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Electron-electron interaction and the persistent current in a quantum ring
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We have studied the effect of electron-electron interaction on the magnetic moment {associated with

the persistent current) of electrons in a quantum ring. We have introduced a model where the electron
makes a circular motion in a parabolic confinement simulating a quantum ring which is subjected to a
perpendicular magnetic field. The electron states in such a ring with and without the Coulomb interac-
tion are then investigated. We have also explored the limits of narrow and wide rings. Our detailed cal-
culations of the energy spectrum where the interelectron interactions are also included indicate that
when the electrons occupy the states of only the lowest Landau band, the interaction merely shifts the
spectrum to higher energy and its effect on magnetization is insignificant. The result can be understood
as entirely due to conservation of the angular momentum. A qualitative estimate for a large system
where electrons also occupy higher Landau bands indicates that the Coulomb interaction mixes some of
the states resulting in a rapid increase in the magnetization.

I. INTRODUCTION

A metallic ring of mesoscopic dimension in an external
magnetic field is known to exhibit a wide variety of in-
teresting physical phenomena: For example, it can carry
an equilibrium current (the so-called persistent current)
(Refs. 1—3) which is periodic in the Aharonov-Bohm flux
4 with a period Co=bc/e, the flux quantum. The effect
is a direct consequence of the properties of the eigenfunc-
tions of isolated rings, which cause the periodicity of all
physical quantities. The reason for this behavior is well
known, and briefly is as follows: In the case of a ring
which encloses a magnetic Aux 4, the vector potential
can be eliminated from the Schrodinger equation
by introducing a gauge transformation. The result is
that the boundary condition is modified as g„(x+L )

2m.i4/40=e 'f„(),xwhere L is the ring circumference. The
situation is then analogous to the one-dimensional Bloch
problem with the Bloch wave vector
k„=(2~/L)4/4o. The energy levels E„andother relat-
ed physical quantities are therefore periodic in %0. For a
time-independent flux 4, the equilibrium current (at
T =0) associated with state n is

ev„BE„I„=— = —c
L B4

where v„=t)E„/ABk„=(Lc/e)t)E„/t)@is the velocity of
state n. An important condition for I„to be nonzero is
that the wave functions of the charge carriers should stay
coherent along the circumference L of the ring.

It should be pointed out that the persistent current
defined above is not a transport current, but rather an
equilibrium property of the ring which at T =0 is direct-
ly related to the ground-state energy. It is interesting to
recall that the ring geometry and the thermodynamic

current (1) played a central role in the gauge-invariance
interpretation of the integer quantum Hall effect and the
current-carrying edge states. ' ' Such currents have
been detected in recent experiments in an ensemble of
—10 Cu rings, ' in three single gold rings, and in a sin-

gle loop (of diameter 2.7 pm) created in a GaAs hetero-
structure. In the first experiment, the current was found
to be periodic in 4 with a period —,40, while in the other
two experiments the current is also periodic in 4 but the
period is 40. The single-ring experiments are more in-

teresting, because there one can avoid the problem of
averaging the observed current over a large number of
rings —which has been a major topic of discussions in
most theoretical work —and a more direct theory like the
one presented below is applicable. Rings prepared in
semiconductor systems are even more useful for our stud-
ies than those made out of pure metals. In fact, meso-
scopic rings made in GaAs heterostructures with smaller
numbers of electrons (but of higher mobility) are sup-
posed to be the best systems to measure the persistent
currents. ' Experiments on persistent current in a single
loop created in the GaAs heterojunction have been re-
ported only recently. Here the disorder is very weak and
the carrier density is very low, indicating that the
electron-electron interaction should be more important
than in a metallic ring. The surprising result is that the
electron-electron interaction does not significantly
change the value of the persistent current. The aim of
our present work, to be described below, is therefore to
find out to what extent interelectron interactions
inhuence the persistent current.

