
w&, respectively. We assume that wl =w& =w with w ~ w, and
that when a potential di6'erence is applied electrons How from L
to A. The constriction is partitioned into N transverse strips in
such a way that in each strip the electron potential varies only
along the transverse y direction.

T(i,i+1)= Qi+1 Qi+1 r

with the submatrices P' and Q' given by

(P')„=d„', (Q')„=d„' k' iii .

Here I' is the width of the ith transverse strip region
a1ong the x direction and we recall that m is the width of
the two perfect leads (see Fig. 1). Explicitly, the subma-
trices of M(i, i + 1) are
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M„(i,i +1)=(y') T„(i,i+1),
M, ~(i, i+1)=(y') T,i(i, i+ 1),
M2i(&, &+1)=y'Tz&(i,i +1),
M22( i, i + 1 ) =y'T22( i, i + 1 ) .

(10)

where B and C are the coefficient vectors containing
{b ] and Ic ], B~ and C" are the coefficient vectors
containing [b ] and Ic"], and M(L, R), is the total
transfer matrix of the system given by

X—1

M(L, R)=M(L, 1)X g M(i, t +1)X'M(N, R), (12)
i=1

where M(L, 1) and M(N, R) are the two transfer matrices
that couple the wave function in the quantum constric-
tion to the wave function in the two perfect leads. These
two matrices are not directly defined in Eqs. (6) and (10).
However, a derivation of these two matrices can be found
in Appendix A.

It is seen from Eq. (10) that both y' (forward states)
and (y') ' (backward states) are present in the transfer
matrix M(i, i +1}.The elements of the matrix T(i,i +1)
depend closely on the basis on which the transverse
modes in the strip regions i and i +1 have been expand-
ed, while the elements of the matrix y'' do not. The rna-
trix y will always appear in the formulation as the diago-
nal matrix given by Eq. (7}. The elements (y') of the
matrix can be either purely real or complex. For a prop-
agating mode a, where k' is real, (y')« is, in general, to
be a complex number with ~(y') ~=1 and thus carries
the phase shift of the forward wave of the propagating
mode. [(y'),' carries the phase shift of the backward
wave of the propagating mode. ] For an evanescent mode,
where k' becomes imaginary, the (y') and (y') ' will,
respectively, decay and grow exponentially. The pres-
ence of both these very fast gro~ing and these very fast
decaying terms in the transfer matrix M(i, i+1) is the
cause of the numerical problem with the transfer-matrix
technique. In fact, this has been known and understood
for quite some time for layered 1D systems, as discussed
by Ko and Inkson. ' However, this origin of the problem
has not been explicitly shown, previously, for rnultidi-
mensional systems such as laterally con6ned and pat-
terned 2DEG's. In our early calculations, ' we found
that the transfer-matrix method is numerically unstable
for lateral systems, unless a rather weak modulation po-
tential and/or an overall short quantum constriction are
considered.

This numerical instability may be removed from the
calculations by reformulating the problem with use of the
scattering-matrix method. ' The essence of the method is
to separate the forward and backward states included in
the description of the wave function of a quantum system
and to let the less localized propagating modes rather

The connection between the expansion coefficients of the
electron wave function in the two perfect leads is

BI. BR
=M(L, R)

S2i(L, i + 1)=Sq2(L, i)M2)(i, i + 1)S)i(L, i + 1)

+S2,(L,i),
Sq2(L, i+1)=S22(L, i)Mi)(i, i+1)S)2(L,i+1)

+S22(L, i )M22( i, i + I ) .

(15)

Thus, by knowing the scattering matrix S(L, 1 }, we may
calculate all the successive scattering matrices S(L,2},
S(L,3), . . . , S(L,N) with use of Eq. (15). The scattering
matrix S(L,R) =S(L,N+1) is t—hen calculated by letting
i =N and M(N, N+1)=M(N, R). The initial scattering
matrix S(L, 1}can be obtained from Eq. (15) by letting
i =0, M(0, 1)—:M(L, 1), and S(L,O}—:S(L,L) with use of
the fact that S(L,L)= 1 (see Appendix A}.

