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In this paper two things are done. (1) A projection-operator formalism is used to derive the time-
convolutionless stochastic equation of motion for the reduced density operator from the quantum Liou-
ville equation for an arbitrary driven system coupled to a stochastic reservoir. As an initial condition,
decoupling of the system and reservoir for the total-density operator is assumed in the formulation. Per-
turbation expansions of the generalized collision operator are carried out in powers of the driving field
within the Born approximation for the interaction of the system with the reservoir. The time-
convolutionless form of the equation for the reduced density operator allows one to include the memory
effects systematically. (2) Time-convolutionless quantum kinetic equations for interacting electron-hole
pairs near the band edge in semiconductors under an arbitrary optical field are obtained from the equa-
tion of motion for the reduced density operator. These equations generalize the semiconductor Bloch
equations to incorporate the non-Markovian relaxation and the interference effects between the external
driving field and the stochastic reservoir of the system and are valid to any time scale. It is shown that
the interference term modulates the interband polarization and includes the renormalized memory
effects.

I. INTRODUCTION

Recent advances in the theory of femtosecond optical
pulse spectroscopy' and quantum transport theory
draw much attention to the ultrafast relaxation kinetics
of the electrons and holes near the band edge in semicon-
ductors. These relaxation kinetics in nonequilibrium
cases are often characterized by the presence of memory
effects and are also important in related areas such as
nonlinear optical gain in semiconductors in which the
competition between the stimulated emission and the in-

traband relaxation contribute to the spectral hole burn-
ing. In these nonequilibrium kinetics, the system has
memory effects on a very short time scale and the equa-
tions of motion for the system have time-convolution
forms of integral kernels which are responsible for the
memory effects. ' These quantum kinetic equations can
be obtained with reduced-density matrices and with
nonequilibrium Green's-function theory. In order to ob-
tain numerically stable kinetic equations a consistent
treatment of the memory kernels of the equations and the
Green's functions or the density matrices for the scatter-
ing processes is needed. In general, it is very diScult to
solve for the memory kernels of the time-convolution
forms of the equation self-consistently and almost always,
one must be content with the narrowing limit or the fast
modulation limit to obtain the non-Markovian relaxation.

Some time ago, Tokuyama and Mori" suggested the
time-convolutionless equations of motion in the Heisen-
berg picture for problems in nonequilibrium statistical
mechanics. These formulations were then developed in
the Schrodinger picture by Shibata and co-workers'
by using the projection operator technique. They ob-
tained equations of motion for a reduced density operator
of a system interacting with the surroundings. Saeki gen-

eralized these equations by considering the response of
the system to an external driving field. ' ' He derived
generalized master equations for an arbitrary driven sys-
tem interacting with the heat bath' and for a weakly
driven system interacting with the stochastic reser-
voir. ' ' It was shown that the time-convolutionless
equations of motion incorporate both non-Markovian re-
laxation and renormalization of the memory efFects.

Recently, Tomita and Suzuki used the time-
convolutionless equations in the lowest Born approxima-
tion to obtain the density-matrix theory of nonlinear gain
for noninteracting electron-hole pairs in semiconductors
and showed that the non-Markovian relaxation enhances
both linear and nonlinear optical gains. ' Many-body
effects such as band-gap renormalization and Coulomb
enhancement are not considered in their work On the.
other hand, recent calculations by the author showed
that the band-gap renorrnalization effects are pronounced
in microstructures such as strained-layer quantum wells
and are important in analyzing the optical gain spectrum
for long-wavelength semiconductor lasers.

In this paper, we first extended the work' of Saeki on
a stochastic Liouville equation for a weakly driven sys-
tem to derive a time-convolutionless equation for a re-
duced density operator of an arbitrary driven system cou-
pled to the stochastic reservoir. It is found that the den-
sity operator method is convenient for us to transform
the memory kernel into a time-convolutionless form
which is suitable for the perturbation expansions in the
system-reservoir interaction and the driving field.
Secondly we apply the formulation to obtain time-
convolutionless quantum kinetic equations for the system
of interacting electron-hole pairs under arbitrary external
optical field. These equations are the generalization of
the semiconductor Bloch equations by incorporating
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the non-Markovian relaxation and the renormalization of
the memory effects through the interference between the
external driving field and the stochastic reservoir.