It is interesting to note that periodic oscillations of
thermodynamic quantities like magnetization as a func-
tion of magnetic Aux in a ring topology have also been
known from early theoretical work on the edge states in a
circular disk in a strong magnetic field, ' and from much
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earlier work on a thin metallic cylinder in a weak mag-
netic field, ' such that lo& ro .Here lo=(A'c/e8)' is the

magnetic length and ro is the radius of the cylinder. The
essential contribution to the oscillations was found to be
due to the magnetic surface levels corresponding to elec-
trons localized in a narrow layer near the cylinder sur-
face. One other important work in ring geometry is by
%ohlleben et al. ' who showed that in the ballistic re-
gime a mesoscopic ring will make a transition from a
high-temperature state with no current to a low-
temperature state with a persistent current even in the
absence of an external field. Finally, we should add in
this context that the magnetic properties of the recently
discovered graphite needles, often referred to as carbon
nanotubes, ' are also quite intriguing. '

Studies of quantum-confined systems, in particular
quasi-zero-dimensional electron systems (quantum dots),
have received considerable attention in recent years. '

The electrostatic confinement of the two-dimensional
electron gas is done by a variety of techniques, and the
confinement potential is to a good approximation para-
bolic. Most of the experimental information about the
electron states in these systems has been obtained from
far-infrared magnetospectroscopy and magnetocapaci-
tance studies. A theoretical understanding' ' of the
electronic states of these "artificial atoms"' ' is also em-

erging. In addition, very interesting transport measure-
ments were recently performed by McEuen et al. in a
semiconductor quantum dot. These authors showed that
in the quantum Hall regime the conductance peak has a
periodic structure as a function of the magnetic field.
The oscillations were explained as due to the magnetic
depopulation of the higher Landau levels. From this re-
sult, and assuming a constant Coulomb energy, they were
able to map out the single-particle energy spectrum,
and found it to be in very good agreement with what one
expects in a parabolic confinement, studied over half a
century ago. Single-electron capacitance spectroscopy
is also quite unique in obtaining the energy spectrum of
few-electron quantum dots, in particular the spin transi-
tions predicted earlier.

In a recent paper, Beenakker, van Houten, and Star-
ing suggested that when the electrons in a disk are in
the lowest Landau level and when the charging energy
(electrostatic energy associated with the incremental
charging of the dot by single electrons) is comparable to
the cyclotron energy, the magnetoconductance oscilla-
tions are suppressed [Coulomb blockade of the
Aharonov-Bohm (AB) effect]. The blockade is lifted and
the AB effect is recovered if one considers a quantum
ring instead. In semiconductor nanostructures, quantum
rings can be created from a two-dimensional electron sys-
tem with an additional gate within the gates shaping the
disk (quantum dot). Application of a negative voltage to
this additional gate would deplete the central region of
the disk, thereby forming a ring. In the lowest Landau
level the basic difference between the two systems is the
behavior of the electrochemical potential (or the energy
cost associated with the addition of a single electron to
the disk or the ring) as a function of the magnetic field
which determines the conductance oscillations. The situ-

ation is different when the second Landau level is occu-
pied, in which case the electrochemical potential for a dot
has the same sawtooth behavior as that for a ring, and
the Coulomb blockade of the AB effect, as discussed
above, is lifted.

In all of these studies of the ring the effect of the
electron-electron interaction has been ignored. This
effect is quite important in understanding recent experi-
ments ' ' on mesoscopic systems which, in turn,
reflect the behavior of the energy levels. For an ensemble
of normal metal rings, electron-electron interaction has
indeed been shown to contribute significantly to the per-
sistent current. These studies involve Hartree-Fock or
Hartree (for a single ring) (Ref. 33) calculations. In the
light of recent experiments on a single mesoscopic ring, '2
the effect of electron-electron interaction on the magneti-
zation of electrons in a quantum ring has become an im-
portant issue which needs to be understood.

