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Aldo Di Carlo and P. Vogl
Walter Schottky Institut and Physics Department, Technische Vniversitat Munchen,

857/8 Garching, Federal Republic of Germany

W. Potz
Department of Physics, University of Illinois, Chicago, Illinois 60680

(Received 17 May 1994)

A general multiband and multichannel scattering theory of the current in mesoscopic-device
structures is developed and applied to the Zener diode. It takes into account the realistic electronic
structure, its modification by the high electric field, and the field-free contact regions in a nonper-
turbative manner. This theory elucidates the interplay between Zener tunneling and Wannier-Stark
resonances. Quantitative conditions for the occurrence of Wannier-Stark oscillations in the current
of a bulk semiconductor or superlattice are derived. It is predicted that Wannier-Stark resonances
are detectable in the interband tunneling current of highly doped submicrometer p-i-n diodes with
very short i zones. We show that there are two regimes in the Zener tunneling current: a low-field
or Zener regime where the conductance is a smooth function of the applied voltage, and a high-field
or Stark regime where Wannier-Stark resonances are induced.

I. INTRODUCTION

Since Zener (1934) explained the electric breakdown
mechanism in solids in terms of band-to-band tunnel-

ing, the phenomenon of Zener tunneling has attracted
much interest, particularly since it is relevant in modern
nanoscale devices. In spite of much progress in the un-

derstanding of interband tunneling (see, e.g. , Refs. 1 and

2), the existence of Wannier-Stark (WS) localization and
the relation between Zener tunneling and Stark ladders
is still controversial.

In this paper, we present a general theory for the in-
terband tunneling current in semiconductors that takes
into account the electronic structure and the nonunifor-
mity of the electric field in a device in a realistic fashion.
We provide quantitative criteria for the existence of WS
resonances in the Zener current and predict that one can
observe these resonances in bulk transport experiments.
By developing a multiband multichannel scattering the-
ory for interband tunneling that consistently includes the
asymptotic contact regimes in a device, we can resolve
some of the long-standing controversies about the rela-
tion between Zener tunneling and WS ladders.

The concept of Stark ladders was introduced by
Wannier who analyzed the spectrum of a crystal Hamil-
tonian H~ in the presence of a uniform electric Beld. In a
one-band approximation, Wannier found its eigenvalues
E„ to consist of discrete, equidistant levels with square
integrable wave functions,

~-=(')+- G (1)

Here, F is the electric Geld, C is the shortest reciprocal
lattice vector in the direction of the Geld, e& is related to
the zero-Geld Bloch eigenvalues and the average is per-

formed over all wave vectors in the Brillouin zone parallel
to F. Throughout this paper, e denotes the magnitude
of the electronic charge.

This work stimulated a long controversy about the ex-
istence of these so-called WS ladders in the spectrum
of the full many-band Hamiltonian H~. Indeed, the
energy spectrum of Hg was shown to be continuous
and does not contain localized states. ~~ Only recently,
a rigorous mathematical theory was developed for one-
dimensional systems that showed that HF does not pos-
sess eigenvalues of the form of Eq. (1).~~ However, there
do exist equidistant Stark resonances of finite width, pro-
vided the spectrum of the field-&ee Hamiltonian pos-
sesses energy gaps and the width of the energy bands
is 6nite. " '4

Up to now, however, these rigorous results have not
been extended to realistic three-dimensional semiconduc-
tors and to nonuniform fields. In fact, many of the con-
troversies about %S ladders originate in the commonly
used assumption of an infinitely extended, uniform elec-
tric 6eld. This uniform field approximation leads to sev-
eral inconsistencies and artifacts. First, a periodic solid
in a uniform electric 6eld does not possess propagating
bulklike scattering states that are a prerequisite for cal-
culating a well-de6ned current in a 6nite potential drop.
Second, a system in an infinitely extended constant elec-
tric field has no ground state. Third, within the uni-

form Beld approximation, the energy spectrum of H~ is
a chaotic function of the 6eld direction, since the slight-
est change in the 6eld direction alters the periodicity of
the Hamiltonian along the Geld direction.

Experimentally, there have been several attempts to
identify WS resonances in bulk semiconductors. No
clear evidence has been found so far. However, our cal-
culations show that the formation of WS resonances, as
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well as their signature in the tunneling current, require
extremely high built-in electric fields. Such structures
are becoming achievable only due to recent progress in
molecular-beam epitaxy. This is in contrast to the sit-
uation in superlattices, where WS resonances have been
clearly resolved, albeit, in optical experiments.

Next to WS ladders, another quantity of fundamental
interest in connection with high electric fields is the in-
terband or Zener tunneling current that can be observed
in devices with high reverse bias. The Zener current has
been calculated in two classic papers by Kane. ' Kane
also employed the uniform field approximation and ex-
panded the wave function of the three-dimensional H~
in terms of Bloch functions. He obtained the equation

e„(k) —ieF —eFX„„—E a„(k)

eF )—X„a (k) =0,
Tngn

where

properties of solids. i 2 2@

Our paper is organized as follows. In Sec. II, we de-
velop an elastic multichannel scattering theory for the
current response in mesoscopic solid-state device struc-
tures which is applicable under very general boundary
conditions, such as an arbitrary number of contact re-
gions of diferent spatial dimensions and electronic struc-
ture. This task involves the construction of a suitable
steady-state density operator, correct normalization and
a general proof of orthogonality of scattering states for
nonvanishing potential asymptotics, derivation of a gen-
eral expression for the current density in response to a (fi-
nite) applied bias within an effective independent-particle
picture and, finally, application to the Zener diode. The
technical details of the key issues in this derivation and
a discussion of validity is presented in the Appendices A-
D. In Sec. III, numerical results and concrete predictions
of the Zener tunneling rate and the appearance of WS
states in the interband current are presented. In Sec. IV,
we critically examine and summarize the prerequisites for
detecting WS states in transport experiments.

denotes the interband matrix element containing the pe-
riodic part of the Bloch functions u„&. In Eq. (2), s„(k)
is the band structure for zero field and the a„(k) repre-
sent the expansion coefficients of the wave function. By
treating the interband terms in Eq. (2) in first-order per-
turbation theory, and by evaluating e„(k) in terms of a
two-band k p model, Kane obtained a WKB-like expres-
sion for the transmission coefficient, 2s 24'~s 2s

with

u lf

T(F, kii) = — ' + S(F),9 (4)

E[( = h k[[/2m',

E~ = +2heF/mgm'Eg

Here, E~ is the energy gap and k~~ the planar momentum
perpendicular to the field direction. The mass parame-
ter m* is a function of the valence and conduction band
masses, 2/m' = 1/m, + 1/m„. The last term S(F) in
this equation was neglected by Kane and yields a small
oscillatory term in the field.

It has been pointed out by Argyres and Sfiat, that the
theory of Zener tunneling, as sketched above, contains
several assumptions that become invalid for high fields.
For very high fields, the interband elements in Eq. (2)
cannot be treated as a small perturbation. In addition,
a k - p two-band model does not lead to a finite band
width and, therefore, never supports WS resonances, no
matter how high the field is (see Sec. III C). Finally,
interband tunneling in a bulk semiconductor requires a
very high electric field which can only be reached in an
extremely thin sheet of the active device region. This is
in con8ict with the uniform field approximation that has
been employed almost exclusively in studies of high-field

II. MULTICHANNEL SCATTERiNG THEORY

In this section, we develop a consistent theoretical for-
mulation of the current-voltage characteristics of meso-
scopic device structures within the framework of elas-
tic scattering theory. It forms the basis for the subse-
quent treatment of the Zener diode. In particular, we
will show that the Zener current [Eq. (12)] is determined
by a Landauer-Buttiker-type expression ' which is ap-
plicable to multiband and multichannel situations with
an arbitrary number of difFerent contact regimes, very
high electric fields and, consequently, nontrivial poten-
tial asymptotics.

Application of time-dependent scattering theory allows
a general proof of orthogonality of scattering states in
mesoscopic device structures, an issue which has been
under debate in the past. This is a central issue for
the calculation of absolute current densities. A theory
of the Zener diode must be based on a realistic many-
band treatment and, therefore, calls for the development
of a time-dependent scattering theory where, asymptot-
ically, the particles are not free (effective-mass-like), but
move in the periodic potential of a crystal. As a by-
product, this approach provides a straightforward proof
of equivalence between conductance formulas (i.e. , a con-
ductance proportional to transmission coefficients) and
linear-response theory for an open system. This issue, as
well as the proper procedure to derive such a result, has
been under some discussion in the recent past. Finally,
the conditions under which the linear-response result is
valid for finite applied bias are discussed.

A. Mesoscopic multichannel devices

We consider a general electronic device to consist of
(i) a device region, (ii) connecting leads or transition
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contact region device region contact region

FIG. 1. Schematic picture of a tunneling diode consisting
of a device region in the center and two adjacent semibulk
particle reservoirs. The in-channel states of each reservoir
denote states propagating towards the device and are labeled
with "—". The out- or "+" channel states propagate away
from the device region.

regions, and (iii) an arbitrary number of particle reser-
voirs. Here, the device may be any structure which ex-
ploits the wave nature of electrons and provides predom-
inantly elastic propagation of charge carriers, such as
electronic wave guides, (resonant) tunneling structures,
constrictions, etc. The leads generally are transition re-
gions which mediate particle exchange between the de-
vice and reservoirs. Each of the reservoirs R is char-
acterized dynamically by a reservoir Hamiltonian H R
and macroscopically by a set of thermodynamic param-
eters, such as temperature and chemical potentials. For
a solid-state electronic device, reservoirs will usually be
crystals of some given spatial dimension. A simple situ-
ation with two-particle reservoirs and a single device re-
gion is depicted in Fig. l. Associated with each reservoir
are a number of "in" and "out" channels characterized
by (B,n, k+), in the sense of quantum scattering theory,
where "—"refers to "in," i.e. , towards the device, and
"+" to "out," i.e., away from the device (see Fig. 1).s
n denotes a set of discrete quantum numbers, such as
spin, band and/or subband indices. k denotes a set of
quantum numbers which, in the thermodynamic limit,
become continuous, such as the DR components of Bloch
vectors. For simplicity, the vector nature of Bloch vec-

tors k will generally be suppressed in the notation of this
section.