and

Ppz (t)= t—PL&(t)Ppz(t) i—PLr(t)Qpr(t)
d
dt (5)

II. TIME-CONVOLUTIONLESS EQUATION
FOR A REDUCED DENSITY OPERATOR
OF AN ARBITRARY DRIVEN SYSTEM

In this section, we extend the work' of Saeki on a sto-
chastic Liouville equation for a weakly driven system to
derive an equation for a reduced density operator of an
arbitrary driven system coupled to a stochastic reservoir.
We consider an arbitrary driven system interacting with a
stochastic reservoir and assume that the interaction of
the system with its surroundings can be represented by a
stochastic Hamiltonian. The Hamiltonian of the total
system is assumed to be

H~(t) =Ho(t)+H, (t)+H,„,(t)

=H(t)+H, „,(t)

=H, (t)+H, (t), .

where Ho(t) is the Hamiltonian of the system, H,„,(t) the
interaction of the system with the external driving field,
and H;(t) the Hamiltonian for the interaction of the sys-
tem with its stochastic reservoir. The equation of motion
for the density operator pz(t) of the total system is given
by a stochastic Liouville equation

dpr(t)
dt

= —i [Hr(t},pr(t)]

—Qpr(t) = i—QLr(t)gp~(t) &Q—L&(t)Ppz(t), (6)
d

where we use the identity P+ Q = l.
We assume that the external driving field is turned on

at t =0 and the total system was in an arbitrary initial
condition pz (0).

It can be shown that the formal solution of (6) is given
by

Qpr(t) = i J—dr H(t, r)QLr(r)Ppr(r)
0

+H(t, 0)Qpz(0) . (7)

where the projected propagator H(t, r) of the total sys-
tem is defined as

H(t, r) = T exp i f—ds QLz (s)Q
7

p&(r) =G(t, r)p&(t) (9)

into Eq. (7). Here the evolution operator G(t, r) of the
total system is given by

Here T denotes the time-ordering operator. Next, we
transform the memory kernel in (7) into the time-
convolutionless form by substituting the formal solution
of (2)

where

iLr(t)pr(—t), (2)
G(t, r)=T'exp i dsLz(s)

7
(10)

Lr(t) =L,(t)+L, (t)+L,„,(t)

=L(t)+L,„,(t) =L,(t)+L, (t)

is the Liouville superoperator in one-to-one correspon-
dence with the Hamiltonian. In this paper, we use a unit
where A'= l. It is convenient to introduce the projection
operators ' which decompose the total system by elim-
inating the dynamical variables of the stochastic reser-
voir. We define time-independent projection operators P
and Q as'

H(t, r)H(r, s)=H(t, s) . (12)

From Eqs. (7) and (9), we obtain

Qpr(t) = (8(t) 1 jPp&(t)+8(t)—H(t, 0)gp&(0), (13)

where T is the anti-time-ordering operator. Evolution
operators G(t, r} and H(t, r) satisfy the following rela-
tions:

G(t, r)G(s, t) =G(s, r)

and

PX=p, (R)&,X), , g=l —P, (3)
where

for any dynamical variable X. Here po(R) is the initial
distribution function of the random variable R and
( . . ); is the average over the stochastic process H, (t). .

Projection operators P and Q satisfy the operator iden-
tity P =P, Q =Q, and P Q =g P =0. The information
of the system is then contained in the reduced density
operator p(t) which is defined by

8(t) =g(t)

=1+if drH(t, r)QLr(r)P G(t, r) . (14)

The time-con volutionless equation of motion for
Ppr(t) can be obtained from (5) and (13) as

Ppz. (t)= iPLz (t}Ppz (—t) iP—Lr(t) ( 8(t) 1JP—pr(t)—d

p(t) = (Ppr(t) ), (4) iPLr(t)8(t)H(t, 0)Qpr(—0) . (15)

In order to derive a time-convolutionless equation, we
first multiply Eq. (1) by P and Q to obtain coupled equa-
tions for Ppz (t) and Qpz(t):

It is now straightforward to obtain the time-
convolutionless equation of motion for a reduced density
operator p(t). By taking the average of (15) over the sto-



8312 DOYEOL AHN 50

chastic process H; (t},we get

—p(&) = —it(Ls(&)+ (L;(&));]p(&)+C(&)p(&), (16)

where the generalized collision operator C (t) is defined
by

C(r) = —i(L, (&) I0(&)—1 j },

that the system was in an arbitrary state p(0) at t =0.
Then it is obvious that QpT(0) =0.

