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The effect of Cooperons on the metal-insulator transition in disordered interacting electronic
systems is studied. We point out that a proper incorporation of Cooperons into the disordered elec-
tron problem must respect a Bethe-Salpeter equation for the effective Cooper interaction amplitude
I". This puts constraints on renormalization-group treatments of the problem. We discuss exist-
ing renormalization group approaches, both of the 6eld-theoretic and of the momentum-frequency
shell variety, and show that none of them are technically satisfactory. A general analysis of the
Bethe-Salpeter equation shows that all possible solutions fall into one of three classes which differ
with respect to the scaling behavior of l '. We argue that both of the physically most plausible
possibilities lead to logarithmic corrections to scaling, and discuss the experimental implications of
this conjecture.

I. INTRODUCTION

The current theoretical description of the metal-
insulator transition (MIT) suffers f'rom the fact that there
is no consensus about the efFects of the particle-particle
or Cooper channel on the MIT. The authors who Grst
studied this problem concluded that the presence or ab-
sence of the Cooper channel does not qualitatively mod-
ify the MIT. ' At first sight this may seem surprising, as
the widespread interest in the localization problem was
sparked by work on the Cooper channel and the backscat-
tering or weak localization efFects it produces. Also,
numerous experiments conGrmed the presence of these
weak localization effects in weakly disordered metallic
systems in the absence of magnetic impurities and mag-
netic Gelds. However, the assertion appears less surpris-
ing if one recalls that electron-electron interaction effects
in the presence of disorder lead to many of the same ef-
fects as Cooperons. If this is so in the weak disorder
regime, and if one acknowledges that electron-electron
interactions are in general relevant for the MIT, then it
is conceivable that Cooperons do not lead to any addi-
tional effects at the MIT over and above those produced
by the interplay of interactions and disorder alone. This
was in fact the conclusion reached by Finkel'stein and by
Castellani et al. , who have argued that the Cooper chan-
nel is irrelevant, in the sense of the renormalization group
(RG), for the MIT, that interaction effects effectively re-
place Cooperon effects near the MIT, and that MIT with
or w'ithout Cooperons are qualitatively the same. On the
other hand, more recently the present authors have ar-
gued that the effective Cooper interaction amplitude is
a marginal operator rather than an irrelevant one, and
that this marginal operator leads to logarithmic correc-
tions to scaling that are characteristic for those universal-

ity classes where Cooperons are present. 7 Since the RG
techniques employed in these two respective approaches
were quite different it is very hard to see any relations
between them and to tell which, if any, of the two results
is the correct one. This problem is of more than purely
academic interest since it was shown in Ref. 7 that the
logarithmic corrections to scaling, if they exist, can rec-
oncile the observed values s ( 2/3 of the conductivity
exponent s in Si:P (Ref. 8) and some other systems, s io

with the rigorous bound that requires s ) 2/3 in three-
dimensional (3D) systems.

The present paper is an attempt to clarify this is-
sue. VVe Grst show that the Cooper channel problem
can be cast in the form of a Bethe-Salpeter equation for
the effective Cooper interaction amplitude. This inte-
gral equation determines the quantity which the previ-
ous treatments disagreed upon, and all perturbative RG
calculations must be consistent with it. We then pro-
ceed to show that both the field theoretic RG methods
and the momentum shell-like methods, 2 3 as previously
employed, contain ambiguities, and do not lead to a fi-

nite renormalized theory. The origin of these problems
is traced back to hidden assumptions in the RG treat-
ments. We conclude that the theory is not renormaliz-
able with the number of renormalization constants as-
sumed for the Geld-theoretic treatment, 7 and that any
momentum shell-type RG produces new terms in the ac-
tion which are diKcult to handle and were ignored in
previous treatments. '

While we are currently unable to remedy the technical
problems with the RG treatments, we can classify possi-
ble solutions by means of a very general analysis of the
Bethe-Salpeter equation. The two most interesting, and
physically most plausible, of these solutions predict that
in systems without magnetic impurities or external mag-
netic Gelds there are logarithmic corrections to scaling at
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the MIT in agreement with the conclusion of Ref. 7.
The plan of this paper is as follows. In Sec. II we con-

sider Finkel'stein's efFective field theory for the MIT, 2

and calculate the perturbative corrections to the coupling
constants to one-leep order. We also derive the Bethe-
Salpeter equation that relates a general, &equency de-
pendent Cooper interaction amplitude p, to the Cooper
propagator I". In Sec. III we use field-theoretic renor-
malization methods to renormalize the parameters that
appear in the particle-hole channel. We then discuss both
of the previous attempts to renormalize the Cooper chan-
nel in order to obtain the scaling behavior of I", and
clarify the origin of the mutual inconsistency of these
results. In Sec. IV we classify possible solutions of the
Bethe-Salpeter equation with respect to the scaling be-
havior of I".This provides us with three possible scaling
scenarios for the problem, two of which lead to logarith-
mic corrections to scaling. Since the structure of the
perturbation theory makes the third one unlikely, this
leads us to the conjecture that logarithmic corrections to
scaling are present in all universality classes that allow
for Cooperons. In Sec. V we discuss the experimental im-
plications of this conjecture. In the Appendix we outline
the use of the Wilsonian RG for the Cooperon problem.

are Matsubara &equency labels. 0 = Ilu„with X the
identity matrix, ur„= 2+T(n + 1/2), is a fermionic fre-
quency matrix, and tr denotes a trace over all discrete
degrees of freedom. The terms [QoQ]„ in Eq. (2.1) are bi-
linear in Q. They describe the electron-electron interac-
tion, and the explicit forms of the "products" [QOQ]„can
be found in Refs. 1 and 2. G = 8/s 0~ with 0~ the bare
or self-consistent Born conductivity is a measure of the
disorder, and II = vrNJ;/4 plays the role of a frequency
coupling parameter with N~ the bare density of states
(DOS) at the Fermi level. K, and Kq are singlet and
triplet particle-hole interaction constants, respectively,
and K, is the singlet particle-particle or Cooper channel
interaction constant. At zero frequency the triplet cou-
pling constant in the particle-particle channel vanishes
due to the Pauli principle. For simplicity we formulate
the theory with a short-range model interaction, i.e., the
K, t, are simply numbers. For the more realistic case
of a Coulomb interaction K, is x dependent and must
be kept under the integral in Eq. (2.1). Most results for
this case are easily obtained after all calculations have
been performed by essentially putting K, = —H. In
Sec. III we will give results for both the short-range and
the Coulomb interaction cases.

The matrix Q is subject to the nonlinear constraint,

II. THE FIELD THEORY AND THE LOOP
EXPANSION

2 =1. (2.2)

In the first part of this section we recall the ba-
sic Geld-theoretic description of the disordered electron
problem ' 2 and derive the Gaussian propagators of the
field theory. Since the technical details of this model have
been reviewed in Ref. 1 we will keep this brief. We then
explain how to obtain perturbative corrections to the
coupling constants by considering the vertex functions
to one-loop order. Finally, we derive a Bethe-Salpeter
equation for the Cooper propagator.