The stability of the scattering-matrix method is derived
from the separation of the forward and backward states
and the conversion of the matrix (y') ' corresponding to
the backward states appeared in the transfer matrix
M(i, i+ 1) into the matrix y' corresponding to the for-
ward states, and from the cancellation of (y') ' with (y')
in the formalism. This may be seen by closely looking at
Eqs. (10) and (15). In Eq. (15), the submatrices
M»(i, i+1) and M, z(i, i+1) appear as the forms of
M»'(i, i+1) and of M, , '(i, i+1)M,2(i, i+1}.Using Eq.
(10), we iinmediately obtain that Mii (i, i + 1)
=T~~'(&, i+1)y', by which (y'} has been converted

than the evanescent modes dominate numerically. This is
realized by coupling explicitly the outgoing state vectors
B"and C to the incoming state vectors 8 and C of the
system via the scattering matrix S(L,R)

gE BI.
=S(L R)

S))(L,R} Si2(L,R)

S2i(L,R) S22(L,R) (13)

Similarly, we may define the scattering matrix S(L,i) for
the subsystem up to the ith transverse strip region
through the equation

B' B
=S(L,i)

Sii(L, i) S)2(L, i)
(14)S2((L, i) S22(L, i)

With the help of the transfer matrix M(i, i+1) defined in
Eq. (5), an iterative relation for the scattering matrix
S(L,i +1}of the subsystem up to the (i +1)th transverse
strip region can be derived (see Appendix B). The subma-
trices of the scattering matrix S(L,i +1)are given by

Sii(L, i+1)=[1—Mii (i, i+1)Sii(L,i)

XM2i(i, i+1)] 'M)('(i, i+1)Sii(L,i),
S,2(L, i+1)= [1—M, , '(i, i+1)S,2(L, i)M~, (i, i+1)]

X [M)) (i,i + 1)S)2(L,i)M22(i, i + 1)

—M() (i,i +1)M) (i2, i+1)],
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—ik (x xo)
(16)

+R(x y) g @ (y)g dR bse Q 0 (17)

Thus, the boundary condition imposed on the wave func-
tion of the electron is

Bl.

CR

I
0

where i is a unit vector with elements given by
(I ) =5 . Inserting this boundary condition into Eq.
(13) gives

BR $11(L,R ) $12(L,R ) I

$~,(L,R) $~~(L,R) 0 (19}

The coefficient vectors B"and C are then obtained from

8"=$„(L,R)I

C =S~,(L,R)I
(20)

At T =0, the conductance of the quantum constriction
in the linear-response regime can be written as

e (R)
G= — g J(EF,k )/k (21)

where J(EF,k ) is the current carried through the quan-
tum system by the electron state associated with the in-

ik (x —xo )
cident wave 4 (y)e ' from left with energy EF
and wave vector k =[2m*(EF s)/A' ]'~ (for a g—en-
eral derivation of the current J(EF,k },see Appendix C)
and (R) indicates that the sum is taken over those values
of m for which k is real. In terms of the expansion
coefficients of the wave function in the perfect leads, the

into y, and that M, , (i,i + 1)M, 2(i, i +1)
=T, , (i,i + l)T,2(i, i +1), i.e., the cancellation of (y )

with y' has been achieved. For evanescent modes, the
corresponding elements of y' decay exponentially. Thus,
as we expected, those elements of y'' originating from the
propagating modes become dominant in the calculations
for the scattering matrices.

A unique solution of the Schrodinger equation of the
quantum system can be obtained only after we impose a
boundary condition on the electron wave function. Here
we are interested in such electron states that may carry
the electric current through the quantum system.
Thus, let us consider an electron in the left lead in

ia (x —xo~)
a state, 4 (y)e ', propagating forward from
left to right with energy c and wave vector
k =[2m'(s —s )/fi ]'~, where s is the eigenenergy
of the transverse eigenstate 4 (y}. After being scattered
in the patterned quantum constriction, the wave function
of the electron in the left and right leads should be writ-
ten, in terms of the transverse eigenstates I4„(y)I, re
spectively, as

ik (x —x )4 (x,y)=4 (y)e

conductance is then simply given by

2e 2 (R) (R)
G= 'y 1 —y„"/.„'f' =

n

2 (R) (R)

(22)