We now consider the case when the system is interact-
ing weakly with the stochastic reservoir and expand (16)
up to the second order in powers of the stochastic Hamil-
tonian H;(r). We assume that the random force vanishes
on the average over the stochastic process, ' i.e.,

= —i(L, (r)X(r) t 1 —X(t) j '), , (17)
PL;(t)P=0 . (23)

in which

X(r) =1—8(t)

We further assume that the stochastic process is station-
ary.

The equation of motion for p(t) up to the second-order
expansion in H, (t) becomes

= —i d~H t, w LT wPG t, v
0

i f d—r U(r}S(r,r}U '(~)QLr(r)
0

XP U(r}R(r, r)U '(r) .

Here we define

U(r) = T exp i f —ds L, (s)

(18)

p(—r) = iL, (t—)p(r)+ C'"(t)p(r),d
dt

where

C")(r)=—(L,(r)X("(r)),
= —f dr(L, (t)U(r, r)L, (r)U '(r, ~)), .

wt

(24)

(25)

S(t, r) = T exp i f—ds QU '(s)L, (s) U(s)Q (20)

and

R(t, r)= T'exp i f —ds U '(s)L,;(s)U(s), (21)
'r

where U(t) is the evolution operator of the system with
driving field, and R(t, r) and S(r, r) are the evolution
operators and the projected propagators of the total sys-
tem in the interaction picture, respectively. In (16), we

assumed that the initial condition pr(0} is given by

X")(r)= 1 f dr U—(r, r)L, (r)U -'(r, r)

and U(t, r) = U(t) U '(r) Some .important mathematical
properties of the evolution operators are summarized in
the Appendix. Using Eq. (A6) of the Appendix, we trans-
form C' )(r) into an expression more suitable for the per-
turbation expansions with respect to H,„,(r):

C(2)(r)= —f dr(L, (r)U0(r)U, „,(r, r)U, )(r)
0

XL,(r)U0(r)U, „,'(t, r)U, '(r)), .

(27)

We can expand C' )(t) in powers of the driving field as

Pr(0) =P(0)pp(R), (22) C(2)(r) —y C(2)(r)
m=0

which means that the system and the reservoir were un-

coupled before the external driving field is turned on and where C' )(t) is the mth-order term given by

(28}

m —I
C' '(r)= —g ( i)"(i) "f—

deaf

dr) f d~2 f drk f dr»+, f dr (L;(t)4«(r, r„.. . , rk, r)L;(r)
k=0 0 '7 'r 'r

X+m k(t, rk+1~ ~smear) }i ~
(29)

(30)

Lext(+2)—0( 2 r3 } U 0(+k )+k}-
with

4 0(r, r) = Uo(t —r),
4 k(r, 'r), , 'Tk, 'r)= Up( rr))L ( t)Ur)p(ri w2)—

Vk(r, rl, . . . , Vk, t)—Up(t Vk }L,„,(rk )

XU0( „—«, )L,„,(r»1}

U 0(rk-2 rk 3U 0(+2 r-l }

XL,„,(~))U0(r, —t) . (33)

and

XL, ((rk ) U o(~k

%0(t, r) = U 0(~—t),
(31)

(32)

The time-convolutionless equation of motion for a re-
duced density operator given in (24) with (28)—(33) can be
used in any time scale such as the femtosecond regime
and is valid up to the second order in powers in the in-
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teraction between the system and the stochastic reservoir.
In the next section, a time-convolutionless equation for a
reduced density operator is used to obtain quantum
kinetic equations for the system of interacting elec-
tronhole pairs near the band edge in semiconductors un-

der an arbitrary optical field.