Except for the leads and regardless of any bias applied
across the device, individual reservoirs are assumed to be
isolated from each other and to be "infinitely" large in the
sense that, suKciently deep inside the reservoirs, thermal
equilibrium is maintained. This condition is imperative
to allow a clear definition of the applied bias within an
elastic scattering approach. It implies that the current
density and net charge density vanish suIIiciently deep
inside the reservoirs. For systems with a unidirectional
field, such as the Zener diode, in the steady state the
current density must be small throughout the structure,
such that the carrier distribution deep in the reservoirs
remains undisturbed. Therefore, one either is confined
to linear response or one must attach higher-dimensional
reservoirs to guarantee that the transmission probability
between these reservoirs is (infinitesimally) small.

Before proceeding with the theoretical part it is useful

to explain the notation which will be used throughout
this paper. H denotes the effective one-particle Hamil-

tonian of the system (device plus reservoirs) in thermal
equilibrium. Its eigenstates Iv) may be bound states Ib)

and scattering states I@&+„&). Its channel Hamiltonians
are H It = lim„~R H, where lim„~~ denotes x going to
infinity inside of reservoir R. The channel Hamiltonians
have eigenstates IPR „i, ) which serve as channel states (in
or out asymptotes) of the scattering states of H and H.
H = H + U denotes the efFective one-particle Hamil-
tonian in the steady state of the system under applied
bias. Its eigenstates IN) inay be bound states IB) and
scattering states I4'& „&). Its channel Hamiltonians are
Hri = H, + U~(oo), where UJt(oo) = lim„~tr U(x). The
decay

U(x) —U~(~) I (5)

must occur sufBciently fast to allow formulation of scat-
tering theory. No universal criteria exist; however, spe-
cial cases have been studied in the literature. See, for
example, Refs. 37, 35, and 38. Under condition (5) the

continuous spectrum 0.~, of H is determined by the con-

tinuous spectra o, of the channel Hamiltonians H~,(R)

(H) (R)
&ae = URoac

B. The steady-state density operator

The steady-state density operator p(0) used to calcu-
late the current response is constructed using an adia-
batic switching procedure applied to the equilibrium den-

sity operator,

p- = ).f~,-,~I&~,.a)(&~, .I+).»Ib)(~l ~

R,n, A:

(6)

f„are Fermi-Dirac distribution functions which deter-
mine occupancy of eigenstates of I . A general pro-
cedure to approximately reduce interacting many-body
systems to efFective independent-particle subsystems has
been developed in Ref. 40.

Within linear response, i.e., in the limit of (infinites-
imally) small applied potential, one can show that (see
Appendix B)

p(0) = ) f~,„,sl@'„„„)(@'„„„I+)f, lB)(BI (7).
R,n, Ic

One observes that the occupation probability of bound
states IB) of H are those of the corresponding, via first-
order perturbation theory, bound states Ib) of H Scat-.
tering states I@&„&)of H have the same occupation

probability in p(0) as scattering states Ig& „z)of H with
the same in asymptote (B,n, k) in p .

Considering structures without bound states, the
above expression is also valid for finite applied bias if
the transmission coeKcients between the reservoirs are
infinitesimally small. The latter, however, was a neces-
sary condition &om the beginning for keeping reservoirs
in thermal equilibrium when a 6nite bias is applied across
the device. A more detailed discussion of this critical is-
sue is given in Appendix B.

In Appendices B—D we show that traditional scatter-
ing theory is fully applicable to the type of many-channel
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device systems as envisioned here. The presence of non-
trivial potential asymptotics, such as nonzero or periodic
potential asyrnptotics, provide no conceptual complica-
tions. In particular, we identify proper normalization of
the scattering states 1(If& „k) and show that they are, un-
der very general conditions, orthogonal in a generalized
sense of improper eigenfunctions. Consequently, a uni-

tary 8 matrix may be defined, as detailed in Appendix
D.

associated with channel state 1(t)R „k+) is denoted by

v„„„=(2~)~"
1(yR,„,k~ IVI'~ „,+) Iffn~,

where DR denotes the spatial dimension of reservoir R
and OR its normalization vob~me prior to the thermody-
namic limit.

The average velocity of the system is

C. Average reservoir current densities

The steady-state current density in any given reser-
voir may be calculated from the expectation value of the
velocity operator

v = (V) = —([II,X]).

The total current density deep in reservoir R (deep
enough to allow the use of the asymptotic form of scat-
tering states) arises from infiux through reservoir R,

J d " k fR(ER (k))(„—VR „„)
Here, X and V denote position and velocity operator,
respectively. ( ) denotes the statistical average with
respect to p(0). Individual stationary scattering states
must fulfill KirchhoE s junction rule and their contribu-
tion to the current in reservoir R is expressed most con-
veniently using their asymptotic time evolution,

with

dE
z l&kEa, ;(k) I

for given energy band n These fo.rmal limits hold when
scattering states are used as basis functions for wave
packets with incidence through reservoir R for t ~ —oo
and exit through any reservoir R for t m +oo, in the
usual sense of scattering theory. Here, we consider a
situation where Bloch states form the asymptotic chan-
nel states. The k integral is over the energy surface
8 of "out" states (R, n, k+) of energy E = E~,„(k) =
Eg „-(k). Note that time-reversal symmetry causes that
the energy surface for "in" channels equals that for "out"
channels. The relation between "in" and "out" channel
states normalized to unit velocity may be expressed in
form of a unitary 8 matrix, Appendix D,

and transmission from channels (R, n, k ) into reservoir
R,

(—e)
l~(g, -,k —+R,n, k+)-I vR, ,RR, k+

( )g)
~

Since the reservoirs remain in thermal equilibrium,
f~„k = fR(E~„(k)). Here we have used that veloc-
ity matrix elements are diagonal in degenerate channel
eigenstates. zs ss Using unitarity of the 8 matrix one ob-
tains for the average total current density in reservoir
R

~ ( e) ) d(D~)k )(2z )~~ E=E „(k)[,;,-- ... ~ f()
—T(, ,

— ~,;,-+)f (E)]
XVR, ,k

where T(;~&) = lt(;~i)1 denotes the transmission proba-
bility &om "in" channel "i" to "out" channel "j." Note
that solely transmission from R g R survives in (11).
This is a most general expression for the current density
in reservoir R within an e8ective independent-particle
picture. It is applicable to a variety of geometries with ar-
bitrary number, spatial dimensions and electronic struc-
ture of system and reservoirs. In case of time-reversal
symmetry, one has T(;~~) = T(;~~) ——T(~~,.).

"A,n, k
(A,n, k+), (R,n, k ) ~(R,n, k ~A, n, k+)

R,n, k

~R,A~n, n~k, kr(R, n, k —-+R,n, k+ )

+(1 bR, R~RR, RRbk ) k(Rt, , RRkmtt, vR, k+) &

(10)

de&ning transmission and re8ection amplitudes, t(;„~ „t)
and r(; ~ „(,), between channels (R, n, k+). The velocity

D. Application to the Zener diode

This approach is applied to highly-doped p-i-n junc-
tions where the electric field due to doping and applied
bias is assumed to be unidirectional, i.e., functions of z
only. In this case, we have two three-dimensional reser-
voirs (I. and R) in form of semi-infinite crystalline bulk
regions which are characterized by identical Hamiltoni-
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ans, except for a constant shift in energy which equals the
net potential drop eVD across the diode. Note that H
contains the built-in potential due to doping, whereas
the diode with externally applied bias corresponds to
H = H + U(z). The total z-dependent electrostatic po-
tential which accounts for doping and the external Beld
will be denoted by V(z). For both U(z) and V(z) prop-
erty (5) is required throughout this paper.

Utilizing that k~~, spin, and energy E are conserved in
an elastic tunneling process through the Zener diode, one
may simplify (11) to

ge0-EL
g& onduction

/ wow

+////yy~X
'W/

valence &/

R
F=O

eVD

j= z f dk~~~~f dE

) ). (L„s-~a,a+)(kii E)(f~(E) —fr(E)j (»)

Integration over k~~ is performed over the projection of
the Brillouin zone onto the k -k„plane. For compu-
tational purposes, scattering states, ~@+& & (k~~, E)), are

t

most conveniently characterized by their reservoir R, en-

ergy E, k~~, and the ~ component k, , j = ~i, ~2, . . . of
the real k vectors which, in the bulk regions I and R,
solve E = E„(k~~, k~). Here, spin is not included ex-
plicitly in the label, for brevity, even though spin-orbit
eKects are taken into account in the present calculations.

T(~ ~- ~ ~+) (k~~, E) denotes the transmission coefBcients

of the structure at given energy E and k~~.