A. The model

We consider the generalized nonlinear o model for in-
teracting electrons in the presence of disorder. 2 It is an
efFective model which is designed to capture the physics
determined by the slow modes related to conservation
laws, i.e., the difFusion of mass, spin, and energy density.
The action can be written

S{Q]= — /dxrr(VQ{x)) + 2H J dx tr(BQ{x))
ÃT ) K„dx Q(x) o Q(x)

u=s, t,c
(2.1)

Here the field variable Q is a Hermitian, traceless, in-
finite matrix whose matrix elements, Q ~, are com-
plex 4 x 4 matrices (spin-quaternions) which comprise the
spin and particle-hole degrees of freedom. The labels
cd, p = 1,2, . . . , N denote replica labels. In deriving
Eq. (2.1), quenched disorder has been integrated out by
means of the replica trick, and the limit N ~ 0 is irn-
plied at the end of all calculations. n, m = —oo, -,+oo

This constraint, and the requirements of Hermiticity and
zero trace can be eliminated by parametrizing the matrix
Q by, "

' (1 —qqt) &r & —1

Q q

(1 qtq)&/2 1

for n&0,
for n&0,
for n&0,
for n (0,

m&0
m&0
m&0
m&0.

(2.3a)

Here the q are matrices with spin-quaternion valued ele-
ments q„~; n = 0, 1, . . .; m = —1, —2, . . .. It is convenient
to expand them in a spin-quaternion basis,

3 3

q=-'=).).'q (. ').
v'=0 i=0

(2.3b)

Here 70 ——so ——o'0, and ~z ———sz
———j{r (j = 1,2, 3),

with sr~ the Pauli matrices. The 7;. are the quaternion ba-
sis and span the particle-hole and particle-particle space,
while the 8; serve as our basis in spin space.

We have so far given the theory for the so-called generic
(G) universality class which is realized by systems with-
out magnetic fields, magnetic impurities, or spin-orbit
scattering. Apart from class G, the second universality
class with Cooperons is the one with strong spin-orbit
scattering (class SO). For class SO the action is shown
as above, except that the particle-hole spin triplet chan-
nel is absent, i.e., the sum over the spin index i in Eq.
(2.3b) is restricted to i = 0. s In what follows we will
give results for both class G and class SO.

With the help of Eqs. (2.3) one can expand the action
in powers of q,
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S[q] = ).S-[q]
n=2

(2.4)

where S„[q] q . We first concentrate on the Gaussian
part of the action,

4=f-y &-. ,12(P) M12, 34 934( P) (25.)
v,i 1,2,3,4

Here f:—f dp/(2)r), and 1 = (n1, cr1), etc T. he ma-

trix M is given by

0,3M12,34(p) = " '
(b13[p' + GH(~, —~, )]

+b, ,b, ,2)rTGK, ), . (2.5b)

where v0 ——8, vi 2,3
——t, and

1,2M12, 34(p) (b13[p + GH(~ng ~ng)]

+b, ,b, ,b; 02m.TGK, ). (2.5c)

n3)0)n4 &0
0,3 12,34(p)/G = (1 —b, -,)&-,--.(p)

+b, ,V„", „,(p), (2.6a)

n3) 0)n4 (0
1,2M12,34(p)/G (1 baxag)1 nx —n2(p)

-b, , (1 —b;p)1 „, „,(p)

b;pb, , —
& .--.(p)

1+G2)rTK, f„,+„,(p)
'

where

f (p) =
n1)0)n2 (0

b-, ,+-,&-,--.(p). (2.6b)

F1~ere we lve introduced the ProPagators

The Gaussian two-point propagators are given in terms
of the inverse of M. They can be put into a standard
form by summing over, e.g. , n3 and n4,

(2.7a) —(2.7c) are taken to be analogous to a magnetic
field at a magnetic phase transition, i.e., the MIT oc-
curs at 0 ~ 0 and 0 or the temperature is a relevant
perturbation in the RG sense. Using Eqs. (2.6b) and
(2.7a), changing the sum to an integral, and placing an
ultraviolet cutoff 00 on the resulting &equency integrals
shows that 2m.Tf„,+„,(p) in Eq. (2.6b) diverges logarith-
mically in the long wavelength, low-temperature limit.
With K, ) 0, we see that the last term in Eq. (2.6b)
is logarithmically small compared to the other terms in
Eqs. (2.6).

We conclude this subsection with two remarks. First,
the logarithm discussed above that appears in the
particle-particle density correlation function is just the
usual BCS logarithm. However, since we consider a sys-
tem with a repulsive Cooper channel interaction, K & 0,
which is not superconducting in the clean limit, this does
not lead to a Cooper instability. Rather, the last term in
Eq. (2.6b) vanishes logarithmically in the limit p, T —

& 0.
If the structure of this term persists for disorder values

up to the MIT, and if it couples to the physical quan-
tities such as, e.g. , the conductivity, then it will lead to
logarithmic corrections to scaling. Second, considering
the Gaussian theory one can already anticipate a fun-
damental problem with any RG treatment of the field
theory. To see this, note that at the Gaussian level the
two-point vertex functions are given by S2[q]. Exam-
ining Eqs. (2.5) we see that at this order no singular-
ities, neither in the ultraviolet nor in the infrared, are
present in the vertex functions, and the only cutoff de-
pendence is the restriction that all frequencies must be
smaller than some ultraviolet cutoff frequency 00. This
should be contrasted with the corresponding two-point
Gaussian propagators given by Eqs. (2.6). Because of
the last term in Eq. (2.6b), both an infrared singularity
and a logarithmic dependence on an ultraviolet cutofF ap-
pear. In the usual RG approach such cutoff dependences
are eliminated from the field theory by the introduction
of suitable renormalization constants. Here, unusual fea-
tures are that vertex functions and propagators behave
differently with respect to their cutoff dependence, and
that the cutoff dependent term is logarithmically small
rather than large. We will come back to this in Sec. III
below.

17„(p) = [p + GHO„]

'D„"(p) = [p + G(H + K. t, )0„]

(2.7a)

(2.7b)

B. Perturbation theory and the Bethe-Salpeter
equation for the Cooper propagator

&&."(p) = & (p) —&-(p) (2.7c)

with 0 = 2vrrn a bosonic Matsubara frequency. Phys-
ically, D„, 'V', and 'V are the energy, mass, and spin
difFusion propagators. Examining the various terms in
Eqs. (2.6) we see that all of them have a standard propa-
gator structure except for the last contribution in Eq.
(2.6b). In interpreting these propagators as having a
standard structure, the Matsubara &equencies in Eqs.

We now consider the perturbation theory for the
vertex functions, which can be generated by standard
techniques. For simplicity we restrict our considera-
tions to the two-point vertex function I'~ ~ and to the
one-point vertex function I'~ ~ which is related to the
one-point propagator Pi ~ = (trQ (x)). At one-loop
order I'~ ~ is given by the second derivative with respect
to q of the right-hand side of Eq. (2.5a) with the matrix
M replaced by
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3 2M12 34 (p) = 61—2 3—4 (613
ning

Hn, n, =H+GH I;(p, O, „,)+3I,'(p, O„, „,)
P

+Hp66ng ((dp66 ~n, ) 1 1 ~+ I'-(p, O„,) + -I;(p, O „,)

(2.Sa)
GH— J;(p, 0„, „,) + 3J,'(p 0„

P

(2.9b)

1 2M12 34{p) = —61+2 3+4(623
ng ng

+H„,„,(ur„, —(d„,)
K„',„,„,„,= K, + H —H„,„„ (2.9c)

+b, ,b, ,8;p2n TK„',„,„,„,
(2.sb)

K„',„,„,„,= Kt+G(Kg —K, ) Jg(p, O„, „,)
P

where G„,„„H„,„„and K„",'„",„,„, are given by G,
H, and K, q„respectively, plus &equency dependent
one-loop perturbative corrections. In our notation we
have suppressed the fact that these corrections are in
general also momentum dependent. In the absence of
Cooperons these corrections have been discussed in de-
tail elsewhere. ~ In general the momentum and &equency
dependence of the corrections is quite complicated. Here
we just give the results to leading order in 1/e, with
e = D —2. With A an ultraviolet momentum cutoff,
and G = GS~/(2m)D with S~ the surface of the D-
dimensional unit sphere, we obtain,