III. TIME-CONVOLUTIONLESS QUANTUM KINETIC
EQUATIONS FOR INTERACTING ELECTRON-HOLE

PAIRS IN SEMICONDUCTORS

tor becomes

d
p(t) =—i [L,(t)+I,„,(t) ]p(t }+C,"'(t)p(t)+D',",

7

where

C,"'(t)p(t)= —f d~&L, (t}U,(r)
0

XL;(t —~)UO '(~));p(t),

and

(37)

(38)

In this section, we apply a time-convolutionless Eq.
(24} to the system of interacting electron-hole pairs in
semiconductors with an external driving field. We as-
sume that the system is weakly interacting with its sto-
chastic reservoir. Many-body effects such as band-gap
renormalization and phase-space filling are included by
taking into account the Coulomb interaction in the
Hartree-Fock approximation. The stochastic Hamiltoni-
an H, (t) may .include electron-electron interaction and
electron-LO phonon interaction for both conduction and
valence electrons. We will not specify the explicit forms
of H, in this work and leave the detailed calculations of
correlation functions involving H; for a future work. In-
stead, we obtain the intraband relaxation and the dephas-
ing as correlation functions of H;(t} in the present work.

We employ the two-band model for the semiconductor
and introduce two short-handed notations ~ck ) and

~
uk )

such that

~ck ) = ~c,k) and ~vk ) = ~u, k), (34)

where c and U denote conduction and valence bands, re-

spectively, and k is the electron wave vector. In the fol-

lowing we suppress the vector notation for simplicity.
In the time-dependent Hartree-Fock approximation,

the unperturbed Hamiltonian H()(t) is given by

D' ' =C' '(t) U i)(t)p(0) . (39}

CP'(t) is responsible for the intracollisional field effects
and can be derived from (29),

cp (f)=if dr J ds[(L;(t)UO(t s)L, ,(s)—
0

X U v(s w)L; (r)—U v(r —t ) );

—&L, (t)U, (t ~)L, (—r) U,(~ s)—
XL,„,(s)Uv(s —t));J . (40)

n, (it)=p„i, (t)

It can be shown that DP' contains information of the
effects of the interference of the external driving field
with a stochastic reservoir of the system and is the renor-
malization of the memory effects.

Nonequilibrium distributions n, z(t}, n„i, (t) for elec-
trons in the conduction band and in the valence band, re-
spectively, and the nondiagonal interband matrix element

pi, (t) which describes the interband polarization induced
by the optical field, are the matrix elements of the re-
duced density operator and are given by

& ak IHO(t) Ipk &
=Ev (k)g~

—g V(k —k')&ak'Ip(t)lpk'&, (35)
k'

wher~ a,p=c or v and &(k —k') is the Coulomb interac-
tion.

The interaction of the system with an external driving
field gives the interaction Hamiltonian H,„, which is
given by

and

=
& ck (p(t) ~ck ),

n,„(t)=p„„„(t)

=
& uk

~ p(t }) vk ),

p~ (t) =p„,i, (t)

=&ukip(t}hack) .

(41)

(42)

(43)

H,„,(t) = ME (t), — (36)

where M is the dipole operator and E is the electric field
strength of the optical radiation.

The equation of motion for the reduced density opera-

Next, we calculate the matrix elements of the
collision term Co '(t)p(t}, &ck ~C() '(t)p(t)~ck ),
&uk~Coi '(t)p(t)(vk), and &vk~Coi '(t)p(t)(ck) to obtain
the non-Markovian intraband relaxation and dephasing.
After some mathematical manipulations, we obtain
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and

(cklCO{"(t)p(t)l«&= —f dr((«IL, (t)UO(r)L, (t —~)UO '(r)p(t)l«&&,
0

= —f dr((«l[H, (t), [(Uo(~)H;(t —~)),p(t)]]Ick &&;
0

= —2 f dc ReI ( (ck
I [H (t)( U o(~)H(t —r))]lck &&,. ] X [n,k(t) —(po ')„k(t)j,

0

& uk I CO'"(t)p(t) Iuk &
= —f dr((uk IL;(t)U, (r)L, (t —~)u (r)p(t) luk &&;

0

= —f dr((uk
I [H;(t), [(UO(r)H;(t —~)),p(t)]]luk &&;

0

2—f dr ReI ((ukl[H(t)(UO(~)H(t —r))]luk &&, }[n„„(t)—(po '),„k(t)] .
0

(uklc,"'(t)p(t)lck &= —f dr«uklL, (t)U,(r)L, (t r)U—
O '(~)p(t)l«&&;

0

dW V H& t, U0VH t —V,Pt Ck
0

= —f drI ((uk l[H;(t)(U o(r)H;(t —r))]luk »;
0

+ ««l[(UO(~)H;(t —r))H;(t)]l«&&;]pk(t),

(45)