E. Calculation of scattering states of a Zener diode

Any realistic electronic structure calculation of the
scattering states ~4+@ & (k~~, E)) of p-i-n semiconductor

diodes and, consequently, of the Zener current, must

(i) take into account the absence of translational in-
variance along the field direction in the diode and (ii)
treat the electric field on an equal footing with the pe-
riodic ionic potential. We use a multiband transfer ma-
trix approach within the &amework of the empirical
tight-binding method. This allows us to investigate
Zener diodes of submicrometer dimensions which contain
several hundreds of atomic layers.

For computational purposes, we subdivide the diode
into three regions (see Fig. 2), namely field-free highly
doped contact regions L and R to the left and to the right,
respectively, and an active region M where the electric
field is nonzero. In regions I and R, the Hamiltonian is
given by the field-&ee crystal Hamiltonian. We represent
the latter by a first-nearest neighbor sp s' tight-binding
model that includes spin-orbit interaction. 45 The tight-
binding parameters for GaAs and InSb are from Ref. 44
and Ref. 45, respectively. This Hamiltonian defines the
possible in-channel states for given k~~ and E. In fact,
for given (k~~, E) the eigenfunctions of each of the two
channel Hamiltonians include propagating Bloch states
for which k~ corresponding to real k, as well as evanes-
cent Bloch states for which k~ corresponds to complex
k . These solutions fall into two classes. The first class

FIG. 2. Schematic picture of the tilted electronic band edge
states in a typical p-n or p-i-n junction with a high electric
field. The total potential drop (Vo) is defined as the potential
difFerence between the left and right semibulk region (I,R).
The reverse bias (V„) is the difFerence between the Fermi levels
in the L and R regions. High n and p doping ensures that the
field is nonzero only in the M region. In this and all following
figures, the zero of energy lies at the top of the valence band
in the left (p-doped) semibulk region.

of functions, labeled ~P& &-), either have a group velocity
v~ i, (k~~, E) pointing towards the M region if Ic~ is real,
or, decay towards the M region if kz is complex. Only
the former provide suitable in-channel states for scatter-
ing states ~4'& & (k~~, E)). The second class of functions,

~P& &+), have v~ i, (k~~, E) pointing away from the M re-

gion (out-channel states) if Ic~ is real, or decay towards
the reservoir R if kz is complex. With 20 localized basis
functions per bulk unit cell, there are 10 solutions in each
class for given (k~~, E). There is a linear dependence be-
tween the two sets of 20 eigenfunctions associated with
each of the two bulk reservoir Hamiltonians. It may be
determined by matching the solutions across the central
region M via a technique developed in Ref. 42.

In region M, the field is nonzero and we expand the
electron wave function in terms of layered Bloch func-
tions, using that the system is periodic in the x and

y direction. The Hamiltonian matrix in this region in-

cludes, in addition to the spss' tight-binding matrix el-

ements, the electrostatic potential V(z). The latter is
taken into account by adding to all on-site matrix ele-
ments the matrix element of the macroscopic potential
energy (ui(X)~V(z)~ui(X)) = V(X,). Here, ~io(X)) de-
note the linear combination of atomic orbitals (LCAO)
basis states localized at the atomic position X. We would
like to stress that this does not imply that we assume the
potential to be a discontinuous function of position or
the basis functions to be b functions. In any I CAO-type
method, it is only the average of V(z) integrated over
an orbital density that enters the calculation. In princi-
ple, V(z) should be calculated self-consistently from the
scattering states. We have sidestepped this procedure by
determining the potential according to the depletion ap-
proximation since the latter is known to be adequate for
simple diode geometries, such as the one studied here.

As mentioned above, the eigenstates of the reservoir
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(zl@ (k[~, E)) = ) [fi,(zlzz'r, &- (k~~, E))

+ f+, (zI.P „(k,E))], for z in L .

Similarly, using the eigenfunctions of HR for a basis,

(zl@'+(k()) E)) = ) [fir, (zl&R, i (k(~& .E))

+ ~z;(zl~rr „+(kll, E))], for z in R .

(i4)

In order to obtain (z
I

4'+
(k~~, E)) in all space and to find

the relation between the expansion coeffrcients f&&&,,
one needs to match the solutions in regions L and R,
Eqs. (13) and (14), with those in region M, which is ac-
complished via the transfer matrix method. The relation
between the expansion coefficients f&, and f& allows.
determination of the asymptotic form of all scattering
states for given (k~~, E) and thus the associated trans-
mission coeKcients.

Let us consider, for example, the calculation of the
transmission coeffrcients associated with scattering state

(k~~, E)). This scattering state has an in asymp-j
tote which is an eigenstate (Bloch function) of Hr, charac-
terized by E, k~~, and real k . Thus we choose f&, ——b;~

and f&, ——0, for all i. The remaining coefficients can
been shown to follow Rom a matrix equation of the
form42, 48,49

fR

. fR.
&iP
J

The matrix P is the product of transfer matrices in the
transition region M, multiplied by unitary matrices U
that transform the complex Bloch functions in Eqs. (13)
and (14) to the layer representation. We refer to Refs.
42, 48, 49 for the technical details. The transmission
coeKcient is then

, Iv~, ~,+(klan E)I
T(i „„„+)(k)(,E) = Ifsr, 'I

' *

k (16)

where, in this case, fR,. is, of course, identical to
t& @z z- & @z &+ in the S matrix, Eq. (10). Similarly,

Eq. (15) may be solved for each incoming state from the
left and kom the right.

The method sketched very brie8y above can also be
used to calculate bound states of the electrons. The ma-
trix P in Eq. (15) is composed of four submatrices,

Hamiltonians HL, and HR, respectively, may be used as
basis functions in the corresponding reservoirs. Thus, for
given (k~~, E), any eigenfunction of the full Hamiltonian

H, such as the scattering states I4+& & (k~~, E)), may, in

region L, be written as

p+ — p++
p —— p —+

For a localized state, one has fR ——f& ——0. With Eq.
(15), this yields the condition det P +(k~~, E) = 0. The
energies E that fulfill this equation are the localized en-
ergy eigenstates.

Once the scattering states have been determined, we
can finally evaluate the current as given by Eq. (12).
However, an inclusion of the complete band structure of
valence and conduction bands in the calculation of the
Zener current calls for integration over both energy and
momentum. This is computationally very time consum-
ing and has, to our knowledge, not been carried out pre-
viously. In situations involving only a single parabolic
band, one can often simplify the transmission coeffi-
cient to the form T(k~~, E) ~ T(O, E —E~~), where

[~

= ~ kali 2m'. In the case of interband tunneling,
however, this is not possible. Since the gap along the z
direction rapidly increases with nonzero k~~, T depends
exponentially on both energy E and k~~. To perform the
required full k~~ integrations over the irreducible part of
the two-dimensional Brillouin zone, we have used the spe-
cial k point techniqueM (see Sec. IIIE).

III. RESULTS: ZENER CURRENT AND
WANNIER-STARK RESONANCES IN

INHOMOGENEOUS FIELDS

We consider a GaAs p-i-n junction with an intrinsic
region of 20 nm and high n and p-d-oping concentrations
such that the Fermi level lies at the bottom of the conduc-
tion band on the n side and at the top of the valence band
on the p side (with T=300 K, n p 10 cm s; see
Fig. 2). For this situation, the built-in potential equals
the energy gap. Hence, any externally applied reverse
bias [V„= (U~ —Ur, )/e] causes the conduction and va-
lence bands to overlap which induces a tunneling current
between the valence band in p-type region and the con-
duction band in the n-type region. We assume the elec-
tric field to be strictly parallel to the growth axis which
we take to be the [001] direction. General field directions
will be discussed in Sec. IVD.

In this paper, a tunneling coefficient or tunneling cur-
rent from a given valence band on the p side into a par-
ticular conduction band at the n side always implies that
these bands are in-channel states of the scattering states
involved in the charge transport. Other bands might well
be involved in the intermediate tunneling region but they
are, strictly speaking, ill-defined due to the lack of trans-
lational invariance in the direction of the field.

The number of bands that contributes to the tun-
neling current depends on the applied bias. While the
heavy-hole, light-hole, and first conduction band are al-
ways involved in the process, the split-ofF band only con-
tributes if eV„) E, , where E, is the split-oE energy
(= 0.3428 eV). In principle, electrons can tunnel into
the second conduction band on the n side as soon as
eV„) E(X~) —E(1's) = 0.92 eV, but this indirect tun-
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neling is very weak since the momentum Ap = M, II.. pro-
vided by field-induced tunneling is of the order of the
inverse width of the tunneling barrier, heF/Es ~ With
fields of the order of 1 MV/cm, Ak = 10 cm which is
much smaller than the X-I' separation in k space.

In Fig. 3 we show, as a function of the energy of an
electron incident from the p region, the individual con-
tributions to the transmission coefBcient at k~t

——0 from
each of the top valence band channels (heavy-hole, light-
hole, split-off; denoted by u) into the first and second
conduction band (denoted by ci, c2),
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FIG. 3. Calculated transmission coefBcients in a GaAs
p-i-n structure vrith an -intrinsic region of 20 nm. The ab-
scissa shows the energy (in eV) of the incoming electron in
the heavy (HH), light (LH) aud split-off (SO) hole band, re-
spectively. The 6nal state lies in the conduction bands and

k~~ is set to zero. V~ is the potential drop and the 6eld is as-
sumed constant in the intrinsic region and zero in the doped
areas.