G
G„,„,= G+ 'D„, „,—G If(p, O„, „,)

+3I,'(p, O„, „,)+ If(p, O„, „,)
+G I'(p, 0„, „,) + 3I,'(p, 0„, „,),

P
(2.9a)

CKg
Js(p, A„, „,)

P

—G2Kq I'(p, 0„, „,)
P

——(H+ K,)' J;(p, O„, „,), (2.9d)
2 P

K„',„,„,„, = K, ——(K, —6K4) / Il„,G

P

+G Jf(p, O„, „,).
P

(2.9e)

With a cutoff &equency Ao ——O(A2/GH) the integrands
read

Ap/2~T

I (p, 0„)= — ) —4'D'*'(p), (2.lOa)

np/2~T

If(pII ) = ——G242& ), K ( )
(II (p) 1

(2.f.ob)

2 +p/2~T

I2"(p, O„) = — (K, 6) 2vrT ) 0 D"(p)
~
'D„+~(p)

~

1 —2p D„+~(p), (2.f.Oc)

Ap/2~T

J2"'(p, 0„)= (K,,g/H) )— b, 'D" (p) + GK, ,g0~'D" (p)D~+„(p),
fn=n

(2.10d)

2nT & m) m
Jg(p, O ) = ) i

1 ——i'D +„(p) + —D (p)
233=1

(2.10e)
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D.p /2' T Op/2~T n /2~T

J.(p, &.) = — ) —»' (p) —«) &-(p)&-+-(p) + —K ) &' (p)&-+-(p)
m:n vn:n m —n

Bp/2n T Op /2n. T

+4» ) —D'(p)D-+-(p)+ 4~ ). (' ——„)D-'(p|D-+-(p) (2.10f)

Op/2mT

J2(p, B„)= 2~T ) 0 ('D (pl) (2.10g)

Ap/2mT

Jf(p, A„) = G2+T— ) —6'D' (p)
'

( ).
m=n

(2.10}1)

For the one-point vertex function one finds

rf l(A„) = 1+G [I'(p, 0„)+ 3I (p, 0„)+ I'(p, 0„)].
P

(2.11)

In giving Eqs. (2.9)—(2.11) we have neglected terms
that are finite in D = 2 as (A, Ao) ~ oo, and a b-function
constraint [cf. Eqs. (2.8)] is understood in Eqs. (2.9c),
(2.9d), and (2.9e). Some of these terms depend on nq

and n2 separately, not just on the difference nq —n2.
In Eq. (2.9b) we have written a separate dependence on
nz and n2 explicitly for later reference. Also, the com-
plete frequency dependence of K,„,„,„,and K„',„,„,„,
is more complicated than the one shown. However, for
most of our purposes it is suKcient to treat all "exter-
nal" frequencies as equal, and we do not have to deal
with the (substantial) complications that arise from the
full perturbation theory.

Finally, let us discuss one important point. To one-
loop order the two-point propagators are given by the
inverse of the matrix M', Eqs. (2.8) which contains the
perturbative corrections to the inverse of the matrix M

1+ G2.TK f ( )
(2.12a)

where I" satisfies a Bethe-Salpeter equation,

in Eq. (2.5a). For the particle-hole degrees of freedom
one can show in general that, except for irrelevant terms,
the matrix M' has the same form as the matrix M
with the only difference being that the corrected cou-

pling constants appear in M' . The underlying reason
for this feature is the conservation laws for mass, spin,
and energy density. For the particle-particle degrees of
freedom the situation is diferent. There are no conserva-
tion laws which guarantee that the form of the last term
in Eq. (2.6b) will not change at higher orders in the loop
expansion. In general, the Cooper propagator is given by
Eq. (2.6b) with the replacement,

', &0, ' &0

n3+n4, n1+n2
n1n2)n1n2 2 /~ 77 f ) n1n2 n3n4

+ / Gn' n' + ~~n' n' h4 n' ~n' j1 2 1 2 1 2

(2.12b)

Here we have again suppressed the momentum depen-
dence of I' . Note that if we make the substitutions

the remaining sum by an integral, let p, T —+ 0, and use
an ultraviolet cutoK 00 on the frequency integral, then
I' has the standard BCS form,

(2.12c)
K,

'" '+I -,+-, I

with p, = K /H, and Dl l = 1/GH.
The actual Cooper propagator to all orders in pertur-

bation theory would have the simple form given by Eq.
(2.12c) only if the coupling constants K and H were con-
stant to all orders. In general, the structure of the Cooper
propagator will be more complicated and to obtain it one

has to solve the integral equation, Eq. (2.12b). This equa-
tion expresses a general inversion problem: How to obtain
a propagator from a vertex function which has a compli-
cated frequency dependence. In the Cooper channel, in
contrast to the particle-hole channel, this problem is not
simplified by constraints due to conservation laws. For
later reference we symmetrize the Bethe-Salpeter equa-
tion by defining
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A3 f44

K'
~1~2 i~3~4

1/2
fLI YL2 'A3 fl4

(2.13a)

and

pc
TL1 YL2 i7L3FL4

H„,„,H„,„,
(2.13b)

For T —+ 0 the integral equation for I' then reads

p((u, 0, (u')I'(ur', 0,~")
0 D(~', —0 —(u') p2 + 2(u' + 0

= p(~, 0, (u"), (2.14a)

with

D(~', —0 —~') = [G(~', —0 —(u')H((u', —0 —u)')]

(2.14b)

Since we consider the zero-temperature limit we have
made the replacements,

2n.T(ni+ nz) = 2m.T(ns+ n4) w —0
2' TA3 M 4)

2' TAg M ld

2' TAy M (d

I'„,„,„,„, i I'((u, Q, ~") (2.14c)

etc. , and for de6niteness we have assumed 0 & 0.

III. THE RENORMAI IZATION GROUP FLOW
EQUATIONS

In this section we apply a field-theoretic renormaliza-
tion procedure to the model of Sec. II. We first use
normalization point techniques to obtain RG fiow equa-
tions for all of the coupling constants that appear in the
particle-hole channel. These Bow equations contain the
Cooper propagator I'. In order to close the system of
Bow equations one needs a How equation for I', and we
discuss the reasons why previous attempts to derive one
are problematic. In the Appendix we show that the same
Bow equations are obtained, and the same conclusions are
reached, if one uses a %'ilson-type momentum-&equency
shell RG.

not require any additional renormalization constants be-
cause the coupling constant H in Eq. (2.1) just mul-

tiplies the basic q field, and, therefore, the renormal-
ization of H is determined by the 6eld renormalization
constant. 2 This model represents the noninteracting
localization problem. From a physical point of view the
model has a rather restrictive property: The only inter-
action taken into account is the elastic electron-impurity
scattering, and consequently the difFerent Matsubara &e-
quencies in Eq. (2.1) are decoupled.

The situation changes fundamentally with the addi-
tion of the last term in Eq. (2.1). Physically, this term
describes the electron-electron interaction and hence the
exchange of energy between electrons. Technically, this
leads to a coupling between the Matsubara frequencies,
and an examination of the perturbation theory shows
that this term introduces new in&ared and ultraviolet
singularities. In the absence of interactions, singulari-
ties arise only from momentum integrations. With in-
teractions there are singularities due to both momentum
and frequency integrations, and the symmetry properties
of the model change continuously during the RG proce-
dure. As a consequence, the established resultszo con-
cerning the renormalizability of nonlinear cr models with
perturbing operators, which apply to models with a fixed
symmetry, are inapplicable. No general results concern-
ing the number of renormalization constants needed are
available, and it is a priori unclear how to renormalize
the model given by the full Eq. (2.1).