The purpose of this paper is to report on effects of in-
terelectron interaction on the energy spectrum and the
magnetic moment associated with the persistent current
in a quantum ring. The outline of our paper is as fol-
lows. In Sec. II A, we introduce the model Hamiltonian
for our quantum ring and present the single-electron for-
malism. We then show that the earlier results in Refs. 7
and 8 for the metallic ring hold only for the ideal case of
a 5-function confinement in our more general scheme.
The expression for the interaction matrix elements used
in our numerical calculations is derived in detail in Sec.
II B and the form used for the magnetization calculation
is discussed in Sec. IIC. In Sec. III, we present results
for the quantum rings of various width. The present
study of the Coulomb-interaction effect involves solving
numerically the electron states for 4-12 electrons in a
quantum ring with parabolic confinement. The accuracy
of the method was already very well established in earlier
literature. ' ' ' Our earlier work on quantum dots indi-
cated that, for up to four electrons per dot, Coulomb in-
teraction introduces sawtooth structures in the magneti-
zation curves which are otherwise featureless. These
few-electron systems can be taken as the atomic limit of
low-dimensional electron systems where the electron
screening is not very efficient. In the case of quantum
dots, this limit has indeed been achieved in recent experi-
ments, where incremental occupation of the dots with
n, =1, 2, 3, and 4 electrons has been observed. In Sec.
IIIB we then discuss some qualitative results for a 12-
electron system. We should finally mention that, since
our primary concern is the role of electron-electron in-
teraction on the magnetic moments, here we consider the
quantum ring to be free of any impurities. Although the
role of disorder in a mesoscopic ring is a widely studied
(and yet unclear) topic, our study of the impurity-free
system can be justified for a xnesoscopic ring created in a
semiconductor heterojunction (as in Ref. 3), where the
electron motion can be made ballistic.

II. QUANTUM RING MODEL

In our model for the quantum ring the electrons are
forced to make a circular motion by confining them in a
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a = 20 Eq. (3}can be easily separated, and the radial part is
T

fi df I df I+- —, f——
2m ~ yr r dr r

eBA'

2m c

+ r + ,'m—coo(r—ro) —E f =0. (4)
8m *c

FIG. 1. The confinement potential a(1 —r/r0)' with r0 = 10
at o.=5 and 20. The parameter a, defined in Eq. (5), is inversely
proportional to the width of the ring.

Let us introduce the units

600m'A

hc' h
(5)

where A is the area of the ring, i.e., A =mr 0. The various
terms in the radial equation (4) can now be written as

parabolic potential. The form of the confinement poten-
tials which creates electron rings of various width are
shown in Figs. 1 and 2. The model described below
therefore describes rings of finite width which are closer
to the real systems as compared to earlier studies by oth-
er authors which describe only ideally narrow rings.
The parameter a, which controls the width of the ring as
seen in these figures, will be described below. In the fol-
lowing, we derive the essential formalism for single-
electron and many-electron systems.

eB vari

2m*c 2m 'ro

2+2 $2r2-
8m *c 2m *r r0

'2

2

—,'m *coo(r ro) = — 4a~
2m r0 r0

fi 2m *~A
2m'r h0

2

Parameter a is inversely proportional to the width of the
ring: as ~0 is increased, the ring becomes narrower. Simi-
larly, if the area is increased, then the relative width (with
respect to the diameter) of the ring becomes smaller. As
shown in the confinement potentials plotted in Figs. l
and 2 [which, in fact, depict a(1 r/ro) for—various
values of aj, large a corresponds to a narrow path for the
electrons to traverse and hence the electron motion is
essentially in a strictly one-dimensional ring, whereas for
small n the electron motion is almost two dimensional.

A brief note about how to convert the results presented
below to more conventional units. First, one has to speci-
fy the radius of the ring, i.e., R =ra/10 m. Once that
is fixed, the energy results obtained for that radius are
multiplied by (m, /m')1/(152. 4R ) to obtain its value in
meV. To obtain the magnetic field B in T, one should
multiply JV by 1/(1316 R ). The results for the
confinement energy are ih'coo=am, /(152. 4m 'R ) in

meV, where a is defined in (5).
If we now substitute the dimensionless quantities

A. Single-electron system

In what follows, we choose the symmetric gauge vector
potential A= —,'8( —y, x,0}. In polar coordinates the