Here, the total potential drop is eVD ——eV„+Eg p 2 5
eV corresponding to an applied bias of V„= 1.07 V, and
a field of F = 1.25 MV/cm. The zero of energy corre-
sponds to the top of the valence band on the p side. The
transmission coefFicient is seen to be a fairly smooth func-
tion of energy except at the onset of the split-o6' band.
In accord with &KB arguments for tunneling, the results
show that the tunneling probability decreases exponen-
tially with increasing electron mass. As a consequence,
the Zener current that corresponds to this situation is
dominated by the light-hole band, whereas the split-off
band contributes only 10%%up to the total current.

In Fig. 4, we consider a diferent situation where the
potential drop across the p-i-n structure is VD —3.4 V,
corresponding to an applied reverse bias of V„= 1.95 V.
The figure depicts the transmission coefficient at kII

0, summed over all incoming valence baud channels, for
tunneling into the first or second conduction band. Initial
electron band states that lie within 0.48 eV of the top of
the valence band on the p side can tunnel into electron
states of the second conduction band on the n side that lie
above all states of the first conduction band. Indeed, the
first conduction band width in the present tight-binding

FIG. 4. (a) Energy baud structure of first and second
conduction bands along the [001] direction. (b) Calculated
transmission coefBcient for same p-i-n structure as in Fig. 3,
summed over all in-channel states associated with hole bands
and for VD ——3.4 V. The out-channel states are associated
with either the first (ci) or second (cq) conduction band. The
logarithm is to base 10.
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FIG. 5. Predicted current density and conductance for a
20 nm GaAs p-i-n diode as a function of the potential drop
V~ in volts. The oscillations in the conductance reQect the
presence of Wannier-Stark resonances.

model is A, q
——1.47 eV and one has eV„—4 q

——0.48
eV."

Since a direct (I' m I ) transition from the top of the
valence band into the second conduction band requires
an applied bias exceeding E(l'&) —E(I's) = 4.6 eV, one
may not expect significant contributions &om tunneling
into the second conduction band. In contrast, the results
depicted in Fig. 4 show that the transmission coefficient
is large and shows oscillations with a period very close
to eFa~ = eFa/2 where a~ is the lattice constant in
the [001] direction. Electrons that have an initial energy
further away from the valence band edge only tunnel into
the first conduction band, with a smooth transmission
rate and not displaying any oscillations.

In Fig. 5 we depict the current J and the conductance
dJ/dV for the investigated diode as a function of the
applied potential, calculated according to Eq. (12). For
the kII integration, we divided the Brillouin zone into
a spherical inner regiou with ]kII ~

( 0.05 (2ir/aII) and an
outer region. For all relevant applied biases, only k states
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in the inner region contribute to the current and tests
have shown that between four and eight special k points
in the irreducible part of the two-dimensional Brillouin
zone give accurate results.

This Fig. 5 shows that, for biases larger than the
threshold value eVD = 6 q + Ez ~, the current shows
oscillations that refIect the resonance peaks in the trans-
mission coefBcient, depicted in Fig. 4. As we will discuss
in the subsequent sections, these oscillations refIect the
Wannier-Stark resonances.
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A. Interpretation: a simple one-band picture

In order to understand and interpret our results, we
will proceed, in the first step, by considering a simple one-
band tight-binding model that re8ects some, but not all,
of the essential qualitative properties of Wannier-Stark
ladders.

We consider a finite open chain of N atoms described
by the Hamiltonian

H = ) t(c„c—„+i+ c„c„ i) + V@(n)c„c„) (17)

where the hopping constant t gives a band width 6 = 4ltl
and ct, c„are the electron creation and annihilation op-
erators, respectively. %'e label the atoms from 1 to N
&om left to right. For a concrete example, we choose
N = 50. V@(n) is the externally applied potential and is
taken to decrease linearly from its value zero for n & 20
to its minimum value V@(n) = —V~ for n & 30. V~ is
the total potential drop across the chain. In terms of the
electric field strength I" and lattice constant a, we have
eVD ——10eFa in our example. This defines three regions,
in analogy to Fig. 2: there is a field-free "bulk-like" re-
gion L near the left end and a region 8 near the right
end of the chain. The electric field is nonzero only in the
middle region M. We note, however, that a finite chain
does not allow for a finite steady-state current; however,
here we are only interested in the electronic structure as a
function of applied bias. Since N && 1, the energy spec-
trum difFers only negligibly from a chain with periodic
boundary conditions.

The energy spectrum of the Hamiltonian, Eq. (17), for
different applied voltages is shown in Fig. 6, where we
depict the energy of all eigenstates as a function of the
level number. Level number 1, for example, corresponds
to the highest energy in the L region. The hopping term
has been set to t = —1. For zero applied bias, [Fig.
6(a)], the band structure exhibits the well-known cosine
function and all wave functions are spread out over the
whole chain.

Already a small applied potential totally alters the
character of the eigenstates: (i) the energetically lowest
lying states (—4/2 & E & —4/2 —eVLI) form extended
band states in region R, but decay exponentially into re-
gion M; (ii) the highest lying states (b, /2 )E ) b, /2—
eVD) are extended "bulk-like" states in region L and de-
cay exponentially into the right region M; (iii) the states
in the central energy range (b, /2 —eVD & E ) —b, /2)
extend into all three regions and stay delocalized.

2
0

-2
I I ! I

10 20 30 40 50

level number

FIG. 6. Left punet: Calculated energy levels, iu units of t,
of a one-band tight-binding Hamiltonian as a function of the
energy level number and for several potential drops. There are
50 lattice sites and the field is constant and nonzero only be-
tween the 20th and 30th lattice sites. Right panel: Schematic
local energy band picture corresponding to the potential drop
in the left panel. When V~ exceeds the band width, localized
Wannier-Stark states form.
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FIG. 7. Site occupancies of the 5th, 25th, and 45th eigen-
states of the one-band model. The field corresponds to the
situation in Fig. 6(c). The 25th state is a Waunier-Stark state,
whereas the 5th and the 45th are semibulk states.

The electric field can be thought of as producing a po-
sition dependent band structure E(z) that has the same
width 6 at each position z = na but a band center energy
that is lowered by the potential drop eFa on neighboring
sites [see right side of Fig. 6(b)]. The point is that only
states of the same energy can couple with one another.
Since only the states in the middle energy range overlap
with all band states E(z), these states are delocalized
over the whole chain.

Once the applied potential eVii exceeds the band width
6, the eigenstates of H in the field regime M become
localized, as shown in Fig. 6(c). In this case, the field
breaks the bonds. 52 In Fig. 7 we show the site occupan-
cies for the 5th, the 25th, and the 45th levels of the chain,
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respectively, corresponding to the situation in Fig. 6(c).
They have been interconnected only to guide the eye and
clearly show the localization in the central region. These
localized states are the one-band WS ladder states. In
the present one-band model, the maximum number of lo-
calized WS states obviously equals the number of atonis
in field region M. The energy separation 4E between
these WS states approaches eFa exponentially as a func-
tion of the potential drop.

B. Full band calculation of nonpropagating states

0.0 0.5
Energy [eV]

2.0

FIG. 8. Calculated determinant of the transfer matrix ele-
ment P + as a function of energy for a GaAs p-i-n structure
with an intrinsic Xone of 5.4 nm width and for k~~

——O. The
equally spaced minima in the determinant reBect the presence
of WS resonances associated with the first conduction band
and appear for V~ ) A, q.

In this section we return to the full band multichannel
scattering theoretic analysis of the GaAs p-i-n diode in
order to interpret the origin of the resonances in the cur-
rent in Fig. 5. As explained in Sec. IIE, a bound state
in the transfer matrix formalism is characterized by the
condition that [

det (P +
(k~~, E)) ~

= 0. Resonances or
quasilocalized states that interact with energetically de-

generate extended states can be identified from minima of

~

det(P +) ). Figure 8 shows
~

det (P +(0, E))
~

as a func-
tion of the energy for various applied voltages for a p-i-n
junction with an i zone of 5.4 nm. The band edges of
the top valence band, first and second conduction band,
tilted according to the applied field, are schematically
shown in Fig. 9. Energy zero is at the top of the valence
band in the left (p doped) region L. First, we consider
V~ = 1 V [see Fig. 9(a)]. For this voltage, the deter-
minant is a fairly smooth function of the energy. No
localized states are present. The onset of each band edge
induces some structure in

~

det(P +)
~

due to an increase
in the density of states.

Next we consider a voltage drop of VD = 2.5 V [Fig.
9 (b)]. Figure 8 shows that the

~

det(P +)~ has pro-
nounced periodic minima for energies Eg p ) E
Es ~

—(eV~ —A,i) = 0.4 eV, where A, i is the width
of the first conduction band. In this energy range, there
are electronic states associated with the first conduction

band in the central region M that do not overlap ener-
getically with any of the semibulk states of the first con-
duction band in the L and R region, as can be deduced
from Fig. 9(b). This allows the formation of localized
WS states which are superpositions of all Bloch states of
the first conduction band. In contrast to the one-band
picture of the last section, however, these WS states do
not form strictly localized (bound) states, since they are
in resonance with the extended semi-Bloch states of the
second conduction band of the right region R. The fact
that the WS states overlap with some semibulk states as-
sociated with other bands explains why the determinant

~
det(P +)

~

merely has minima, rather than zeros.
For energies outside the energy range 0.4 & E & 1.43

eV, for VD -——2.5 V, the electronic states of the first con-
duction band in the M region overlap with band states of
the same band in the asymptotic semibulk L or R regions.
This prevents the formation of localized WS states and
gives a smooth energy dependence of the determinant, as
well as the transmission coefficients (see Fig. 3).