All RG treatments of the field theory defined by Eqs.
(2.1)—(2.2) so far have ignored this general renormaliz-
ability problem. They have assumed, explicitly or implic-
itly, that the full model is still renormalizable with one
extra renormalization constant for each interaction cou-
pling constant which is added. In addition, H acquires
a renormalization constant of its own if interactions are
present. In the absence of Cooperons, i.e., in a theory
which contains only K, and Ki, there is empirical evi-
dence based on perturbation theory for this assumption
being correct. is 22 2s In the presence of Cooperons things
are more complicated as we will see. We will, therefore,
first renormalize the particle-hole channel, where the the-
ory is on more soM ground.

It is most convenient to use a normalization point RG.
The renormalized disorder, frequency coupling, interac-
tion constants, and q fields are denoted by g, h, k„ki,
and g~, respectively. They are de6ned by

(3.1a)

A. Renormalization of the particle-hole channel
H =Zp, h, (3.1b)

The field theory defined by Eqs. (2.1)—(2.2) has the
form of a nonlinear 0 model with perturbing operators.
The pure o model, i.e., the Grst term on the right-hand-
side (rhs) of Eq. (2.1) with the constraint given by Eq.
(2.2), is well known to be renormalizable with two renor-
malization constants, one for the coupling constant G
(the disorder) and one for the renormalization of the Q
field 2O The sec.ond term on the rhs of Eq. (2.1) does

(3.1c)

0,3g = + 0,3ga& (3.1d)

where p is an arbitrary momentum scale that is intro-
duced in Eq. (3.1a) to make g dimensionless. The renor-
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(N)»r„(p, n„;g, h, k. , k„.. . ; p, A)

= z"~', ,rl"l(p, n„;c,II, x., z;;A). (3.2)

Renormalizability implies that all of the r&l are finite

malized particle-hole N point vertex functions are related
to the bare ones by

as A —+ oo for fixed renormalized coupling constants.
On the left-hand side of Eq. (3.2) we anticipate the pos-
sibility that renormalization may produce new scaling
operators which have no counterpart in the bare vertex
functions. We will see that this indeed happens, since the
particle-hole and particle-particle channels couple, start-
ing at one-loop order.

The Z's in Eqs. (3.1) are not unique. We fix them by
the following normalization conditions for the two-point
vertex functions,

(3.3a)

n, —n2j

( Ii')„„;„,„,(p = o) -', (rIt')„,„;„,„,(p = o)l.~p
= 2xTk, (3.3c)

These conditions determine the renormalization con-
stants Z~ h, &. The wave function or field renormaliza-
tion constant Z we fix by a normalization condition for
the one-point vertex function I'~ ), viz. ,

Z = 1+ —5 —3(l + 1/p&)&& —— + O(g ), (3 5b)g I 2

4e 2

(~) ~~o(rIi').:In„=„~]sp.= . (3.3d)
Zh —1+ 1+3)/+I )

g
8e

(3.5c)

The normalization conditions given by Eqs. (3.3) are the
conventional ones: At scale p the renormalized vertex
functions are taken to have their tree level structure.

From Eqs. (2.8), (2.9), (3.1), (3.2), and (3.3) the Z's
can be determined. We obtain

Zs —Zh ) (3.5d)

g 1 1 - 1 14 = 1+ — + —+ W~+ r +1+ -&~
I

(3.5e)
2~ 4p~ 4 4pg 2

Z= 1 I'~) n„=& (3.4a)

with lt.
——ln(l + pt, ), pq

——kq/h I' is the .Cooper propa-
gator at scale p,

r=r(&) =r(, n, ')~. .. „.„,„„„. {3.6)

+O(g ), (3.4b)

1
Zi, = Z ——[H, , —H] „a]sh+O(g ).

(3.4c)

The fastest way to derive the RG fiow equations is to
switch &om our cutoff regularized theory to dimensional
regularization and use a minimal subtraction scheme. We
can do so by putting e ( 0 in Eqs. (3.4), letting A -+ oo,
and then analytically continuing to e ) 0. %'e finci,

with I' from Eq. (2.13b). In giving Eqs. (3.5) and (3.7)
below, we have for simplicity neglected terms of order
gI'" with n & 2. The omission of these terms does not
affect our conclusions.

The one-loop RG How equations follow from Eqs. (3.1)
and {3.5) in the usual way. With b y,

i and 2; = ln b

one obtains,

—= —eg + —5 —3(1+1/p~)l~ —— + O(g ),
dg g I' 3
dx 4 2

(3.7a)

g —2Z=1 —— — +3l, +I',
4e

(3.5a)
dh gh—= —[3p, —1+I']+ O(g ),dx 8

(3.7b)
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= —(1+p, )2 + —(1+p )(1+2p )I + O(g ),dx 8 8

(3.7c)

—= —eg+ —[1 —r]+O(g ),
dg g
dx 8

(3.Sa)

dh gh—= -—[1-r]+ o(
d~ 8

(3.8b)

In giving Eqs. (3.5) and (3.7) we have specialized to the
case of a Coulomb interaction between the electrons. In
this case a compressibility sum rule enforces p, = k, /h =

1.2
Equations (3.7) are valid for the universality class G.

For the spin-orbit class SO the analogous results are

Attempt f: A Pom emotion for Z

It is clear &om the results of the previous subsection
that the renormalization procedure used so far needs to
be expanded: The appearance of I' in Eqs. (3.7) —(3.8)
indicates that the Cooper channel couples to the particle-
hole channel at one-loop order. One can now proceed
based on the following.

Asaumption 1. One can consider I' an effective renor-
malized coupling constant which should be treated on
equal footing with g, h, k„and k&. No other renormal-
ization of Cooper channel quantities is necessary.

This is the assumption made implicitly in Refs. 2 and
3. It may be motivated by the fact that to zeroth or-
der in the disorder there is a logarithmic singularity in,
e.g. , Eq. (2.6b) that can be viewed as a scale dependent
renormalization of K, . It implies that Eq. (3.2) should
be completed to read

Note that Eqs. (3.8) for the universality class SO have, at
least in the absence of I', a fixed point describing a MIT, s

while Eqs. (3.7) for the generic universality class do not.
The runaway problem posed by Eqs. (3.7) for the class G
has been solved by a perturbation theory and resumma-
tion to all orders. 24 However, this problem is decoupled
&om the Cooper channel problem. discussed here, and for
our present purposes, Eqs. (3.7) are sufficient.

Equations (3.7) and (3.8) are identical to the How equa-
tions obtained in Refs. 2 and 3, which supplemented them
by a How equation for I'. They are also identical to the
flow equations obtained in Ref. 7. In that paper, how-

ever, an explicit expression for I' was used, and an addi-
tional Bow equation for the Cooper interaction amplitude
p, = k, /h was derived. These two approaches yielded
qualitatively different results. In the next subsection we
will show that these difFerent results are due to differ-
ent assumptions concerning the renormalization of the
Cooper channel, and we will discuss the validity of these
assumptions.

B. Attempts to renormalize the particle-particle
channel

, ,rR (p, n„;g, k, k. , k„r;&,A)
(N)

= z"~',,rt"1(p, n„;a,a, K., K;;A). (3.2')

~(0) Z I (3.9)

To zeroth order in the disorder Eqs. (3.6) and (3.9) give

z. = (1-r*)-', (3.10a)

cK—=-r .
dz

(3.10b)

A few remarks are in order in the context of Eq. (3.10b):
(1) It has the standard form of a RG How equation for a
marginal operator. (2) In this approach the RG is used
to obtain the BCS logarithm. It correctly reproduces the
result for I' to lowest order in the disorder, viz.