Here, we wish to note that the method presented in
this section is formulated in a basis of infinite order and is
exact. However, Eq. (3) has to be solved numerically by
truncating n and m at a high transverse level M. In the
actual calculations we let M as large as it is necessary to
obtain a desired convergence in the conductance. We
further note that the method is also very general and has
a large flexibility. The method can be easily used to treat
electron transport in the quantum systems having very
complicated structures in both the longitudinal and the
transverse directions. We note also that in the calcula-
tion of the conductance, it is necessary to assume that the
two perfect leads have a finite width w. This is because
we would, otherwise, encounter a scattering matrix of
infinite order, which cannot be handled numerically. We
will show in the next section that the results of the calcu-
lations converge quickly as w increases, and in many
cases such as antidot arrays all properties of interest can
be obtained by simply setting w equal to the width w, of
the narrow constriction containing the structure of in-

terest. Finally, we note that in this paper only the two
mode-matching techniques, i.e., the transfer-matrix and
the scattering-matrix methods, are discussed and corn-
pared. The recursive Green's function method' is in fact
an alternative approach, which does not suffer from the
numerical instability. Therefore, it would be very in-

teresting to compare our calculation results with the cal-
culations done by the recursive Green's function method.
However, for the quantum systems as considered in this
work, no such calculations are available and, therefore,
the comparison cannot be made at the moment.

III. APPLICATION TO 1D ANTIDOT ARRAYS

For the demonstration of the power of the scattering-
matrix method, we show in this section the results of the
applications of the method to electron transport through
10 antidot arrays implanted in a 2DEG constriction. In
addition, these antidot systems have their own transport
properties of interest. The structure of our systems is de-

picted in Fig. 2(a), where the antidots have been modeled

by squarelike potential barriers of size I„XI and height

Vb and have been placed, with an equal separation I„ in

the middle of the narrow constriction. In this work, the
hard-wall confinements' have been assumed and the cal-
culations have been performed with the assumption of an
effective mass of m*=0.067m„which is appropriate to
the Al Ga, As/GaAs interface. In the following, we

will denote the width of the perfect leads as w =wL =wR
and the width of the constriction as w, .

We have first applied our scattering-matrix formalism
to an array of six weakly modulated antidots and have
compared the results of this calculation with that of Ref.
9 obtained with the transfer-matrix technique. Figures
2(b) and 2(c) show the calculated conductance of the
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FIG. 2. (a) Schematic representation of the quantum system
investigated in this work. Nd squarelike antidots with electron
potential Vb and dimensions l„and l~ are placed with an equal
separation I, in the middle of a narrow constriction of width w, .
The quantum system is connected with two perfect semi-
infinitely long leads with widths wL and w&, respectively, and
we assume that wL =w&=w with w~w, . (b) Calculated con-
ductance G as a function of the Fermi energy EF for the quan-
tum system shown in (a) with six antidots (1V~ =6) and different
lead width w. The geometrical parameters assumed in the cal-
culations are w, =100nm, 1„=1„=50nm, 1,=40 nm, li =1„=30
nm, and Vb =El —=(fi /2m )(~/w, ) . The curves in the figure
have been offset vertically for clarity. The curve for w = 00 was
obtained in Ref. 9 with the transfer-matrix method. (c) Same as
(b), but for a larger range of the Fermi energy.

weakly modulated system with 1„X1»=50X50 nm and

Vb =E& =—(fi /2m )(n' jw, ) with w, = 100 nm. The
three lower curves are the results of the present calcula-
tions by the scattering-matrix method for w =w„
w =2w„and w =4w„respectively, while the top curve is

the result obtained previously by the transfer-matrix
technique for w= 00. Overall, the same feature is seen
in the calculated conductance traces for w =2w„
w =4w„and w = ~: Five sharp resonant peaks associat-
ed with the quasibound states localized in between the
antidots appear at the edges of the conductance plateaus,
and the plateaus are superimposed by oscillatory struc-
tures resulting from resonant tunneling through the lon-
gitudinal resonant states of the narrow constriction. By
setting tc =w„we see, in the lowest curve of Fig. 2(b),
that these oscillatory structures are suppressed, but the
five resonant peaks at the edges of the conductance pla-
teaus remain. Figure 2(b) shows further that dips also ap-
pear in the calculated conductance traces. In the dimen-
sions of antidots that we have assumed, the sharp reso-
nant peaks are seen to be well separated by these dips
from their adjacent conductance plateaus. In the limit
case of an infinite number of antidots, the sharp resonant
peaks should develop into electron miniband-associated
conductance bands, while the dips develop into electron
minigap-associated sharp conductance square wells.