For voltage drops that are smaller than the band width
of the first conduction band, eVD ( A, i, all band states
of the first conduction band in the M region overlap with
extended (first conduction band) states in one of the con-
tact regions. Consequently, no WS states form, as can
be seen for VD ——1 V in Figs. 8 and 9.

The energy separation between WS states is approx-
imately equidistant and equal to eFa~. In contrast to
uniform field models, we find some deviations due to the
finite spatial extent of the electric field and due to the
multiband character of the scattering states. For long
intrinsic regions and large potential drops, however, the
energy separation tends towards the asymptotic value

eFa~.

C. Quantitative criteria for Wannier-Stark
resonances

We can now condense the results of the present cal-
culations in the following conditions for the appearance
of signatures of WS resonances in the electric current
through semiconductors.

There are two conditions that must be met in order to
obtain oscillations in the interband tunneling current as
a function of the applied voltage that are caused by the
formation of WS resonances.

(1) An energy band can support Wannier-Stark ladder
resonances only if the total potential drop eVD across the
semiconductor exceeds the total zero-field band width 4
of that band in field direction.

(2) Oscillatory I Vcharacteristics -due to interband
tunneling is obtained only if at least three diKerent elec-
tronic energy bands participate in the tunneling process:
there is one band through which the electron enters the
field region (in-channel or "emitter" band), there is an-
other band into which the electron tunnels and leaves the
device (out-channel or "collector" band), and there must
be a third band that produces the Wannier-Stark reso-
nances, that resonantly enhances the tunneling process
from the in-channel to the out-channel band.
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FIG. 9. Schematic band picture of a GaAs p-i-n diode, illustrating the origin of Wannier-Stark resonances in the Zener
tunneling current. (a) No WS resonances form when the potential drop is smaller than the first conduction band width E,i.
In addition, there is ao Zener tunneling in this case since V~ ( Es ~. (b) When VLi exceeds the first conduction band width,
one obtains WS resonances of finite width that are associated with the first conduction band (thick bars) Th.e WS resonances
do not overlap in energy with the extended semibulk states associated with the Srst conduction band in the right region and,
therefore, cannot contribute to the (elastic) Zener tunneling current. (c) For Vo = 3.4 V (eV~ ) Es ~ + E,i), WS states
resonantly enhance the tunneling current from the valence band to the second conduction band and produce oscillations in the
current as a function of VD.

If the first condition is not satisfied, the states in this
band are propagating, delocalized states that extend into
the contact regions. As a consequence, no WS ladder
resonaaces form. Whenever eV~ ) 6, on the other hand,
there is a barrier provided either by an energy gap or
small interband matrix elements, Eq. (3), that prevents
the delocalization of the WS resonances.

In fact, the first condition resembles the semiclassical
picture of Bloch oscillations. If we interpret the tunneling
states in the field region in terms of tilted Bloch states
(which is rigorouslys2 is justifiable), the first condition
guarantees that the electron tunnels through all zero-field
Bloch states at a given energy [see Fig. 9(b)j.

The second criterion is nothing but a condition for res-
onant tunneling. It implies that the in-channel states,
the localized WS resonances, and the out-channel states
must be energetically aligned. The first condition is met
for the first conduction band of GaAs for the applied
voltages showa in Fig. 9(b) and (c). However, the second
condition is only fulfilled in Fig. 9(c) where the electron
tunnels &om the valence band into the second conduction
band and the first conduction band provides localized WS
resonances. These resonances also form for the situation
in Fig. 9(b), but there is no energy conserving tunneling
process that connects the asymptotic scattering states
with the WS resonances.

In optical experiments, the first condition suffices to
observe WS resonances. In a transport experiment, how-
ever, the second condition must also be fulfilled.

These results lead us to the conclusion that the os-
cillations in the tunneling current that have been ob-
served experimentally for very low applied bias in InSb
p-n structures several years ago cannot be due to WS
resonances. The saxne conclusion has been reached be-
foxe by Argyxes.

These conditions lead to a new classification of inter-
band tunneling processes: There are two regimes: (i) the
Zener regime where no WS resonances appear in the cur-

reat and (ii) the Stark regime where the above conditions
(1) and (2) are satisfied and the I Vcharact-eristics con-
taia oscillatory contributions (Fig. 5).

D. Wannier-Stark ladder assisted indirect tunneling

In Fig. 4, we have shown that WS resoaances originat-
iag from the first conduction band resoaantly enhance
the interband tunneling from the top valence band states
into the lowest band states of the second conduction band
of GaAs [cf. Figs. 9 (c)j. Since the latter band states lie in
the middle of the Brillouin zone, the momeatum of the
incoming and outgoing scattering states is very difFer-
ent. This raises the question which mechanism provides
this momentum transfer since the calculation incorpo-
rates neither phonoas nor impurities.

The Zener current between states of difFerent momen-
tum is iadeed negligible as long as no WS resonances
form. This can be seen clearly &om the transmission co-
efficient T„~,2 for energies smaller than —0.48 eV in Fig.
4. Efficient interband tunneling only occurs for energies
between —0.48 (E & 0 eV, i.e., in the WS regime.

This finding caa be understood in terms of "WS ladder
assisted tunneling. " A WS resonance v is a linear coxnbi-
nation of all zero-field Bloch states (k~~, k, ) with fixed k~~

associated with an energy band and is spatially localized.
Indeed, within the one-band and homogeneous-field ap-
proximation, one has f(k~~, k, [v, k~~)f = fG/ . Here, fGf
is the shortest reciprocal lattice vector in the direction
of the field. This localization provides the momentum
for indirect tunneling, analogously to ixnpurity-assisted
carrier recombination.

E. Zener tunneling rate: theory and experiment

In this section we present numerical results for the
Zener current in the low bias Zener regime. In Fig. 10
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FIG. 12. Comparison between the present calculation of
the Zener tunneling current and the analytical two-band and
four-band k p models of Refs. 24 and 57, respectively.

we plot the total tunneling transmission coeKcient T in
GaAs and InSb as a function of kz. Since the energyIl'

dependence of T is weak (see Fig. 3), we have taken an
average over energy,

j6v inc~, cg
T(L„h;. a,h+) (kII —0 @).
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Even a small increase in kll leads to an exponential
decrease in the tunneling probability. This decrease orig-
inates in two effects, namely an increase in the funda-
mental energy gap and an increase of the effective mass
due to nonparabolicity effects.

In Fig. 11, we compare the predicted Zener current of
the present model with experimental results for a GaAs
p-i-n structure with n = 10~s cm s, p = 2 x 10~s cm
and an intrinsic region of 1S nm. Excellent agreement is
found in the voltage regime below the avalanche thresh-
old.

In Fig. 12 we show the predicted Zener current [Eq.

(12)] in a GaAs p-i-n diode, with a doping concentration
of n = p = 10~ cm and a 40 nm intrinsic zone. Also,
we compare the present results in Figs. 10 and 12 with
the analytical model of Kane that is based on expres-
sion Eq. (4). Kane's results for GaAs are signi6cantly
smaller than the present ones and also underestimate the
experimental data. s 'ss Nevertheless, it is interesting to
note that the full-band results for the Zener current can
be reasonably well reproduced by a WKB-type analyti-
cal expression of the form of Eq. (4), provided the effec-
tive mass is replaced by a more accurate four-band k p
result, "

where

1+ Eso
2 Eg

2 (-,'+-.".;-)(b- )+ (-,'+'.-)' (Is)

( & + hh) E ( 1h + hh 2mso )C 8E..
)

3h (Es+ E,~)
b = (m,„+m„„—2m,.),4E,

352

g . 9( 1h hh) 2(@a+@o)8E,o-
x(m, —mhh)

Here, m, denotes the 6rst conduction band mass and
mph, m~h, m, o are the heavy-hole, light-hole, split-o6'
masses, respectively. All these masses are taken &om
the experimental data at the I' point. For GaAs, one
gets m' = 0.0615.
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FIG. 11. Comparison between the experimental and calcu-
lated tunneling current density as a function of the reverse
bias for a GaAs p-i-n structure with an 18am i zone, and

doping concentration of n=10 cm and p=2x10 cm

IV. CAN WANNIER-STARK I ADDERS BE
OBSERVED IN BULK TRANSPORTS

An interesting prediction that is emerging Rom the re-
sults of the previous sections is the feasibility of detecting



50 THEORY OF ZENER TUNNELING AND WANNIER-STARK. . . 8369

WS resonances in bulk transport experiments, in con-

trast to what has been widely believed. Historically, the
search for these resonances in bulk material was bound to
be unsuccessful since the stringent sample requirements
can only be satisfied by very specific molecular-beam-
epitaxially grown structures. The present calculations
predict the following prerequisites for observing oscilla-
tions in the electric current due to WS states.

First, the n- and p-doping concentration should be
sufficiently high so that the potential drop occurs pre-
dominantly in the intrinsic zone. In GaAs, this implies

n, p & 10 cm at liquid nitrogen temperatures. Sec-
ond, the potential drop must exceed the band gap plus
the width of the first conduction band. This condition
requires VLi & 3.4 V for fields along the [001] direction,
or V~ & 2.5 V along the [111]direction. In GaAs, the
maximum fields that can be reached experimentally lie

between 1 and 2 MV/cm. In fact, p-i-n diodes have re-
cently been fabricated with a length of the i zone

w; = 18 nm that show a breakdown voltage of 4 V, cor-
responding to a maximum field of I" = 1.91 MV/cm.
Consequently, the width of the i zone must satisfy the
condition tv; & V~/I" —20 nm. Third, the width

m; should simultaneously be as short as possible to give
a measurable tunneling current and a large separation
energy eFa between WS levels. Within the analytical
two-band k p model discussed in Secs. I and IIIE, the
current density scales exponentially with ur; and is ap-
proximately given by

e3V2 m*J = exp&—D
18+m; hz 2'

xm m*E3
g

2heVri

For VD ——3 V and a 20-nm intrinsic zone, this gives J = 1
A cm

The crucial point is that these conditions can be met
before avalanche breakdown due to impact ionization oc-
curs. Clearly, there are additional factors that contribute
to a broadening of WS resonances such as electronic band
mixing efFects, interface roughness and phonon scatter-
ing, or the misalignment of the electric field relative to
a crystal axis. We are going to critically examine these
efFects in this section. It turns out that the exponen-
tial dependence of the tunneling current on any energy
barrier height and width is a very favorable efFect that
stabilizes the formation of sharp WS resonances.