(46)

where po '(t) = U o(t)p(0). Equation (46) is the non-Markovian optical dephasing which is the temporal decay of the in-

terband polarization due to scattering processes.
Similarly,

(ckl —i[La(t)+L,„,(t)]p(t)lck&= —2Im {u(k)E (t)++V(k-k')pj, .(t) pj,'(t)
k'

(47)

(uk I

—i[La(t)+L,„,(t)]p(t)luk & =2Im {u(k)E~(t)+g V(k-k')pk (t) pk (t)
k'

(48)

and

(uk I

—i[La(t)+L,„,(t)]p(t) lck & =i [E,(k) —E„(k)]pk (t)

+i {u'(k)E (t)+g V(k k')pk. (t) [-n,k(t) —n„k(t) ],
k'

(49)

where {M(k)= ( ck IM
I
uk &, and E,(k), E,(k) are renormalized single-particle energies given by

E,(k)=E, (k) —g V(k-k')n, „ (50)

and

E,(k)=E„(k)—g V(k-k')n„k (51)

In (44)—(48), Re and Im denote the real and the imaginary part of the complex variable, respectively.
The last term DI ' of (37) is the interference of the driving field with the surroundings and is given by

D{2)(t)=C{2}(t)p ~(t)

=i f dr f ds [(L;(t)UO(t r)L,„,(r)UO—(r s)L, (s)UO(s—}p(0)&;
0 0

(L, (t)U, (t s)I—., (s)U, ( —)—L.,„,( )U, ( )p(0) &, ]

=i f dv f ds([H;(t},[(UO(s)H, „,(t —s)), (Uo(~)H, .(t —r))],po{ '(t)]]&, ,
0 0

(52)

where we have made use of the transformation of integral variables and the commutation relation between the opera-
tors A, B, and C

[A, [B,C]]—[B,[A, C]]=[[A,B],C] .

It can be shown that the interference effects on the intraband collisions vanish to the first order if ( uk lpo '(t)lck &

vanishes. In other words, we assume that

& « ID I '(t) lck &
= ( uk ID', '(t) Iuk & =0 .
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In the following, we include the effects of the interference between the stochastic reservoir and the external optical
field only in the interband kinetics. It is involved but straightforward to evaluate the matrix element of DIz' and we
suppress the details of the algebra.

The result is

(uklD'i '(t)lck & =i Jt'dr Jt ds exp{—i[E,(k) —E,(k}](t—r}}{((uk l[H, (t)(UO(t —s)H, (s})]luk »,.
0 0

+((ckl[(U (t —s)H, (s))H;(t)]lck »;}
Xp (k)Et(t){(po )hack(t) (po '4ua(t)}

=i f dr Jt ds exp{ i[—E„(k) E—,(k)]s }{((vkl[H;(t){ Uo(r)H;(t —r})jluk »;
0 0

+((ckl[(UO(r)H, (t —r))H;(t)]lck »;}
Xp'(k)E (t —s){(p' ')„(t)—(p' ')„„„(t)}, (53)

where we have made use of the transformation of integral variables and dropped the Coulomb exchange term between

electrons in the conduction and the valence bands.
Using (41)-(53), we finally obtain time-convolutionless quantum kinetic equations for n, i, (t), n„t, (t), and pi,'(t),

—n, l, (t)= —2Im p(k)E (t)++V(k —k')pl, .(t) pI', (t)
k'

and

—2 ~Re c H t UQ~H t —~ c; n«t —pp'«k t
0

— n„I,(t) =2 Im{ [p(k)E&(t)+g V(k k')pt, (—t) jpl,'(t) }
k'

-2f '««{((.k l[H, (t)(U.(r}H,(t —.))]Ivk »; }{n„g(t)—(p~p")„„~(t)} .
0

(54)

(55)

—pi', (t}=i[E,(k) E„(k)]P—I', (t)+i p'(k)Es(t)++V(k —k'}p&, (t) [n,l, (t)—n,&(t)]
k'

r v;t UpvH;t —v v;+ c pf'H;t —v H;t c; p& t
0

+i z sexp —i E„—E, s v H;t UQrH;t —w v
0 0

+ ((ck l [(U o(r)H;(t —r))H, (t)]lck »; }

(p, '(k)E (t —s) {(po ')„i,(t)—
(po ')„„l,(t) } . (56)