With the transfer-matrix method, we could not investi-
gate the electron transport for the systems with antidots
either in large numbers or having a strong modulation
potential, nor could we calculate the conductance at high
Fermi energies even for the above system possessing only
a small number of weakly modulated antidots. We can,
however, fulfill these tasks quite easily with the
scattering-matrix method. Figure 2(c) shows the calcu-
lated conductance by the scattering-matrix method for
the same systems as for Fig. 2(b) but in a larger range of
Fermi energies. We can see in this figure that for
Vb=E„both the sharp resonant peaks and the dips are
well preserved at high Fermi energies. This result may be
seen more clearly in the lowest curve of Fig. 2(c) for
which w=w, is assumed. In the cases of w=2w, and
w =4w„ large oscillatory structures are again seen to be
superimposed on conductance plateaus at high Fermi en-
ergies.

Figure 3 shows the results of the scattering-matrix cal-
culations for an array of 20 antidots with Vb =E& and
three different values of 1„X1. From now on, we will
only consider the cases of w =w„ in which the oscillatory
structures at conductance plateaus are suppressed. For
the array of antidots with 1„X1 =20 X 20 nm (the lowest
curve), we see that only shallow dips appear on the inside
of the conductance plateaus at high Fermi energies. This
may be as one expects, since such a small and weakly
modulated potential should have rather sma11 influences
on the high-energy transverse modes of the narrow con-
striction. However, this potential may still be considered
as a "strong" one for the low-energy transverse modes of
the constriction. We see, for example, that sharp dips ap-
pear at the edges of the second and third conductance
plateaus. These conductance dips can be well associated
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FIG. 3. Calculated conductance 6 as a function of the Fermi
energy EF for the quantum system in Fig. 2(a) with 20 weakly
modulated antidots (Nd=20) of different dimensions I„Xl~.
The geometrical parameters assumed in the calculations are
w =100 nm, w, =100 nm, l, =40 nm, li =l, =30 nm, and

Vb =El =—(A /2m *)(n./w, ) . The curves in the figure have been
offset vertically for clarity.

systems under the adiabatic approximation. "
For a strong modulation potential, a complicated

structure has been found in the calculated conductance of
the antidot arrays. Figure 4 shows the calculated con-
ductance for the array of 20 antidots with height
Vb =1000 meV. Figure 4(a) is for 1„Xl =20X20 nm,
while Fig. 4(b) is for 1„Xl =40X40 nm . In both cases,
strong conductance fluctuations, characterized by many
broad dips and numerous sharp peaks, are seen over a
large range of Fermi energies. However, conductance
plateaus may still be recognized in the lower Fermi-
energy region [i.e., at Fermi energies below 13.6 meV in
Fig. 4(a) or below 24.0 meV in Fig. 2(b)], although these
plateaus become piecewise due to the presence of many
conductance gaps. Looking at the results in more details,
we see in Fig. 4(b) two extremely narrow conductance

with the minigaps evolved from the 1D subbands of the
narrow constriction. (For each transverse mode, the cor-
responding 1D subband will develop into minibands with
rninigaps in between under the influence of a periodic
modulation potential, as we see in the electronic band
structure of the 1D Kronig-Penney superlattice. ) The
sharp dip at the edge of the second conductance plateau
can be attributed to the fact that the electron transport is
blocked by the first minigap originated from the first 1D
subband, while the sharp dip at the edge of the third con-
ductance plateau to the fact that the electron transport is
blocked by both the second minigap originated from the
first 1D subband and the first minigap originated from
the second 1D subband.