Equation (3.2') acknowledges the fact that the renormal-
ization procedure has generated an additional operator
whose scaling properties have to be determined in order
to complete the description of the renormalized theory.

One can define a renormalization constant Z, by

The RG How equations given by Eqs. (3.7) and Eqs.
(3.8) are not closed because they contain the Cooper
propagator I'. More generally, we have not yet consid-
ered the renormalization of the particle-particle channel,
which is necessary in order to complete the theory. What
has been done in the literature to close the system of Bow
equations amounts to various implicit assumptions. Here
we investigate this point in some detail. We will state the
assumptions explicitly, and show how the mutually con-
tradicting results in the literature follow &om them. We
will then analyze the resulting descriptions with respect
to internal consistency. To what extent they are consis-
tent with the Bethe-Salpeter equation will be discussed
in Sec. IV.

(o)

r(~) = '(,
)

+o(~),() (3.11)

which is easily obtained from Eqs. (2.14a) and (3.6). (3)
A crucial question is what the structure of the higher loop
corrections to Eq. (3.10b) will be. If, as has been asserted
in Refs. 2 and 3, I' Bows to a nonzero Gxed point value,
I' -+ I", then Eq. (3.10a) seems to imply that Z, has a
Cooper-type singularity at a finite scale z = lnb = 1/I"
which does not correspond to any physical phase tran-
sition. This conclusion is not necessarily correct, since
terms of higher order in the disorder could change the
behavior of Z . Nevertheless, we will see that the struc-
ture of Eq. (3.10a) represents a serious problem and leads
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v(~, n, ~') = &.(p) fM+td +0)
Ap j (3.12a)

to an internal inconsistency. We will discuss this point
in connection with Eq. (3.15) below.

Within this approach the one-loop RG flow equation
can be obtained by using Eqs. (2.9) and (2.13a) in Eq.
(2.14a), and iterating to first order in the disorder. From
Eqs. (3.1) and (3.9) one can then obtain a How equation
for I'. The resulting equation is quite complicated, and
we will illustrate only a few points. First, let us make
contact with Refs. 2 and 3 by retaining only the first
two terms in Eq. (2.9e), neglecting the corrections to H,
putting p = 0, and working in D = 2. In this approxi-
mation, p in Eq. (2.14a) is given to leading logarithmic
accuracy by,

+a pI ~ lnl ——p~ inn 00

+ lnjl ——p~ ~ ln(~'/Bo)]), (3.14a)

with

Above we argued that the functional form of the renor-
malization constant Z„Eq. (3.10a), potentially leads to
problems. %e, therefore, check the approach for internal
inconsistencies. To illustrate that a problem does indeed
exist, we add to Eq. (3.12a), via Eq. (2.13a), the Cooper
propagator contribution to H„,„,and H„,„„i.e., the in-

tegral over If in Eq. (2.9b). The result is a kernel in Eq.
(2.14a) which is given by

'+0
n,

with,
a2 ——g/16. (3.14b)

(g/16)( —p, + 3p, ) for class G

(g/16) for class SO, (3.12b)

for the generic and spin-orbit universality classes, re-
spectively. Here we consider the short-range model for
simplicity. Using Eq. (3.12a) in the procedure discussed
above, we obtain the following one-loop How equation for

r,

—= —I' [1 —abc] —4aql'ln2+ 2aq + O(g, z e *),dI 2 2 —2x

dx

(3.13a)

The last two terms in Eq. (3.14a) occur because of the
dependence of p on the Cooper propagator. In the last
term in Eq. (3.14a) we have neglected a dependence on
0 which is irrelevant for our purposes. Using Eq. (3.14a)
in the RG procedure yields the flow equation,

dr'—= —I' [1 —abc —2a2] —4aql'ln2+ 2aq
dx

$2
2 dz r 2—a2I' in[1 ——ln(2z)] + O(g ).. (+1/2)'

(3.15)

with

dz (z+ 3/2)
z+1/2 ~z+1/2) 12

(3.13b)

Two things should be noted: (1) the coefHcients in Eq.
(3.13a) are universal and, consequently, this equation has
the form of a standard RG How equation; (2) at the MIT
in, e.g. , the SO universality class, aq, which is of O(g),
is a constant of order g' = O(e). If Eq. (3.13a) is valid,
then this implies that 1 goes to a fixed point value at the
MIT which is of order e~~~ In a strict .e expansion the
terms of O(gl') and higher on the rhs of Eq. (3.13a) can
be neglected, and to leading order the equation takes the
form

The crucial point is that as x = lnb -+ oo the last term
in Eq. (3.15) does not exist because of a singularity at
b exp(l/I') exp(1/e ~~2). Notice that this break-
down of the RG flow equation for the Cooper propaga-
tor is nonperturbative in nature. Previous derivations
of Eq. (3.13a'), ' were based on perturbative expansions

in both g and I' and cannot be used to discuss the sin-

gularity in Eq. (3.15). Furthermore, if one expands the

last term in Eq. (3.15) in powers of I' then a non-Borel
summable divergent series is obtained. The structure of
this singularity resembles what is known as the renor-
malon problem in quantum field theory. We also note
that this singularity is obviously related to the one dis-
cussed in point (3) below Eq. (3.10b).

dI'—= —I' + 2ag.
dx

(3.13a') 2. Attempt 2: Renorvnalisiny the Cooper
vertex' function

This result is identical to those in Refs. 2 and 3, ex-
cept for the prefactor of the aq, which is four in these
references. This difference is due to the fact that for a
Coulomb interactian, which was considered in these ref-
erences, an additional term appears in Eq. (2.9e). This
leads to a more complicated kernel than the one in Eq.
(3.12a), and to an additional factor of 2 in Eq. (3.13a').
Since this difference is not relevant for our purposes we

restrict ourselves to the simpler kernel for the short-range
case, Eq. (3.12a).

A quite different attempt to renormalize the Cooper
channel has been made in Ref. 7. It is based on the
following.

Assumption 2a. The Cooper channel is renormaliz-
able with the same wave function renormalization as the
particle-hole channel and an additional renarmalization
constant for the Cooper interaction constant K .

This means that Eqs. (3.1) are supplemented by



50 COOPERONS AT THE METAL-INSULATOR TRANSITION: . . . 8281

K, =Z&„ (3.1c') r„(p,n„;g, h, k. ,a„a.;~,A)(~)

1,2$ ~ 1,2QR
1/2 (3.1d')

and that the renormalization statement for al/ N-point
vertex functions is generalized from Eq. (3.2) to

= 2 ~ I'l &(p, O„;G,II, K„Kg,K„A). (3 2/I)

The new renormalization constant Z we determine from
a norxnalization condition for the two-point Cooper ver-

tex function,

8
i(l'Ir'):,."„:...(p = 0) —i(l'z ), '.. . , (p = 0)l.gp

= —2xTk, . (3.16)

From this we obtain,

[~lyrae)reeve e,&]~„~ ~„e———po/gh
~e,t

+O(g ), (3.17)

and minimal subtraction yields

g —2 g
Z, =1+— +3l, + I' + —(1+3'&)/p,46. E 4e

+—g I/~. , (3.18)

de g= —(3' + 1) + ——+ 6lq + 1 —3' + I'gPc 4

dx 4 8

+——+0 g
sr 2

E Pc
(3.19a)

where p, = k, /h. We then obtain fiow equations for p„

ing to Assumption 2a, I' does not acquire a renormal-
ization constant of its own, but rather is interpreted as
the Cooper propagator, whose scaling behavior follows
f'rom that of the Cooper vertex function. Reference 7 did

not solve the inversion problem given by the full Bethe-
Salpeter equation, but notice that, with an irrelevant I',
Eqs. (3.19) yield a finite fixed point (FP) value for p„
which in turn yields a logarithmically vanishing I' from

Eq. (2.14a). This together with the zero-loop result for

I', i.e., Eq. (3.11), leads to the following.