The last term of (56), (uk lDI '(t)lck &, modulates the
interband polarization due to the interference of the driv-

ing optical field and a stochastic reservoir of the system
and gives the renormalized memory effects. Comparing
our time-convolutionless quantum kinetic Eqs. (54)-(56)
with previous quantum kinetic equations with memory
kernels, ' we can see that the time-convolutionless equa-
tions give the non-Markovian relaxation (both intraband
relaxation and dephasing} and the renormalized memory
effects through the modulation of the interband polariza-
tion, self-consistently. Moreover, time-convolutionless
equations are in a form convenient for the perturbation
expansions in powers of the stochastic Hamiltonian H&
and the interaction with the driving Seld H,„, and are
valid to very short time scale.

It can be shown that our quantum kinetic equations
are reduced to the conventional density-matrix equations
in the Markovian limit. In order to analyze the collision
term Co '{t)p(t) and the interference term DP'(t) in the
Markovian limit, we put

I

((ak l [H, (t)( Uo(r)H, (t —r))]lak »,

(uklC'(P(t}p{t}luk &

and

{n„/, (t)—(po ')„„p(t)}, (59)r„k

(uklCO '(t)p{t)lck &
= —

p& (t},1

r„(k) (60)

Then, the intraband relaxation and the dephasing terms
become

(ck lC,"'(t)p(t)lck &
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with

1 1 1 +
r„,(k) 2 r, (k) r, (k}

(61)

«akl[H, (t)(U,(r)H, (t —r))lak »,

as

((ak l [H;(t)( U (r)H, (t —r))lak »,

exp[ —Irl/r, ], (62)
1

rcra

the intraband relaxation and the dephasing terms are re-
duced to the results of the Markovian approximation
when t = ao.

In the derivation of the ordinary semiconductor Bloch
equations, we completely neglect all the kinetic effects of
DP'(t) and use the Markovian approximation in the nar-
rowing limit w, &)v, in the collision operator C0 '(t)p(t).
Here ~, denotes the macroscopic relaxation time of the
system. In this way, we get the familiar semiconductor
Bloch equations which describe the particles as free parti-
cles in between collisions or interactions with photons.
The more general Eqs. (54)—(56) include the effects of the
non-Markovian relaxation on the motion of particles be-
tween collisions. The interband kinetic equations incorp-
orate additional interference effects between the systern-
reservoir interaction and the external driving field. When
the system is fairly dense, the particle never gets away
from the other particles in the system and we cannot real-

In the Markovian approximation, the interference term
( vk lD P'(t)

l
ck & vanishes because in the integration over

ds, the upper limit v is zero and the resulting integral in
(53) becomes zero because of (57). Intraband relaxation
(58), (59) and dephasing (60) characterized by the dephas-
ing time (61) agree well with the conventional density-
matrix theory ' with Markovian relaxation. As a re-
sult the memory effects vanish in the Markovian limit be-
cause there is no correlation between the stochastic pro-
cess H, ( t r) a—nd H, ( t ). Physically,

((akl[H, (t)(U,(r)H, (t r))]a—k »,

represents the averaged probability amplitude of finding a
particle in the state lak & after being scattered at t by
H;(t) when it was initially in the state lak &, and then
getting scattered at t —r by H;(t r) an—d go as a free
particle for the time interval r. It is obvious that the
Markovian approximation assumes each interaction with
the reservoir randomizes the previous information con-
tained in the wave function and treats scattering process-
es H, (t) and H, (t r) as a—n independent stochastic pro-
cesses.

In the non-Markovian theory, the memory effects ex-
tend over the time interval ~, the correlation time of the
stochastic processes.