The top and middle curves of Fig. 3 show the calculat-
ed conductance for the array of antidots with
1„Xl =50X50 nm and 1„Xl =40X40 nm, respective-
ly. We note that the geometrical parameters of the anti-
dots assumed in the calculation for the top curve of the
figure is the same as for the lowest curve of Figs. 2(b) and
2(c). Comparing the top curve of Fig. 3 with the lowest
curve of Fig. 2(c), we see that by increasing the number of
the antidots in the array from 6 to 20 the dips at the
edges of the conductance plateaus develop into conduc-
tance square wells of depth 2e /h, indicating that the
dwell-defined electronic minigaps are formed in the array
of 20 antidots with I XI =50X50 nm and Vb=E, .
Such conductance square wells are also seen in the calcu-
lated conductance for the array of 20 antidots with
1„X1 =40 X40 nm and V~ =E, (see the middle curve of
Fig. 3). In the top and middle curves of Fig. 3, we also
see a rapidly oscillated conductance band before each
electron minigap-associated conductance square we11. As
we mentioned before, this is due to the formation of the
e1ectron minibands from 1D subbands. All these results
can be well understood by applying a simple 1D Kronig-
Penney model to each transverse mode of the quantum

EF (meV)

40

10-

t

Q

3.25 3.30
EF (meV)

Pl~ ~V

(bj

I NLllLL & 1H I

l

JII I 2 IP~

EF (meV)

FIG. 4. (a) Calculated conductance 6 as a function of the
Fermi energy E+ (bottom curve) for the quantum system shown
in Fig. 2(a) with 20 strongly modulated antidots (Nd =20 and
Vb=1000 meV) of dimensions 1~ Xl~=20X20 nm . The top
curve shows the contribution to the conductance from the elec-
tron states of the even transverse parity, while the rniddle one
shows that from the electron states of the odd transverse parity.
The other geometrical parameters assumed in the calculations
are w =100nm, w, =100nm, 1, =40nm, and 11=1,=30nm. (b)
Same as (a), but for I„XI =40X40 nm . The inset shows the
extremely narrow conductance band at energies around 3.27
meV with refined Fermi energy.
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bands. Each is composed of 19 sharp peaks [see the inset
in Fig. 4(b) for the first one at energies around 3.27 meV).
Both of the conductance bands are located at energies
well below the energy of the first 1D path of the antidot
array and, therefore, correspond to electron transmission
via resonant tunneling through the coupled quasibound
states localized in between antidots. The first one is asso-
ciated with the coupled quasibound states of even trans-
verse parity, while the other one (at energies around 4.18
meV) is associated with the coupled quasibound states
that have odd transverse parity. The two corresponding
conductance bands are also observed in the array of the
antidots of the smaller size [see Fig. 4(a)). A difference in
this case is that the two conductance bands are much
wider and actually overlap to each other. This is simply
because the interactions between the quasibound states in
the array of the smaller antidots are much stronger.

After the first two 1D paths of the antidot arrays are
energetically available for transmission, the conductance
first shows a sharp increase to a value of 2 X(2e /h ) and
then a complicated structure characterized by fluctua-
tions in high Fermi-energy range. Since the electron
states of the different transverse parities do not interact,
we may reduce the difficulty in our understanding of the
results by considering the contributions to the conduc-
tance from the electron states of the even and odd pari-
ties separately. The top curves in Figs. 4(a) and 4(b) show
the calculations for the even transverse parity, while the
middle curves show that for the odd transverse parity.
For each parity, a rather regular conductance-band struc-
ture can be seen when the Fermi energy is in between the
energies of the first and second 1D paths of the parity.
However, when we add the calculated results for the two
different parities together to give the total conductance, a
somewhat irregular behavior emerges. The conductance
is seen to have a value close to 2X(2e /h), when the
transmission bands of the two different parities overlap or
to have a value close to 0 when the transmission gaps of
the two parities overlap. An irregular structure is also
seen to appear in the calculated conductance for each
parity at the Fermi energy higher than the energy of the
second 1D path of the parity. Having in mind that in
this case there are two or more energetically opened 1D
paths, we may understand this irregular structure in the
same way as above for the total conductance of the anti-
dot array in the energy range where only the first even
and the first odd paths of the array are open for transmis-
sion. By adding such already irregularly structured con-
ductances of the different parities together, we should see
a more complicated structure in the total conductance of
the antidot arrays. It is more interesting to note that for
the array of the smaller antidots (I„XI~=20X20 nm ),
rather strong fluctuations are seen in the calculated con-
ductance at the Fermi energy higher than the energies of
the third even and the third odd 1D paths of the antidot
array. This high-energy conductance characteristic may
also be understood, as above, as a result of mixing of the
contributions from many difFerent 1D paths. Such
characteristic fluctuations should also be seen, but not
shown in Fig. 4(b), in the calculated conductance for the
array of the larger antidots (I X I» =40 X40 nm ) after its
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FIG. 5. Calculated conductance G as a function of the Fermi
energy Ez at four finite temperatures for the same two strongly
modulated antidot arrays (%&=20 and Vb=1000 meU) as in
Fig. 4, namely, all geometrical parameters of the array in (a) are
the same as in Fig. 4(a) and that in (b) are the same as in Fig.
4(b).