A. Electronic efFects

As shown in Sec. IID, the Zener tunneling current con-
tains an integral over k~~. The positions of the WS reso-
nances shift rigidly in energy with k~~ by some offset that
is approximately given by (s'i, ) in Eq. (1). This offset is
a function of k~~. If all k~~ contribute to the current with
equal weight, the WS states would overlap each other and
could not be observed. Actually, however, the WS states
that contribute to the resonant interband tunneling cur-
rent are dominantly states with k~~ = 0. This can be
seen &om Fig. 13, where we show the total transmission
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FIG. 13. Dependence of the interband Zener tunneling co-
efBcient on the electron wave vector k[[, plotted as a function
of initial electron energy. The structure and the bias condition
is the same as in Fig. 4. The transmission maxima correspond
to %'S resonances and exponentially decrease with increasing

kll, i.e., away from the band edges.

coefficient T~L, „~~,~(k~~, E), summed over all incoming
valence band and outgoing conduction band states, as
a function of energy for difFerent k~~. The doping and
applied bias in this figure is the same as in Fig. 4. As
we have already pointed out, the increasing gap causes
the tunneling probability to decrease very strongly with

k~~. Consequently, the WS resonances can still be clearly
resolved.

B. Phonons and interface roughness

WS resonances can only be observed if their width I'
is smaller than their energy separation. The dominant
broadening of Wannier-Stark resonances can be expected
to originate in phonon scattering, assuming sufficiently
pure and homogeneous samples. The WS level broad-
ening due to optical and acoustic phonon scattering has
been estimated to be of the order of 5 meV in standard
bulk semiconductors at low temperature and strong elec-
tric fields. s This value is well below the energy separa-
tion of up to 50 meV between WS resonances for intrinsic
zone widths less than 20 nm such as depicted in Fig. 5.
It also corresponds to a scattering time of the order of
100 fs that is typical for GaAs. Alternatively, for a crude
estimate, one may think of a phonon to modulate the
nearest-neighbor distance by an amount ba « a giving a
width of the WS ladders of the order of eFba « eFa.

Phonons open additional channels for tunneling pro-
cesses since in- and out-channel states can have energies
that differ by integer multiples of the phonon energies.
These processes will show up as additional resonances in
the current, in addition to the ones we have analyzed
in the previous sections. Indeed, phonon-assisted tun-
neling was studied in Refs. 53, 24, and 59—61. These
calculations revealed, however, that the phonon-assisted
tunneling probability is at least three orders of magni-
tude smaller than the direct electronic tunneling process
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so that they are not likely to blur the elastic WS reso-
nances.

Finally, interface roughness or inhomogeneous lateral
doping profiles yield a local shift of the threshold volt-
age beyond which WS resonances form and, more im-
portantly, in8uence the position of WS resonances in the
energy spectrum as a function of position. This has a
similar effect as the superposition of different k~~ states
which was discussed above. The measured current is an
average over the cross section of the n-i-p structure. The
current maxima will be produced by the WS states in the
region(s) of maximum electric field. Again, the exponen-
tial dependence of the tunneling current on the field or,
equivalently, the tunneling distance will tend to suppress
any signals other than those Rom the region of maximum
electric field. However, if lateral field inhomogeneities
become large the peak-current contributions from lower-
field regions may fall into the valley regions of the cur-
rent contribution &om the maximum-field region. More-
over, the maximum-field region may be small compared
to the total cross section of the diode. This indicates that
high lateral-field uniformity in the maximum-field region
is highly desirable.

It should be noted that these considerations are anal-
ogous to those for resonant-tunneling (RT) structures,
where subsidiary minima due to LO phonon emission
have been found to be rather weak. s2 We are not
aware of any quantitative study of the effect of inter-
face roughness or layer-width Quctuations based on a
three-dimensional model for RT structures. A qualita-
tive discussion of layer-width Buctuations based on a one-
dimensional model for the RT system can be found in
Ref. 63. Due to the low carrier densities in the high-
field region of the n-i-p diode, the Coulomb interaction,
however, can be expected to be of a lesser importance
than for tunneling processes in conventional semiconduc-
tor heterostructures.
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FIG. 14. Topology of overlapping conduction bands in the
[001] direction. The left panel shows a noncrossing band situ-
ation that is typical for ZnS-type semiconductors (T& group).
In the right panel, the two conduction bands do not inter-
act and cross each other, such as in a diamond structure (Ot
group).

the lowest conduction band. The transmission coefficient
for three different values of the energy separation AEq2
between the first and second conduction band (Fig. 14)
is shown in Fig. 15. It depicts the total transmission
coefficient as a function of the outgoing electron energy.

For AEq2 ——48 meV, the tunneling current kom the
valence band to the second conduction band shows WS
resonances that originate from the first conduction band,
in analogy to the results of Sec. III. The transmission co-
efficient is zero in the energy regime corresponding to the
gap between first and second conduction band, marked
by the points a and b in Fig. 14.

For smaller energy separation AEq2 ~ 0, the WS res-
onances tend to disappear, since an electron can tunnel

C. Interband coupling

As explained earlier, an energy band can support WS
la,dder resonances only if eV~ ) 4 where 6 is the zero-
field band width. Since all conduction bands overlap and
many bands cross each other in a three-dimensional semi-
conductor, there has been a controversy about whether
WS ladder resonances form at all in a realistic many-band
situation of a semiconductor. In particular, it has been
argued that strong interband coupling suppresses the for-
mation of WS resonances in the tunneling current.

In order to investigate the effect of band crossing, we

have performed a model study based on a sp s* tight-
binding approach. Starting &om the electronic structure
of Ge, a typical nonpolar semiconductor, we systemat-
ically changed the anion-s and cation-s on-site orbital
energies to open a gap along the [001] direction between
the two lowest conduction bands, as shown in Fig. 14(a)
and 14(b).

We consider a p-i-n structure with an i zone of 56 nm

(F = 0.8 MV/cm) and a potential drop of VD = 4.4
V. This structure supports WS states associated with
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FIG. 15. Transmission coefficient for tunneling from the
valence bands into the conduction bands shown in Fig. 14,
plotted as a function of the outgoing conduction band elec-
tron energy, for k[~ ——O. The letters a, b, c refer to the energy
band positions speci6ed in Fig. 14. The 6gure illustrates the
suppression of the WS resonances with diminishing conduc-
tion band splitting DE~2.
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directly from the first into the second conduction band
[i.e., from a to b in Fig. 14(a)]. Effectively, both conduc-
tion bands start to form one single band. Only for fi-

nal electron energies exceeding the maximum of the first
conduction band [c in Fig. 14(a)], WS resonances appear
irrespective of the value of AEq2.

One can also explain this behavior in the semiclassical
Bloch oscillation picture. The electron cycles through all
k values of a given band, which is the first conduction
band in this case. For small AEi2, however, the elec-
tron can tunnel into a higher band before it reaches the
boundary of the Brillouin zone and this destroys the WS
oscillations.

Thus, the crucial point is that the formation of WS res-
onances in the tunneling current is not sensitive to the
topological definition of an energy band. Furthermore,
interband tunneling does not smear out the WS reso-
nances of an energy band that is separated from neigh-
boring bands by b,E of the order of 10 meV for each value
of k, across the Brillouin zone Th.is holds for fields up
to 1 MV/cm.

D. Wannier-Stark 1adders in misaligned fields

For a one-band model and the uniform field approx-
imation, the energy separation between WS ladders is
eF2 /z~G~, where ~G( is the shortest reciprocal lattice
vector in field direction. This result seems to imply a
dramatic instability of WS ladders: an infinitesimal tilt
of the electric field with respect to a crystal axis causes
the lattice constant in the field direction to become nearly
infinite and consequently to the loss of WS ladder states.

This sudden disappearance of WS levels is an artifact
of the uniform field approximation as has been realized
by many authors. r is It has been pointed out, for exam-
ple, that one can define physical observables, such as an
averaged density of states, that are smooth functions of
the direction of the field. Some experiments, however,
have been incorrectly based on a literal interpretation of
the uniform field result.

For a discussion of misalignment efFects, it is manda-
tory to take into account the finite potential drop across
any real semiconductor with contacts. In order to un-
derstand the predominant effects of field misalignment
on the crystalline eigenstates, it is clarifying to study a
finite two-dimensional electron system in terms of a one-
band tight-binding model. Consider the Hamiltonian
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vectors in the z and y directions, respectively, and we

assume z to be the principal direction of the electric field,

We use a two-dimensional lattice cluster consisting of
N = 60 and N„= 20 sites which is simply truncated at
its boundaries (equivalent to infinite walls), and a con-
stant electric field F such that eF a/t = 11, where a
is the lattice constant. The smallest tilt of the electric
field that points towards a lattice point in this lattice is
ob»ously 8; = E„/F =1/60.