Schrodinger equation then takes the form

a'@ 1 a@ 1 a'l(

2m dr r c)r r 88
ieBR Bg
2m*c ~~

2B2 2

+ + —,'m 'coo(r —ro) EQ=O . —
8m'c2

(3)

Introducing the ansatz

f (r)e
l

r 2m*mAx=—,6= E,
r0 h

(6)

The Hamiltonian for a particle confined to a circular
motion by a parabolic potential and subject to a perpen-
dicular magnetic field is given by

'2
l e

p
——A +—,

' m 'ego(r ro)—(2)
2m

u=50 u = 100 the radial equation (4) takes the form

f"+ f'+ 4C+2JVl —4a ——(JV +4a )x

I2
+8a x — f =0.

X

FIG. 2. Same as in Fig. 1, but for a =50 and 100.

Let us first consider the case where the electron is
confined to a one-dimensional circle. In our model, this
corresponds to a 5-function confinement, i.e., x =1 is set
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8=
—,'(JV—1)

or, in a more familiar form in the original units,

4E= 1—
2m'ro2 @o

(9)

We also consider the other limit, where the magnetic field
is large compared to the confinement a. In this limit we
have

1 12f"+ f'+ 4C—+2JVl —JV x — f=0 .
X X

With the substitutions u =x '~ f and t =JV'~ x, Eq. (10}
can further be written as

48+ 2JVl p 1 —41'
4t

identically. Equation (7) then reduces to

[4C+2JVl 4—a (—3/ +4a )+8a 1—]f=0 . (8)

The solution of the equation is, as expected for an elec-
tron on a circular ring, ' '

(9}] and is given by a set of translated parabolas. The
upper Landau band remains at much higher energies. As
the value of a is decreased, the upper Landau band coines
down in energy and the Landau levels begin to form even
at very low values of 4/40. The level crossings are also
quite prevalent in the case of a =5, as shown in Fig. 3.

B. Interaction matrix elements

Since single-electron wave functions are obtained nu-
merically, we need to derive an expression for the interac-
tion matrix element which is suitable for our numerical
work. We begin by writing the interaction potential as
the Fourier transform integral:

V(r)= f V(q)e ''i'dq .1

(2n. )

Single-electron wave functions are also written in the
similar fashion:

its(r)= 2 f (I}z(q)e
' 'dq .

(2ir)

The two-body matrix element

which is the familiar equation for Landau levels. The ei-
genvalues 8 are

8=(n +—,')JV,

or, in the original units,

E =fico, (n + —,
' ),

XP& (rz)f& (r, )dr, dr2

can then be written as

(13)

where co, =Be/m'c is the cyclotron frequency. There-
fore, we recover the usual two-dimensional electron sys-
tem in a magnetic field in the appropriate limit. In order
to calculate the single-electron energy levels, we have
solved Eq. (7) numerically for various values of a, and the
results are presented in Fig. 3. As expected, for large
values of a (a &20), in the low-energy range the energy
spectrum is close to that of an ideally narrow ring [Eq.

80
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FIG. 3. Single-electron energy levels as a function of the
magnetic Seld for (a) a narrow ring and (b)—(d) parabolic
con6nement model with various values of conSnement potential
strength. The second Fock-Darwin level is potted as dotted
lines.

Xgi (qz+q) V(q)dq, dq, dq . (14)

The convolution integrals appearing in Eq. (14) are most
conveniently evaluated in r space in the following
manner:

C«(q)= fPz(k)P&(k —q)dk

(2rr) f pr'(=r)pr (r)e 'e'dr (15)

and

D«(q}=fPDk}ev«+q}dk

(2rr) f gr'(r=l()r(r)e'e'dr

With these notations the interaction matrix element takes
the form

l
V = C (q)D (q) V(q}dq . (17)

In a quantum ring, or in any cylindrically symmetric sys-
tem, the wave functions are of the form

P„(r)=R„,(r)e", 1=0,+1,+2, . . . , (18)

where A, represents the quantum number pair [n, 1 j. Sub-
stituting this particular form of the wave function to the
convolution integral (15) and denoting by m the
difFerence (1 —1') and by 8 the angle between q and the
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x axis, we obtain

Ci(„.(q)= fR„((r)R„,((r)e'" ' ' e ' 'dr

= fR„((r)R„((r}e'e ' r dr dg

=2vri (
—1) e ' f J (qr)R„((r)R„.( (r)r dr .