third even and its third odd 1D paths are energetically
open for transmission.

One other important feature of the strongly modulated
antidot array is that in addition to the well-developed
conductance square wells or gaps with the depths close to
the multiples of 2e /h, a number of dips with depth
values different from the multiples of 2e /Ii are seen to
appear in the calculated conductance traces. These dips
can be understood as being due to wave interferences and
will develop into conductance square wells or gaps as the
number of antidots in the array is further increased.
However, as long as a finite number of antidots are con-
sidered, such conductance dips should always appear.
This finite-size effect may have to be taken into account
in order to have a full understanding of transport mea-
surements for an array of a finite number of strongly
modulated antidots.

Overall, in the strongly modulated antidot array, we
see an irregular conductance structure characterized by
two kinds of fluctuations, namely slow and rapid fluctua-
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tions, in the high Fermi-energy range. The slow Quctua-
tions is associated with the effect of wave interferences
and the formation of the electron minigaps in the array.
This kind of fluctuation is insensitive to temperature up
to a few Kelvin. ' The conductance and resistance oscilla-
tions observed experimentally in Refs. 2 and 3 are exam-
ples of this kind of fluctuation. The rapid fluctuations
can be traced to the formation of the electron minibands.
However, due to the strong mixing of the contributions
from different 1D paths in the array, the formation of
regular electron minibands is only seen in the low Fermi-
energy range. This kind of fluctuation can be easily
smoothed out by thermal averaging and ensemble averag-
ing, and may only be observed at very low temperature
and the condition that the electron phase-coherence
length is at least comparable with the sample dimen-
sion. ' Only very recently has this kind of fluctuation
been experimentally observed. ' To give readers a rough
feeling about up to what temperature the rapid conduc-
tance fluctuations can still be discernable, we plot finally
in Fig. 5 the calculated conductance at four different
finite temperatures' for the arrays of 20 strongly modu-
lated antidots with the same geometrical parameters as in

Fig. 4. Basically, there are no significant differences be-
tween the calculated conductance at T =10 mK and that
at T =0 mK [see the lowest curves in Figs. 4(a) and 4(b)
and in Figs. 5(a) and 5(b)]. The rapid ffuctuations can
still be seen at T= 100 mK in the calculated conductance
for the two strongly modulated antidot arrays and are
well smoothed out at T =500 mK. However, the slow
conductance fluctuations are seen to be well preserved at
T = 1 K [see the top curves in Figs. 5(a) and 5(b)].

IV. SUMMARY AND CONCLUDING REMARKS

We have presented a formulation of the scattering-
matrix method for the calculation of electron transport
through a lateral quantum system. Based on this formu-
lation, we have shown explicitly that the less localized
but physically important states are allowed to dominate
in the calculations. As a consequence, the method
remains numerically stable and accurate, even in the limit
of strong modulations and consisting of a large number of
quantum dots and antidots with large sizes. Thus, the
problem of the numerical instability that one often en-
counters in the application of the transfer-matrix method
to ballistic electron transport has been solved.