The electric field F is large enough to support local-
ized WS ladder states in the z direction since the poten-
tial drop eF N a is much bigger than the band width
4t. In fact, the localization length of the WS states is
of the order of one lattice constant. In Fig. 16 we plot
the eigenvalues of the Hamiltonian Eq. (19) for differ-
ent misalignments, as measured by the ratio of (F„/F ).
Since we have chosen eF a to be larger than the zero-
field band dispersion in Fig. 16, the WS level states can
be clearly identified. The eigenstates of the system are
localized WS states in the z direction but completely de-
localized Bloch-like states in the y direction as long as
eF&N„a « 4t. As a consequence, a small misalignment
of the field with F„«F has little effect on the character
of the states along the z direction.

The crucial point we would like to stress is that the WS
level spacing does not change abruptly to refiect a new
periodicity whenever Fs/F points to another lattice vec-
tor. Indeed, the spectra shown in Fig. 16 do not change
significantly when F&/F = 8;, in contrast to the pre-
diction of the uniform field approximation. Only when

Ez becomes large enough to support WS ladders by itself,
the spectrum changes qualitatively. This clearly shows
that WS states are stable with respect to small-field mis-
alignments in any real material with a finite potential
drop.

II = ) V; ~ a,. a; ~.

t—a, , (a;+i ~ + a, i ~ + a;,+i + a, , i). .(19)

where a;. (a;~) denotes the electron creation (annihila-
tion) operator on site ij, t is the hopping matrix element
and V; z is the electric potential. The potential is given
by

V; ~
——eE x; + eFyy~,

where z; (i = 1,N ) and y~ (j = 1,N„) are the lattice
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FIG. 16. Energies of a two-dimensional one-band
tight-binding Hamiltonian in a constant electric Beld F with
components F and F„,in units of t. The figure shows a repre-
sentative part of the spectrum. The lattice consists of 60 and
20 sites in the x and y directions, respectively. The %'S levels
do not change qualitatively with the direction of the electric
field, even when F points to the lattice vector F„/F = 1/60,
provided the potential drop in the y direction is smaller than
the band width.



8372 ALDO Di CARLO, P. VOGL, AND %'. POTZ

V. CONCLUSIONS

We have first developed and adapted a general ap-
proach for the computation of the steady-state current
response of general mesoscopic electronic device struc-
tures within elastic scattering theory. In particular, we

have provided a general proof of orthogonality of scat-
tering states for standard mesoscopic device structures.
This proof holds both for a large class of potentials which
assume a constant value or display a periodic behavior in
the asymptotic regions. Completeness of scattering and
bound states and unitarity of the S matrix follow from
standard concepts of time-dependent scattering theory.
We have shown that scattering theory, in conjunction
with linear response, yields a conductance which is pro-
portional to the transmission coeKcient T of the system,
rather than T/(1 —T). Furthermore, the range of valid-

ity of linear response for Bnite applied bias and proper
construction of reservoirs have been addressed. Finally,
this approach was applied to a three-dimensional model
for the Zener diode.

Second, we have provided a conceptual &amework and
quantitative criteria for the occurrence of Wannier-Stark
resonances in the interband tunneling current in semi-
conductors. We have focused on bulk semiconductors,
even though the conceptual framework developed in this
paper applies equally to superlattices.

We predict that WS resonances can be observed in re-
alistic bulk p-i-n diodes since neither impact ionization,
line width broadening, interband coupling, nor Beld mis-
alignment is likely to smear out the resonances at low

temperatures.
WS resonances associated with an electronic band only

form when the potential drop across the device exceeds
the band width. In contrast to the situation in optical
experiments, we Bnd that this condition does not sufBce
to obtain WS related oscillations in the dc tunneling cur-
rent as a function of the applied voltage. In order to have
WS ladder states resonantly enhance the interband tun-
neling current, the electric Beld must be strong enough
to align a WS ladder state associated with a particular
band with takeo other bands, one associated with the semi-
infinite n-doped region, the other with the semi-infinite
p-doped region.

We have shown that there are two regimes for the tun-
neling current in a p-i-n structure: a low-Beld or Zener
regime where the conductance is a smooth function of the
applied voltage V„and a high-field or Stark regime where
the conductance shows equally spaced oscillations due to
Ws resonances. The presence of these two regimes a1-

lows an unambiguous experimental identification of this
e8ect.
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APPENDIX A: THE DENSITY OPERATOR

Construction of the steady-state density operator is the
key issue in deriving an expression for the steady-state
current response of an electronic system. Here we use an
adiabatic switching method which is closely related to the
construction of stationary scattering states. ' Starting
from thermal equilibrium of the system in the distant
past t « 0 and adiabatically "feeding" in the applied
bias U one obtains, at t = 0, a steady-state solution

p(0) = »m p(0)«~
q-+0+

lim g dte"' exp(itH/hjp exp( —itII/h},
q —+0+

(A1)

to a von Neumann equation for the system, where H =
H + U denotes the steady-state Hamilton operator and

p is given in (6).
p(0) may be found formally by solving a von Neumann

equation into which a small (non-Hermitian) source term
was added to account for dissipative action of a bath. Va-
lidity of the latter requires small deviation of p(t) from

p . Integration by parts shows that this procedure cor-
responds to a specific prescription of how to perform the
limit t, ~ —oo in (Al).s Technically this construction
is equivalent to a construction of scattering states due to
Gell-Mann and Goldberger.

Inserting the resolution of the identity expressed via
the eigenkets of II into (Al) gives

(A2)

with matrix elements

~ = (&~I~.~l&') = f ) f.(&~I.)(.~l))")

Here, ~%) and ~v) are a short-hand notation for the eigen-
states of H and H, respectively. Calculation of the
steady-state density operator thus requires knowledge of
p and the overlap between eigenstates of H and H. It
is apparent &om (A2) that there must be a perturbative
connection between the basis states of H and H for this
construction to be successful. This is in analogy to the
Gell-Mann-Low theorem which provides an alternative
means to construct the density operator. For a detailed
discussion of this procedure we refer to the literature.

~(o) = f ) l~)~~ ~(&'I, .
N, N', E~ ——E~)
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APPENDIX B:LINEAR RESPONSE

Here we give a simple derivation of the steady-state
density operator within linear-response theory (Kubo for-



50 THEORY OF ZENER TUNNELING AND WANNIER-STARK. . . 8373

malism) which allows a discussion of its regime of validity.
Applied to the current response of the system, it leads to
a Landauer-type, or rather, o. oc T conductance. Further-
more, it will be seen that following standard scattering
theory avoids any confusion regarding the order in which

limits have to be taken. Here, it is, of course, assumed
that H and H are related perturbatively to one another.

Within linear response regarding the applied potential
U = H —H, above expression for p{0), (Al) may be
simplified

0

p(0) = lim q ) f„dt'e"'0" (O, t')lv)(vlM" (O, t')
g m0+

V

0 t'

lim r/ ) f„dt'e" 1+ — dt"U" (t") Iv)(vl 1 —— dt"U" (t") + 0(U )

0 0 (

im q Che" M O, t v v lim g' dt'e" 9" O, t' + U
qm0+ g -+0+

V

).f-lv')(v'I+ o(U') (81)

with

0

Iv+) = lim tl dte"'ll" (O, t)lv).
g-+0+

(82)

State Ib+) is that eigenstate IB) of H which, within first
order of perturbation theory, is related to bound state Ib)
of H.

In summary, within linear response one obtains

Here, 9" and U" are propagator and applied potential
in the interaction picture

LI (tp) = t'„ex,p (
—i dt U (i )/hI', ''

0

U" (t) = exp(itH„/fi}(H —H„) expj —itH„jh).

For bound states of H, Iv) = ~b), we set H„= H,
for scattering states of H, lv) = lg&„&), we choose

H = H + UH(oo).
I et Iv) = I@&„&)be a scattering eigenstate of H with

in asymptote IQH „b) and H„= H + UH(oo). One may
use the formal property of scattering states

itHp/s~@+ ) ~ — itHp tt/hly—
to rewrite {82)as

ztH/s it[Ho+UJt (oo)]/sly—+
t~ —oo R,n, k

itK/h —it[K.,~+U~(~) j/hl a
I~R,n, ki-t~—oo

But H H+ UH(oo) = HIt is a reservoir Hamiltonian asso-
ciated with H. Thus, Iv+) = I%'& &), i.e. , the scattering
eigenstate of H with in asymptote IQH tp). If Iv) = lb)
is a bound state of H with eigenvalue Eg, one obtains

lb )= lim . Ib)g-+0+ Eg —H+ igh
= Ib)+»m (Eb —H+t&I') 'Ull).

gm0+

V(0) = ):fJt. , t l@H...b)(@It...bl+). fblB)(BI ( 3)
R,n, k

where I@+&„&) and IB) denote the scattering and bound
states of H. Thus, the steady-state density operator,
within linear response, is closely related to the equilib-
rium density operator. The occupation probability of
a bound state of H is that of the corresponding (via
first-order perturbation theory) bound state lb) of H .
Scattering states of H have the same occupation prob-
ability in p(0) as scattering states of H with the same
in asymptote (R, n, k) in p . This result is in agreement
with the Kubo formula where the microbasis states are
given a first-order correction in the perturbation U, while
their occupation probability remains unaffected by the
perturbation More. over, when used for the calculation
of the current density, (83) leads to a conductance that
is proportional to the transmission probability, establish-
ing the equivalence between linear-response (Kubo) and
conductance formula.