0

Here J is Bessel's function of order m. The other con-
volution integral (16) can also be evaluated similarly to
give

im0
D((„(q)=2ni e ' J (qr)R„((r)R„.((r)r dr .

(20)

Substituting these into the matrix element (17) and mak-
ing use of the symmetry relation J =( —1) J, the in-

teraction matrix elements can be expressed as

Vi i i q =5( +( ( +( 2n f dq qV(q) f dr, r(J)( ( )(qr, )R„((r, )R„((ri)
X f drzr&J ( ( )(qr2)R„((r2)R„((r2) . (21)

In principle this form could be used to evaluate the interaction matrix elements. In the present case, however, we have
no analytic expression for the radial wave functions R„.This means that the integer Bessel transforms of Eq. (21)
should be computed numerically. Let us now consider the Coulombic interaction in a plane, i.e., take the form of in-
teraction potential to be V(r) =P/r, so that the Fourier transform is V(q) =2irP/q. In that case, the integration over q
in Eq. (21) can be evaluated to be

f J (qri)J (qr2}dq=
0

m+ —' —''m +1~+' I (m +1)l'( —') "'' r
7'2 ( I') (22)

Here 9 is the Gauss hypergeometric function. When r2 & r, , the result is the same except that the roles of r i and r2 are
interchanged. The hypergeometric function can be evaluated from its power series. For that purpose let us denote by
M the series

M (z)= g g„' 'z",
n=0

where the coefficients g„' ' are defined recursively as

g (()) —
1

m+ —,
'

g(m+1) 2 g(m)
m+1

(m + ,'+n)( ,'+—n)—
g(m) 2 2 g(m)

(m +1+n)(n +1)
Integral (22) then evaluated to be

(23)

(24)

f J (qr, )J (qr2)dq=
0

rn
2 p

2
2

m+1 ~ 2
P) r&

and, similarly, the matrix element (21):

(2~) &&(, +(,, (, +(,
2

2
QO

7'
I (l2+l3(+ ~

X dr, R„((r, )R„((r, ) dr2R„((r2)R„((rz)rz' '
M)(

1
22 33 2 3 7

L

2
oo "2 (l I

—l4 )+1 7 )+ dr2R„((r2)R„((r2) dr) R„((ri )R„((ri )r i
'

M)(
2 r2

(25}

This is the form of interaction matrix elements used to
obtain the numerical results presented below. As men-
tioned above, we have used the Coulomb interaction in a
plane: V(q) =2m~/q, where ((=e /4neoe, and in the nu-
merical calculations that follow we have used the values
m*=0.07m, a=13, and the radius of the ring ro =10nrn.

C. Magnetization

Experimentally, one measures the magnetization which
arises due to the persistent current in single, isolated
loops. ' In our present work, the magnetic moment is
calculated from its therrnodynarnic expression
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m E—/kT E —/kTBE
e e

BB
(26) n,=4

23

21—

The partial derivatives BE /M were evaluated as the ex-
pectation values of the magnetization operator in the in-
teracting states ~m ). In the ring geometry (i.e., in the
symmetric gauge), the magnetization operator takes the
form

47—

45-
CV
X

LL)

19—

17—

15—

T2' c 2c
(27)

ll l~ /I ply g%g Pl \ I / /II I

4
/

\ /'I g QADI/xg II
/ g / f l ) I
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p
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I
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'

I
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The magnetization JM, (in units of energy /JV) and suscep-
tibility are periodic functions which are gradually
damped with decreasing a at high fields, refiecting the
behavior of the energy levels.