Assumption Pb Near th. e MIT, I' is adequately repre-
sented by

(v) =, (3.20)

%ith these assumptions, p, approaches a finite FP
value, and I' is a logarithmically irrelevant operator. This
is in sharp contrast to Eq. (3.13a'), which predicts a finite

FP value of I'.

g W" 4——+1+I + ——+ O(g ) (3.19b)
dx 4 8 6 Pc

for the universality classes G and SO, respectively. Notice
the terms 1/e ia Eqs. (3.19), which are characteristic
for the case Coulomb interactions [for a short-raage in-
teraction, the equivaleat terms are ln(1+ p, )]. The
preseace of these terms in the RG fiow equation for p,
reflects the well-known (ln) 2 siagularity that exists ia the
disorder expansioa of the single-particle deasity of states
(DOS) ia D = 2. The appearance of this type of term
in the Cooper channel has been discussed before in the
context of superconductivity (p, ( 0) by Fukuyama and
co-workers. It has sometimes been claimed that these
DOS eEects are absent in all How equations for the inter-
action constants. Vile stress that this statement depends
on exactly what quantity is considered. %e find that it
is true for p, and pq, but not for the Cooperon ampli-
tude p . It is also important to note that the presence
of these 1/e terms in the fiow equations per se does not
create any problexns. They do appear, e.g. , in the renor-
malization of the single-particle DOS, for which a careful
application of the above method28 leads to results that
are consistent both internally and with those obtained by
other methods.

One still needs to determine the scaling behavior of I',
since it enters the fiow equations, Eqs. (3.19). Accord-

8. Discussion end mtetaol inconsistency of tlae

attempts

The two assumptions made in Refs. 2, 3, and 7, re-

spectively, which we have spelled out in the last two sub-

sections, taken together with the Bethe-Salpeter equa-
tion, Eq. (2.14a), are mutually incoasistent. This can
be seen as follows. Assumption 1 leads to a finite FP
value of I'. The structure of Eq. (2.14a) is such that the
only way this can happen is if p diverges in the critical,
or zero-&equency, limit. However, I' = const. inserted
into Eqs. (3.19) leads to a finite FP value of p or p.
Hence Assumptions 1 and 2 are contradictory, and this
explains why, as we have seen, the two approaches lead
to qualitatively diferent results. Apart from the renor-
malon problem, which we have discussed in connection
with Eq. (3.15), both approaches, taken by themselves,
appear reasonable and logically consistent. In order to
see that neither one of them really is, we need to con-
sider what has not been achieved by either renormaliza-
tion procedure.

Attempt 1 considers I' the only relevant quantity in
the Cooper channel. At this point it is important to re-
mexnber that I really is a part of the Cooper propagator,
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even though Attempt 1 treated it as an effective coupling
constant. Equation (3.9) can, therefore, be interpreted
as postulating a wave function renormalization for the
Cooper channel, viz. , Z, which is diferent Rom the one
for the particle-hole channel. This raises a number of
questions. For instance, it suggests that the propaga-
tor 17„(p), which is common to both the particle-hole
and the Cooper channels [cf. the first two terms on the
rhs of Eqs. (2.6)], is renormalized differently in the two
channels. It is unclear how to interpret this. More im-

portantly, however, this approach never considers how to
renormalize the Cooper vertex function. It is clear that
the Eqs. (3.9) and (3.10a) do not lead to a finite Cooper
vertex function. One concludes that the theory is not
properly renormalized by this approach. The problem
is essentially that a Gnite propagator does not automat-
ically imply a finite vertex function, as it does in sim-

pler theories, because of the nontrivial inversion problem
posed by the Bethe-Salpeter equation. We stress that one
cannot dismiss the Cooper vertex function as unphysical,
since with a suitable (albeit not realizable) external field
it determines the &ee energy.

Attempt 2 seers &om the opposite problem. It renor-
malizes the Cooper vertex function and succeeds in rnak-

ing it 6nite, but it never considers the renormalization of
the corresponding propagator. Indeed, in this approach
it is the Cooper propagator that is not 6nite. We further
note that if one tries to renormalize the Cooper propaga-
tor using Assumption 2a, then one runs into the renor-
malon problem again.

We conclude at this point that neither attempt is tech-
nically satisfactory, and that they both suffer from essen-
tially the same shortcoming, which is not at all obvious
kom the previous publications. We further show in the
Appendix that the problems we encounter are not due to
the particular renormalization method used, and that the
same conclusions are reached if one works with a Wilson-

type momentum-shell RG. Since it is at present unclear
how to overcome these technical problems concerning the
renormalization of the Cooper channel, we next turn to a
general discussion of the inversion problem. Our goal is
to formulate the restrictions that are put on any renor-
malization attempt by the Bethe-Salpeter equation.

In the 6rst part of this section we discuss some general
features of the Bethe-Salpeter equation, Eq. (2.14a). We
conclude that the results of either one of the attempts dis-
cussed in Sec. III8 are consistent with the Bethe-Salpeter
equation, although the technical details were not. We
will also see that the Bethe-Salpeter equation allows for
a third scaling scenario which, however, seems unlikely
given the structure of the perturbation theory. We then
argue that both of the fnst two scaling scenarios, despite
their rather different asymptotic scaling behaviors, lead
to logarithmic corrections to scaling. The consequences
of this are discussed in Sec. IV B.

A. Solutions of the Bethe-Salpeter equation

As was pointed out in the preceding subsection, to
complete the RG description started in Sec. IIIA the
scaling properties of the Cooper propagator given by Eqs.
(2.13), (2.14a), and (3.6) need to be determined. In Sec.
IIIB we showed why previous attempts to do so are not
satisfactory. Here we pursue a diferent approach. We
acknowledge that the Bethe-Salpeter equation puts con-
straints on any renormalization procedure, since it cou-
ples the scaling behavior of p, and I'.

In principle one should solve the Bethe-Salpeter equa-
tion numerically together with the RG fiow equations.
However, at present this is precluded by the unsolved
problems concerning the renormalization of the Cooper
channel which were discussed in Sec. III. Since the kernel
of the Bethe-Salpeter equation is determined by the scal-
ing behavior of p„ this program must await the construc-
tion of a 6nite renormalized theory including the Cooper
channel. We, therefore, set ourselves a more modest goal,
viz. , to determine what kind of scaling behaviors are con-
sistent with the constraints imposed by Eqs. (2.13) and
(2.14a). We will find that the Bethe-Salpeter equation
allows for three difI'erent scaling scenarios, two of which
lead to logarithmic corrections to scaling.