The linear-response expression (83) will generally not
be applicable to systems with finite applied bias. First,
the eigenstates of H and H = H + U will, in general,
not be related to each other perturbatively. Therefore,
adiabatic switching on of the perturbation U does not
provide the correct ground or steady state of H. Second,
even if H and H are related perturbatively to each other,
higher-order terms in the applied bias may be required to
quantitatively account for the current [see (Al)]. Finally,
the small damping term which was formally introduced
into the von Ne»mann equation to obtain p(0) may not
be appropriate. However, we shall argue that (83) may
provide a good approximation for finite applied bias, pro-
vided that reservoirs are properly de6ned.
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Consider first a situation where neither H nor H have
bound states, as is the case for our model of the Zener
diode above. In this case, the limit g ~ 0 may be split
up into two separate limits, as in linear response. This
is evident Rom the fact that scattering states incident
through different reservoirs cannot be related to each
other perturbatively. One obtains, for 6nite applied bias,
a steady-state density operator

p(O) = ) J'it „,I'II'„„„)(e'„„„
R,n, k

the same result as within linear response, where f~ „),de-
notes the probability for occupancy of a scattering state
with particle incidence &om reservoir B and quantum
numbers (n, k}. Note, however, that this corresponds
to shifting the chemical potentials p~ —i p~ + UR(oo)
for incident-wave scattering states. The inadequacy of
the coupling term to the bath, or equivalently, the adia-
batic switch-on procedure is evidenced by the fact that,
in general, application of a bias perturbs the asymptotic
regions of the particle reservoirs which are supposed to be
in6nitely large. Again, this problem can be resolved only

by assuming that the coupling between reservoirs with
and without applied bias is infinitely small. Assuming
finite coupling between the reservoirs and a finite pertur-
bation is inconsistent with asymptotically unperturbed
reservoirs in this coherent particle picture, we therefore
may conclude that the linear-response expression of the
steady-state density operator is valid for finite applied
bias provided that the system with and without applied
bias has no bound states and that the coupling between
reservoirs is infinitesimally small.

A simple example is given in the form of a one-

dimensional single (high) potential barrier. If the barrier
is infinitely high, parallel shifting of the band edges to
the left and to the right of the barrier will neither change
scattering states nor their occupation probability, pro-
vided that the chemical potentials are shifted rigidly with
the corresponding band edge. In the limit of sufFiciently

high, but finite barriers the linear-response result for p(0)
will provide a good approximation. Note that, for any
one-dimensional system, (infinitesimally) small transmis-
sion coefFicients are necessary to allow interpretation of
the one-dimensional asymptotic regions as particle reser-
voirs and to make "bias across the barrier structure" a
well-defined quantity.

Another frequently discussed example is a constriction
which connects two two- (three-) dimensional reservoirs
as sketched in Fig. 1. In order for the steady-state cur-
rent through the constriction to be finite, the average
current density j deep inside of a reservoir must scale as
d/L [(d/L)2]. Here, d is the diameter of the constriction
and L is the width of the reservoir before the thermody-
namical limit is performed. Thus the transmission am-
plitude scales like gd/L (d/L) and in the limit of infinite
reservoirs goes to zero. A similar argument can be based
on a comparison of the (local) density of states within
the constriction and in the reservoirs.

In the presence of bound states for H the situation is
diferent than in scattering theory where it is assumed

APPENDIX C: ORTHOGONALITY OF
SCATTERING STATES

Orthonormality and, together with bound states, com-
pleteness of (single-particle) scattering states for situa-
tions encountered in mesoscopic systems of the kind spec-
ified above (and the Zener diode, in particular, ) can be
shown by applying concepts &om time-dependent scat-
tering theory, provided condition (5) is met.

Let us consider two difI'erent wave packets each of
which characterizes a particle incident through some
reservoir R(R') and using the notation introduced in Sec.
II. For t ~ —oo, the particles are arbitrarily far away in-

side reservoir R(R') and the two wave packets may be
written

l4'(~)) =) f ~"~g'(" ")l4R;a).
x exp( —iER (k) t/5}, (C1)

and

IVER'(~)) = $ f&&&R'( ', &))4a.-.a)
n'

x exp( —iE~ „(k)t/5}.

that, in the distant past, the wave packet is a linear
combination of eigenstates from the continuous spectrum
of Hn and/or bound states of the full Hamiltonian H.
However, the presence and occupancy of bound states
of H has an infIuence of measure zero on the density
operator p(0) in the thermodynamic limit and is thus
negligible for the computation of the current response.
Consider, for instance a situation where H has a fi-

nite number of bound states lb;) and H has none. Then
turning on a bias at t + oo will cause the bound state
wave functions to spread to in6nity such that, at t = 0,

f& dxl(zlb;(0))l2 = 0 for any finite volume V. There is
no contribution for local quantities, such as current and
charge density. If, on the other hand, H has no bound
states but H does, adiabatic switching on of the per-
turbation does not lead to a population of the bound
states at time t=0 and the procedure fails to give the
new ground or stationary state. This is a well-known re-
sult in connection with the Gell-Mann-Low theorem and
is closely related to the fact that Mufller operators are
isometric rather than unitary when the system supports
bound states.

Thus we are led to the conclusion that, for all practical
purposes in which the scattering states are defined v)ith

respect to the particle reservoirs, and H has no bound
states, and where an independent-particle picture pro-
vides a good approximation, (83) may be used to cal-
culate the current response of a mesoscopic system for
fimte applied bias This. form of p(0), as well as the def-
inition of "applied bias, " becomes phenomenological if,
for 6nite bias, proper reservoirs, as defined above, are
not incorporated into the calculation of scattering states
(and/or transmission amplitudes).
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I~R (')) =) f ~1 C ("1)l&~.(1&))

x exp{—iER „(k)t/ti}, (C3)

Within the same reservoir, normalized channel states

IQR„ i,}, which are eigenstates of IIR with eigenvalue

ER „(k), are mutually orthogonal. Channel states as-
sociated with difFerent reservoirs need not be orthogonal
to each other. These wave packets move kee}y in reser-
voir R(R') in the remote past and, as a more detailed
investigation shows, develop into the wave functions

two different crystals should be orthogonal to each otl sr.
Yet, associated scattering states are mutually orthogonal.
Similarly, orthogonality of scattering states {l@R „&)}
can be shown. Of course, scattering states {I@R„&}}and

{I@R„&}}are not orthogonal to each other. In a similar
fashion one may show orthogonality between scattering
states and bound states. For the proof of completeness
of bound states and scattering states we refer to Ref. 68.
This proof is rather general. It applies to any system
which supports only bound states and scattering states
and for which (5) holds.

and

I'4'(t)) = ) .f&I'&a"("' I')I&'a a)...
n'

x exp{—iER ~(k)t/h}, (C4)

(e'R" (0)leR"'(0)}= (O'R"(t) le'R" (t))
~"(4'"(t)14'"(t)}

x C„"'(,k).

As the expansion coefficients C&~'l (n, k) are arbitrary, one
is led to

respectively, at finite time t. I@R &} are scattering
eigenstates of K.

First consider R = R'. Using (Cl), (C2), and (C3),
and the orthonormality of channel states IQR„,i, } for
given B, one finds

APPENDIX D: THE S MATRIX FOR
MESOSCOPIC SYSTEMS

In this section we show that the 8 matrix defined in
(10) is unitarity, which is intimately linked to orthonor-
mality of scattering states. In what follows, we consider
a system as described in Sec. II and allow an arbitrary
number of reservoirs with difFerent characteristics, such
as electronic structure and reservoir dimensions DR.

Unitarity of 8 may be shown by considering wave pack-
ets,

l@z,.(&)) = f ~' "'~~~;;I~a.a(~)), . .

incident through channels (R, n)
Equating (@R„(t)l@R,„(t)}for time t ~ —oo and

t ~ +oo gives, [see Eq. (10)],

( R...sl R...a}=~, b».
Thus scattering states associated with the same reservoir
are mutually orthonormal.

Next consider two wave packets that characterize a
particle incident through reservoir R and R', R g R',
respectively. For t ~ —oo, the two particles propagate
infinitely far inside their respective reservoirs. Owing to
this spatial separation the overlap between the two wave
packets is zero. The two wave packets evolve into (C3)
and (C4). Thus

(4„"(0)le",(0)} = (@„"(t)I4'„",'(t)}

gR" (t) I4R','(t)) = 0, for R g R'.

~RR4f&' ,
"'&,I.&z...a I

) dk '", dSR „-

z.,„(i) IEGER', (k')
I z„,„(s)

X b~R ~ I, ~g „I,+~ ~R' ~' I '- -+g e A:+

x IvER „-(k)IcR s+ cR, ,s+ (D1)

Validity of this expression for arbitrary expansion coef-
ficients CR g demonstrates unitarity of the S matrix.
In particular, Kirchhoff's junction rule (conservation of
charge) applied to scattering state @R & gives

Again, expansion coefBcients are arbitrary and one con-
cludes

(@R„„I@R, „,„,) = 0, for R g R'.

Note that channel states belonging to difFerent reser-
voirs need not be orthogonal to each other. Consider,
for instance, carrier scattering at a heterointerface be-
tween two crystals. The channel states are Bloch states
and there is no reason why Bloch states belonging to

This identity is a general version of T + R = 1 for one-
dimensional systems and expresses that a scattering state
is a stationary state of the system whose probability cur-
rent density into the system balances the probability cur-
rent density out of the system. Time-reversal symmetry
leads to additional relations among S matrix elements.
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