As an example of its application, the scattering-matrix
method has been used to study electron transport in both
weakly and strongly modulated 10 antidot arrays defined
in a 2DEG constriction of width w, = 100 nm. In partic-
ular, we have been concerned about the electron mini-
band and minigap structures of the 1D arrays and the
effect of wave interferences on electron transport in the
systems. We have explored them by computing the con-
ductance of the systems as a function of the Fermi energy
E». For a weakly modulated antidot potential (i.e.,
Vb =F-i, where Ei is the threshold energy of the 2DEG
constriction for electron transmission), we have found
that when the size of the antidots becomes 1arge enough,
the conductance bands, as a resu1t of the formation of

e1ectron minibands, can appear at the edges of the con-
ductance plateaus of the 2DEG constriction. This result
agrees with our early calculation with the transfer-matrix
method at low Fermi energies for an array of six anti-
dots, and has supplemented the result of that calculation
at high Fermi energies and for the arrays with a larger
number of antidots, i.e., in the situations where the
transfer-matrix method fails. We argued that the elec-
tron miniband structure of the weakly modulated 1D an-
tidot arrays can be well explained by applying a 1D
Kronig-Penney model to each subband of the 2DEG con-
striction under the adiabatic approximation.

For the arrays with a strong modulation (Vb »E» ), we

have seen a more complicated conductance structure.
Two extremely narrow transmission bands have been
found in the array of the 20 antidots of size
I„Xl =40X 40 nm at Fermi energies below the energies
of the first even and the first odd 1D paths. These two
conductance bands can be resolved into 19 peaks and can
be attributed to resonant tunneling via the quasibound
states localized in between the antidots. The two corre-
sponding, but much wider, conductance bands can also
be identified in the calculated conductance for the array
of the 20 antidots of size l„Xl» =20X20 nm . In addi-

tion to these two conductance bands, the low Fermi-
energy conductance of the strongly modulated antidot ar-
rays is characterized by a piecewise plateau at a height
close to 2 X (2e /h ) and gaps at a depth close to 2e /h or
2X(2e2/h ), reffecting the formation of many electron
minibands and minigaps in the systems. At Fermi ener-

gies higher than the energies of the second even and the
second odd 1D paths, the conductance of the antidot ar-
rays shows strong fluctuations. This characteristic can be
explained as a result of mixing of the contributions from
many different 1D paths. Many dips with an irregular
depth have been seen to appear over a large range of the
Fermi energy in strongly modulated antidot arrays.
These dips can be explained as an effect of wave interfer-
ences or, sometimes at high Fermi energies, as a mixing
of the effect of wave interferences and the effect of the
formation of the electron minigaps. Overall, we have
shown, for the strongly modulated antidot arrays, that
the conductance is characterized by two kinds of fluctua-

tions, namely the slow and rapid fluctuations, in the high
Fermi-energy range. The slow fluctuations result from
wave interferences and the formation of the electron
minigaps in the arrays, and are insensitive to temperature

up to a few Kelvin, while the rapid fluctuations reflect the
formation of the electron minibands and can be easi1y
smoothed out by thermal averaging. Due to strong over-
laps between the minibands associated with different 10
paths in the arrays, the regular miniband formation may
only be observed in the low Fermi-energy range, even at
very low temperature.
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APPENDIX A: DERIVATION
OF MATRICES M(L, 1),M(N, R ), and S(L, 1)

The following is a brief derivation of the transfer ma-
trices M(L, 1) and M(N, R) and the scattering matrix
S(L, 1). The transfer matrices M(L, 1}and M(N, R) cou-

ple the wave function in the quantum channel to that in
the two perfect leads. For the derivation of these two
matrices, let us write the wave functions in the left and
right leads, q] (x,y) and ]I]"(x,y), in terms of the trans-
verse eigenstates I4„(y)] and eigenvalues Is„j of the
leads,

]II (x,y )=+4„(y)g d„[ab e

and

BL B1
L =M(L, 1)

Mll(L, 1) Mlz(L, 1)

Mzl(L, 1) Mzz(L, 1)

B1 B
=S(L,1)

J

Sll(L, 1) Slz(L, 1}

Sz,(L, 1) Szz(L, 1)

BL

CI

(A8)

(A9)

It is elementary to show

The scattering matrix S(L, 1) can be calculated from the
transfer matrix M(L, 1) as follows. Let us recall

—ikL(x —x0 )]+Cae

]IIR(x y) y @ (y)y dR [bRe' a 0

S„(L,1)=M, , '(L, 1),

Slz(L, 1)= —
M] ]'(L,1)M]z(L, 1 }, (A10}

where

+cRe a 0
] (A2)

Sz] (L, 1)=Mzl(L, 1)M]l'(L, 1),
Szz(L, 1)= —Mzl(L, l)M]l'(L, 1 }M]z(L,1)+Mzz(L, 1} .