To guarantee the convergence of the sum in (26) one
has to go to high enough energies E of the interacting
many-particle system, and to obtain energies E accu-
rately enough one must include a large number of single-
particle states to build up the noninteracting many-
particle basis states. Furthermore, to track the behavior
of the magnetic moment as a function of the applied mag-
netic field, a considerable range in magnetic field (8) has
to be spanned. This implies that one must have a huge
number of single-particle wave functions available. To
help the resulting bookkeeping problems and speed up
the calculations, the numerical solutions of the single-
particle equation (7) were stored into a data base. This
data base was consulted during the formation of the
Hamiltonian matrix, and dynamically updated in the case
where no matching wave function was found. The Ham-
iltonian consists of matrix elements of the operator (2) be-
tween noninteracting many-particle states, i.e., essentially
of the superpositions of the Coulomb terms (21). In fact,
a vast number of terms (21) is required for the construc-
tion of the Hamiltonian. On the other hand, the same
elements are repeatedly used in the Hamiltonian, though
they differ in the number of particles or in the total angu-
lar momentum. We therefore put the elements

V& & z & into a dynamic data base, where they can be

retrieved when needed.

FIG. 4. Energy spectrum for the four interacting (solid lines)
and noninteracting (dashed lines) electron systems at a=20 and
5 for several values of temperature T (in units of energy).

'5 T=O.O
1.5 a=5 T =00

all close-lying states belong to different angular momen-
tum, and Coulomb interaction cannot couple them be-
cause of the conservation of the angular momentum. The
excited states seem to be shifted from the ground state
somewhat more than the corresponding noninteracting
values. At a =20, the interaction has practically no efFect

on the magnetization, which is, as expected, a periodic
function with period 40. At a =5, the magnetization is a
sharp periodic function for small magnetic fields and is
then rapidly damped as the Landau levels begin to form.
There is a a slight shift in phase between noninteracting
and interacting system results.

The situation remains the same for the five-electron
system, as shown in Figs. 6 and 7, where we present the
energies and magnetization, respectively. The energy
shift due to the Coulomb interaction is slightly more pro-
nounced in this case. The magnetization result is also
similar to that of the four-electron system, except that
the oscillations of the magnetization curves have opposite
phases for odd and even numbers of electrons. This can
readily be explained in terms of the occupation of an even

III. RESULTS AND DISCUSSION 0.0— 0.0—

As mentioned in Sec. I, we restrict ourselves in this pa-
per only to impurity-free systems. For reasons to be ex-
plained below, few-electron systems and somewhat larger
systems display significantly different results, and below
we present a detailed analysis of these two cases.

A. Few-e)ectron systems

-1.5

0.0—

-1.5

O.O—

-15
T = 0.06

0.0—

I I 15
T = 0.12

0.0—

T = 0.06

1

T = 0.12

In Fig. 4 we show the energies, and in Fig. 5 the mag-
netic moments of four interacting and noninteracting
electrons at a=20 and 5. It is clear that the only discer-
nible effect of the Coulomb interaction is to shift the
noninteracting energy spectrum to higher values of ener-
gy. This is due to the fact that in the lowest Landau level

-1.5 I

4
0/4,

-1.5
8 0 4

0/4,

FIG. 5. Magnetization for the four-electron system and for
the parameters as in Fig. 4. At a=20 the magnetic moments
for the interacting and noninteracting systems are identical.
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FIG. 6. Same as in Fig. 4 but for a five-electron system. FIG. 8. Energy spectrum (qualitative) for a 12-electron sys-
tem at a=5.

or odd number of single-electron levels. These results are
therefore in sharp contrast to those of a quantum dot,
where the Coulomb interaction has important effects on
the energy spectrum and introduces structures in the
magnetization. It is interesting to note that several au-
thors ' have either conjectured or found in their model
systems that for a fairly weak form of Coulomb interac-
tion the persistent current in a one-dimensional ring is in-

dependent of the presence and/or strength of the
Coulomb interaction. The results of our present method
(see also Ref. 34) are, of course, independent confirmation
of those assertions in a much more general case.