To simplify our considerations we work at zero momen-
tum. We further specialize to a model with a separable
kernel. The main points can be illustrated using a kernel
that is a sum of two separable parts,

IV. A DISCUSSION OF THE BETHE-SALPETER
EQUATION

The preceding section has shown that the results of the
two attempts to obtain the scaling behavior of I' from a
renormalization of the Cooper channel are not reliable,
since neither one succeeds in producing a consistently
renormalized theory. We now turn directly to the Bethe-
Salpeter equation in order to determine the restrictions
put on the scaling of p, and I' by the inversion problem.

l

Note that Eq. (4.1a) satisfies the symmetry requirement,

g(~, 0, (u") = p(~", 0, (u) . (4.1b)

Equation (4.1b) is a consequence of the symmetry prop-
erty K„' „„„=K„',„,„,„,. Inserting Eq. (4.1a) into
Eq. (2.14a) leads to a separable integral equation that
can be easily solved. We obtain
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with

(4.2b)

, fi(~', O)f2(~', 0)
(4.2c)

Attempt 1 in Sec. III B suggested that I'(p) given by
Eq. (3.6) goes to a finite fixed point value at the MIT,
and that the approach to criticality is characterized by a
conventional power law. To see how this type of behavior
can be realized from Eqs. (4.1) and (4.2), we specialize
to criticality, and put f2 ——0. If fi diverges like, e.g. ,

fi(~, A) ((u+ 0), (a ) 0), (4.3)

then the FP value of I is,

dz

(z+ 1/2)(z+ 1)
(4.4a)

and near the FP I' satisfies the flow equation,

(4.4b)

that is, I' —I" p4 . Similarly, if f = 0 and f vanishes
at the MIT [Eq. (4.3) with a ( Oj, then I' also vanishes
and satisfies a flow equation with universal coefficients.
The marginal, logarithmic approach to zero occurs if fz
vanishes and fi either approaches a constant, or vanishes
logarit&mically at the MIT.

If we assume that these asymptotic results are not tied
to the separable kernel, but are generic properties of the
general Bethe-Salpeter equation, then we have the fol-
lowing scaling scenarios.

Scenario 2: p diverges at the MIT, and I' has a finite
FP value. The approach to the FP is power-law-like. Sce-
nario 2: p approaches a finite constant (or vanishes loga-
rithmically), and I' vanishes logarithmically. Scenario 8:
Both p and I' vanish like a power law.

Scenarios 1 and 2 are realized by the results of At-
tempts 1 and 2 in Sec. IIIB, respectively. We conclude
that neither one of these results, taken by itself, violates
the constraints that follow from the Bethe-Salpeter equa-
tion. The third scenario, though we cannot exclude it,
appears unlikely, given the structure of perturbation the-
ory: The second term on the rhs of Eq. (2.9e) tends to
drive K, and hence p towards larger values.

In all three of the scaling scenarios presented above
I' satisfies an autonomous differential equation with uni-
versal coefBcients. This feature is unlikely to be generic,
since it clearly follows frora our an8atz for the kernel of
the Bethe-Salpeter equation, which we assumed above to
consist of only one scaling part. From a more general
point of view, going beyond the asymptotic behavior,
one expects a more complex result. For instance, even

if p ~ p' at the MIT one expects a correction that van-
ishes either as a power law or as a logarithm. In fact, Eqs.
(3.19) predict this kind of behavior. In our model calcu-
lation this happens if f2 g 0. With Eqs. (4.2) it is easy
to see that I'(p) does not satisfy an autonomous differ-
ential equation if f2 g 0. Of course, this just refiects the
obvious fact that in general an integral equation cannot
be reduced to a single difFerential equation. An impor-
tant conclusion we draw from this is that in general I' will
not be a simple scaling quantity, but rather will consist
of multiple scaling parts. This violates the assumption
made in Attempt 1 in Sec. IIIB1. Furthermore, even
if p diverges at the MIT, then one generically still ex-
pects a finite subleading contribution. Using this in ei-
ther Eq. (4.2a) or in the actual Bethe-Salpeter equation,
Eq. (2.14a), one finds that (1) I'(p) does not satisfy a
single differential equation, and (2) I' approaches a finite
FP value I", but logarithmically slowly so. We are thus
led to the conclusion that in general Scenario 1 above
should be replaced by a more general scenario as follows.
Scenario 1': p diverges at the FP, and I' has a finite FP
value, which is approached logarithmically.

We conclude that for both the case where p diverges
and where it approaches a constant at the MIT one ex-
pects a logarithmically slow approach to the FP value
of I'. The only other possibility is that p vanishes as a
power law at the MIT. For this case I' also vanishes as
a power law, which does not seem likely considering the
structure of perturbation theory.

B. Logarithmic corrections to scaling

cr = SSiib '/(2') ~g(b). (4.5)

Note that in giving Eq. (4.5) we have used units such
that e2/5 is unity, and we have ignored the possibility
of charge renormalization. For a discussion of the latter
point we refer the reader elsewhere. With t the dimen-
sionless distance from the critical point at zero temper-
ature, and bl = l —I'*, the conductivity satisfies the
scaling equation,

In the preceding subsection we have argued that in
general one expects I' to approach its fixed point value
logarithmically slowly. This result is consistent with Eqs.
(3.19) which give p, —

& p,' at the MIT, which in turn im-
plies that I' vanishes logarithmically slowly at the MIT.
Because I' couples to all physical quantities, cf. Eqs.
(3.7), we conclude that in all universality classes where
Cooperons are present, logarithmic corrections to scaling
will appear. Note that this conclusion is independent of
the spatial dimensionality and depends only on whether
or not the kernel p has a constant contribution at the
MIT. We also note that this is a zero-temperature, quan-
tum mechanical effect that might be relevant for other
quantum phase transitions.

For a specific example of an observable quantity, let us
consider the electrical conductivity o, which is related to
the disorder by
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o(t, T) = b 'X[b'~ t, b'T, bI'(b)] . (4 6)

Here v is the correlation length exponent, z is the dy-
namical scaling exponent, and of the irrelevant variables
in the scaling function T we have kept only the one that
decays most slowly at the MIT, i.e. , bI'.

At zero temperature we let b = t. , and assume that
%[1,0, x] is an analytic function of z since it is evaluated
far from the MIT. We obtain

(4 7)

with s = v(D 2). H—ere oo is an unknown amplitude and
the a; are unknown expansion coefficients. Depending on
what the subleading behavior of h'I'(b) is, the a; with i &

2 could carry a very weak t dependence (e.g. a2 lnlnt).
An interesting consequence of the logarithmically

marginal operator I' is that the dynamical scaling ex-
ponent in Eq. (4.6) is ill defined. To see this we use that
z is normally defined by

z =0+K, (4 8)

with ~ the exponent that determines the anomalous di-
mension of h. Equation (3.7b) suggests that in general
the linearized RG flow equation for h will have the form

din h = K+ nhl',
dx

(4.9)

with a a universal constant and k = r. if h'I' vanishes as
a power law. However, if hI' vanishes logarithmically at
the MIT, then

h(b) = b"(ln b) (4.10)

i.e., h does not scale as b . This in turn implies that Eq.
(4.6) should be replaced by

o (t, T) = b
' E[b ~"t, b h(b)T, bI'(b)]

At t = 0 and as T ~ 0, Eqs. (4.10) and (4.11) give

(4.11)

o (t = 0, T ~ 0) = ooT' '[ln(1/T)]' ) '

~ ~ ~

~

~

en' ln ln(1/T')")
z ln(1/T)

(4.12)

We conclude that for a(t = 0, T) the asymptotic scaling
is in general determined by logarithms.

V. DISCUSSION

In this paper we have discussed two previous attempts
to renormalize the Cooper channel in the disordered elec-
tron problem. '3 We have shown that both of these ap-
proaches relied heavily on implicit assumptions concern-

ing the renormalizability of the theory, the number of
renormalization constants needed, and which quantities
are simple scaling operators. We have clarified the origin
of the mutually contradictory results obtained in these
papers, and have shown that they result from inconsis-
tent assumptions. We have further come to the conclu-
sion that the Cooper propagator I' is in general not a sim-

ple scaling operator, and that none of these approaches
is technically satisfactory.