L R
na na na ~

a a a

1/2
2m*(s —s, )

2

(A3)

(A4)

This result is identical to that obtained from Eq. (15) by
letting i =0, M(0, 1)=—M(L, 1), and S(L,O):—S(L,L) with
the use of the fact that S(L,L)= l.

By matching q] (x,y) to ]II'(x,y) at x=xo =x]'] and
'I] (x,y) to ]p (x,y) at x =xo, with the requirement that
amplitudes and derivatives with respect to x are equal, we
obtain

APPENDIX B: DERIVATION
OF AN ITERATIVE RELATION

FOR SCATTERING MATRIX S(L,i + 1 }

p' P' ' P'
M(L, 1)=T(L,1)=

p1

Q] (A5}

For the derivation of an iterative relation for scattering
matrix S(L,i +1), let us recall the following two equa-
tions:

M(N, R)=
N l T(N, R)yN l

yN p

0 (yN)
—l

Bi BL
=S(L,i)

S„(L,i) S,z(L, i)

Sz, (L, i) Szz(L, i)

BI
C' (Bl)

pN pN pR pR and

QN QN QR gR (A6}

where y can be calculated from Eq. (7), P' and Q'
are obtained from Eq. (9), while P '" and Q ' are given

by the following equation:

Bi Bi+1
=M(i, i+1)

I

M»(i, i+1) M, z(i, i+1)
Mz](], ] +1) Mzz(], ] +1) Ci +1 (B2)

(PL,R) dL, R
na na na ~

(QL, R} dL, RkL, RW =$ k Wna na a na a
(A7} By eliminating coeScient vectors B' and C' from the

above two equations, we have

—Szz(L, i)Mzl(i, i + 1 } 1

M„(i,i + 1 }—S,z(L, i}Mz,(i, i + 1) 0

B]+l Sz,(L, i)

S],(L,i}
Szz(L, ])Mzz(], ] +1)

S,z(L, i)Mzz(i, i + 1 }—M, z( i, i + 1)

BL

Ci +1 (B3}

The scattering matrix S(L,i + 1 }is then given by the rewriting the above equation as
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0 [M„(i,i + 1)—S(2(L,i)M~, (i, i + 1)]

1 S22(L, i)M2, (i, i +1}[M„(i,i +1)—S,2(L, i)M~, (i, i+1)]

S2,(L, i) S~~(L, i)M2~(i, i + 1) Bt-
(B4)

After some elementary manipulations, the submatrices of the scattering matrix S( Li +1), as shown in Eq. (15), are

then derived.
APPENDIX C: CALCULATIONS OF THE ELECTRIC CURRENT J (Ep, k~ )

The electric current J(EF,k ) carried through the quantum channel by the electron state associated with the in-
ik (x —xo )

cident wave tp (y)e ' from left with energy EF and wave vector k =[2m'(EF e—)/trt ]', can generally be

expressed, in terms of the expansion coefficients of the wave function in any one of the transverse strip regions or in one

of the two leads, as

ie A tt) /'2

dy q'k (x,V} +k (x,y}—q'k (x,y}
2m * — /2 - '

By m
™ t

By
J

m n aP

(Cl)

(R)

~(E,, k. }=—'
n

(C2)

where (R) indicates that the sum is taken over those

values of n for which k„=[2m'(EF —s„)/fi ]'~ is real

Similarly, in terms of the expansion coefficients of the

Here, the region index (i, L, or R} has been dropped, and

the electron charge —e has been assumed. This equation

may be greatly simplified if we evaluate the current using

the expansion coeScients of the wave function in a lead

region. In the left lead, d„=5„and b =5, the

current is then

(C3)

(R) kL kR

g(R..+T..}—=g " I.„'I'+ „" Ib„"I' =1, (C4}
n n m m

where R „=k„/k Ic„ I
and T „=k„/k Ib„ I are

known as the reAection and the transmission coefficients,

respectively.

wave function in the right lead, the current is

Z(E k )= —' yk"IbRI'
m n

Combining Eqs. (C2) and (C3) gives the familiar relation-

ship,
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