B. Many-electron systems

The energy results presented above indicate that at de-
generate points the energy curves have slopes of opposite
sign. This means that the magnetization practically van-
ishes at these points. On the other hand, in the upper
Landau band there may be intersections where slopes
have the same sign. This would imply a dramatic in-
crease in magnetization. Coulomb interaction can in fact
couple states better in the second Landau band than in
the lowest Landau band. Therefore, we have also es-
timated the effects of the Coulomb interaction in the case
where the electrons occupy single-particle levels in the

second Landau level. This (multiple-subband occupation)
is to be contrasted with the case when the electrons in the
noninteracting ground state occupy only a few of the
lowest single-electron levels in the first subband. There,
in general, the excited states with the angular momentum
of the ground state are energetically so high that the
Coulomb interaction cannot mix them into the interact-
ing ground state. It is clear that the density of the nonin-
teracting many-particle levels will increase with the num-
ber of electrons. This is especially so when in a
configuration there are particles with different values of
the principal quantum number because it is then possible
to form configurations with almost the same energy that
still preserves the total angular momentum. This implies
that the Coulomb force can easily mix these
configurations. Unfortunately the resulting high density
of states and the number of particles involved makes this
system very dificult for numerical studies.

To obtain qualitative estimates for the behavior of
many-particle systems we have to limit drastically the
number of states in the noninteracting basis: we included
all states whose energy was less than the energy of the
configuration where m lowest-lying particles were excited
just above the Fermi level, and restricted the number of
unoccupied states, m, to 2, or 3. As an example we have

1.5- a=20 T=OO

+

-1.5
T = 0.06

'iJ'

-1.5
T = 0.12

-1.5—
0 2 4 6 8

4/4,

0.0—

-1.5

0.0 ——

0.0—

-1.5
4

C)/4,

T= 0.0

T = 0.06

'g ''.
J

T = 0.12

6 8

FIG. 7. Same as in Fig. 5 but for a five-electron system.
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studied 12 electrons in a ring with confinement a=5
(Figs. 8 and 9). At low values of the magnetic field this
system has two electrons in the second Landau level.
Numerical studies show that at certain values of the mag-
netic field some states with different angular momenta
tend to group together to form a nearly degenerate
ground state. The grouping occurs at points where the
states involved have, as a function of the magnetic field,
slopes of the same sign (Fig. 8). Because the magnetiza-
tion is proportional to the derivative of the energy with
respect to the magnetic field, this grouping would cause a
dramatic increase in the magnetization (Fig. 9).

IV. SUMMARY

We have investigated eigenstates of a few interacting
and noninteracting electrons in a quantum ring, subjected
to a perpendicular magnetic field. In contrast to the stan-
dard perturbative approaches used earlier by several au-
thors, we have studied the interacting electron states by
directly solving the many-electron problem numerically.
We have made a connection with earlier work ' for a sin-
gle electron by studying various limiting cases: the ideally
narrow ring and the usual two-dimensional electron gas.
This shows the general character of our model. We find
that in the lowest Landau level the Coulomb interaction
is found simply to shift upward the energy spectrum of
the noninteracting system. For a ring close to being
ideally narrow, originally studied in Refs. 7 and 8, there
is no discernible effect of the interaction on the magneti-
zation. The reason lies in the conservation of the angular

- momentum: all close-lying states in the lowest Landau
band belong to different angular momentum, and the
Coulomb force cannot couple them. Our qualitative esti-
mates indicate that if there are so many electrons in the
system that the second Landau band begins to be occu-
pied, then the density of the noninteracting levels is very
high. There are then many levels with the same angular
momentum very close to each other so that the Coulomb
force can couple them. The result is a rapid increase in
the magnetization. The circular symmetry in the lowest
Landau level can, however, be broken by adding an im-
purity in the ring, which might generate a far more active
role for the electron-electron interactions than what is
observed here. In our present model, we can also include
the electron-spin degrees of freedom. In these cases, of
course, the computations are much more involved. It
should also be stressed that the field of quantum
confinement has achieved great advancement in recent
years. In addition to the energy levels described above, a
measurement of even the pair-correlation functions of
quantum rings will perhaps be possible in quantum rings
created in the fashion of "quantum corrals. " These will
be the subject of our future publications.
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