For example, if we assume the simplest form of the
non-Markovian correlation function

In this paper, we first derived a time-convolutionless
equation of motion for a reduced density operator from a
quantum Liouville equation for an arbitrary driven sys-
tem interacting weakly with the stochastic reservoir.
Secondly, time-convolutionless quantum kinetic equa-
tions for the system of interacting electron-hole pairs
near the band edge in semiconductors were obtained from
the equation of motion for the reduced density operator.
Time-convolutionless quantum kinetic equations incorpo-
rate the non-Markovian relaxation (or dephasing} and the
renormalized memory effect self-consistently and are in a
form convenient for the perturbation expansions in

powers of the system-reservoir interaction and the in-
teraction with the external driving field. These equations
are valid and useful for any time scale. It was shown that
the interference of the driving field and the reservoir
modulates the interband polarization and includes the re-
normalized memory effects.
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APPENDIX: OPERATOR ALGEBRA

In this section, we prove some useful functional rela-
tions among evolution operators (or propagators) defined

in Sec. II.
Theorem I Let V(t) as th. e projected evolution opera-

tor of the system be defined as follows:

V(t)= T exp i J dr QL, —(r)Q
0

(A1)

then
V(t}=P+QU(t)Q .

&«of. By expanding V(t) in the Taylor series, we ob-
tain

ly think of the particles as being "in between collisions. "
Quantum mechanically, the wave function of the parti-
cles are smeared out so that there is always some overlap
of wave functions and as a result the particle retains some
memory of the collisions it has experienced through its
correlation with other particles in the system. These
memory effects are the characteristics of the quantum
kinetic equations. Equations (54) and (55) can be used to
describe the quantum transport phenomena and are the
generalization of the Boltzmann equations. Equation (56)
is the quantum kinetic equation for the interband process
and is valid and useful to any time scale. The time-
convolutionless nature of these equations will reduce the
computation time required for the self-consistent numeri-

cal solution of the equations. In future work, we shall use

these equations to describe the ultrafast nonlinear optical

processes.

IV. SUMMARY
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)s(s)=) —i f dsQL, (s)Q+( —i) f ds f ds QL, (s)QQL, (s)Q +
0 0 0

=1+Q ~ 1 —i f dr L,(r)+( i—)'f d~ f ds L, (~)L, ( s)+ Q —
Q

0 0 0

=P+QU(t)Q .

We use the commutativity of Q and L, (t) and the indempotent property Q =Q.
Theorem 2. Projected propagators H(t, r) and S(t,r) satisfy

H(t, ~)=V(t)S(t, r)V '(r) .

Proof. We differentiate Eq. (8) with respect to obtain

(A3)

H(t, r) = —iQLr(t)QH(t, r}

with the initial condition H(r, r}=1.
On the other hand,

V(t)S(ts~}V '(~) = tQL,—(t)QV(t)S(t r)sV '(~)+ V(t) I tQ—U '(t)L, (t) U(t)Q IS(t r)iV '(~)

= —iQL, (t)QV(t)S(t, r) V '(r)+ IP+QU(t)Q ) I iQU —'(t)L, (t)U(t)Q )S(t,~) V '(~)

= —iQL, (t)QV(t)S(t, ~)V '(r) —iQL, (t)QQU(t)QS(t, r)V '(~}

iQL, (r)Q—V(t)S(t, r) V '(r) —iQL;(t)Q (P+QU(t}Q IS(t, r}V '(r)

iQLr(t—)QV(t)S(t, r}V '(r)

H(t, r)Q= U(t)S(t, ~)U '(7)Q . (A4)

Theorem 3. Evolution operators G(t, r) and R(t, ~)
satisfy

with V(r)S(~, r}V '(~}=1. Since any two functions
which satisfy the identical differential equation and initial
condition must be identical to each other, it is obvious
that H(t, r) = V(t)S(t, r) V '(~}.

Lemma. It can be shown that

is the unperturbed evolution operator of the system.
Then

U,„,( t)= T exp i f ds U—0 '(s)L,„,(s)U 0(s)
0

(A7)

U(t) = iL, (t)U(t)—

Proof. We differentiate U(t) with respect to t in order
to obtain

G,(t)r=U( )rR(t, )rU '(t) . (A5)

Proof of this theorem is similar to that of Theorem 2.
Theorem 4. Let U,„,(t) be the evolutipn pperatpr pf

the system in the interaction picture such that
Then we have

U 0(t) U,„,(t)+ U 0(t) U,„,(t) —.

U(t) =U,(t) U,„,(t),

where

U 0(t) =T exp i f ds L—
()(s)

0

(A6)
—U,„,(t}= —iU, '(t)L,„,(t)U,(t)U,„,(t) .
dt

The formal solution of (A8) is

T exp i f ds U—
() '(s)L,„,(s)U()(s)

0

(A8)
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