One of the problems with the approaches of Refs. 2,
3, and 7 was found to be the fact that neither appre-
ciated the seriousness of the inversion problem that is

posed by the nontrivial relation between the propagator
and the vertex function in the Cooper channel. We have
formulated this problem in the form of a Bethe-Salpeter
equation. A general discussion based on a separable ker-

nel model suggested the three scaling scenarios presented
in Sec. IV. The physically most important result of this
discussion is that one expects the Cooper propagator I'
to approach its fixed point value logarithmically slowly.

This conclusion is essentially just a consequence of the
BCS-type logarithm that appears in the Cooper channel
at the Gaussian level. This was the physical content of
Ref. 7. The current analysis leads us to the conjecture
that the logarithmic corrections to scaling do indeed ex-

ist, even though their technical derivation (but not the
physical arguments) in Ref. 7 was questionable. The
point is that the structure of the Bethe-Salpeter equa-
tion ensures that the BCS logarithm is not an artifact of
the Gaussian theory, but survives at higher orders for all
kernels that are physically plausible given the structure
of perturbation theory.

Some consequences of the logarithmic corrections to
scaling for the analysis of existing experiments have been
discussed in Ref. 7. In particular, that paper showed that
Eq. (4.7) gives rise to an apparent or effective conductiv-
ity exponent s,g which can be substantially smaller than
the true asymptotic exponent s. It was shown that the
difference between s and s,g can be large enough to ac-
count for the observation s,~ 0.5 in Refs. 8 and 29
without violating the rigorous bound s ) 2/3. Since
this was explained in Ref. 7 in some detail, there is no
need to repeat it here. Also, since no theoretical value for
the asymptotic exponent s in 3 D is known, no quantita-
tive statements can be made. It is, therefore, important
to see if the model can predict any qualitative features
that are sensitive to the presence of the logarithmic cor-
rections to scaling and whether or not such features are
observed.

There are two obvious features predicted by our model
which follow &om the qualitative magnetic field depen-
dence of the Cooperon. The first one is a strong mag-
netic field dependence of the efI'ective exponent s g. If
the logarithmic corrections to scaling are caused by the
Cooper propagator, which acquires a mass in a magnetic
fie1d, then any nonzero field must act to destroy the log-
arithms. It thus follows from the model that Si:P, or
any material, in a magnetic field, must show a value of
s,ff that is larger than 2/3. Any observation of an s,ff

smaller than 2/3 in a magnetic field would rule out the
logarithmic corrections to scaling as the source of the
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anomalously small value of B,g.
The second feature concerns the temperature depen-

dence of the conductivity. It is well known that those
materials which show an s,ir ( 0 also show a change of
sign of the temperature derivative do/dT of the conduc-
tivity as the transition is approached. ' Within the RG
description of the MIT this phenomenon can be explained
by a change of sign of the g2 term in the g-How equation,
Eq. (3.7a) or (3.8a). Since it is observed in Si:B,for which
Eq. (3.8a) is the relevant flow equation, as well as in Si:P,
the change of sign cannot be associated with the scaling
behavior of the triplet interaction constant, but must be
due to I'. Since a magnetic field suppresses the Cooperon
channel, this feature should therefore disappear in a suf-
ficiently strong magnetic field.

Let us make these predictions somewhat more quan-
titative. The relevant magnetic field scale B is given
by the magnetic length l~ = hc/eB being equal to the
correlation length ( k~t ". Let us assume that the
boundary of the critical region is given by t 0.1. With
k~ 4 x 10 cm for Si:B or Si:P near the MIT and
with v 1 we then obtain B 1 T. The model thus
predicts that for magnetic fields exceeding about 1 T the
observed effective conductivity exponent should be larger
than 2/3 and the change of sign of do /dT observed in zero
field should disappear.

Both of these features seem to have been observed in
the recent experiments by Sarachik and co-workers.
The Cooperon-induced logarithmic corrections to scaling
thus provide a consistent explanation for several observed
features of doped silicon which otherwise would be mys-
terious.
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APPENDIX: THE WILSONIAN
RENORMALIZATION GROUP APPROACH

The basic philosophy behind the field theoretic renor-
malization approach employed in Sec. III is to eliminate
all singular ultraviolet cutofF dependences, i.e., singulari-
ties of the theory as (A, 00) ~ oo, by introducing renor-
malization constants Z; (i = 1, 2, . . .). RG flow equations
are then obtained by examining how the Z; depend on
the cutofF. This approach is believed to be equivalent
to the Wilsonian RG, which examines how the theory
changes when the ultraviolet cutoff is changed from, e.g. ,
A to A/b with b a RG rescaling factor. i However, only a
limited amount of work has been done on the formal re-
lationship between these two formulations of the RG.
It is, therefore, not entirely obvious that the problems
encountered in Sec. III are not due to our using the field-
theoretic renormalization method (which failed, as we

have seen, to achieve the desired cutofF independence).
We, therefore, show in this Appendix that the same re-
sults as in Sec. III are obtained, and the same problems
are encountered, if a Wilsonian approach is used.

We first remark that a priori it is not clear whether one
should use a momentum-shell or a momentum-frequency
shell RG procedure. Usually, to describe dynamical criti-
cal phenomena a momentum-shell approach is used. In
general one would argue that, since the RG is just a for-
mal technique, either approach, correctly applied, should
give the correct result. With this in mind, Eqs. (2.9)—
(2.11) can be immediately used within a Wilsonian RG
approach. Within a bona /de momentum-shell RG we
use the replacement,

(A1)

which leads to coupling constants that are dependent on
the scale factor b. As a conventional example of using
this technique we write the second term on the rhs of
Eq. (2.9a) for e -+ 0 as,

GI2

4 A/bgpgA

GG ( A'+ GIIO„,
8 ~A'/b'+ GHA„, „,~

GG
4

(A2)

Within the spirit of a differential momentum-shell RG
one would expand the rhs of Eq. (A3), replacing it by

Gp, lnb. Next one would take a derivative with respect
to lnb to obtain a RG How equation. An implicit as-
sumption in this procedure is that the RG equations will
automatically generate all of the higher order logarith-
mic terms in Eq. (A3). However, in the present case this
will not occur since the momentum-shell RG can only
produce logarithms that are due to momentum integrals,
while the higher order logarithms in Eq. (A3) are due to a
frequency integral in I, in Eq. (2.9a). Consequently, one
must not expand the rhs of Eq. (A3), but rather consider
the derivative of Eq. (A3) with respect to ln b as the def-
inition of the zeroth order approximation for the Cooper
propagator,

(A4)

Using this reasoning one reproduces the Bow equations
given by Eqs. (3.7) and (3.8).

Note that by giving the definition, Eq. (A4), of I',
we effectively acknowledge that the RG generates new

Here we have used that the critical limit is at zero &e-
quency, 0„, „,= 0.

We next note that there is a problem with applying
this approach to some of the terms in Eqs. (2.9). For
instance, the integral over I, in Eq. (2.9a) leads to a
term proportional to

A
d (o)

G —. = Gln 1+p, lnb . (A3)
1+p~" ln(A/p)
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terms in the renormalized action. That is, in order to
renormalize the action, or the vertex functions, one must
enlarge the parameter space. As in the case of the 6eld-
theoretic renormalization method, a RG How equation
for I' is needed to complete the description. Because
the logarithmic structure in Eq. (A3) arises from a fre-

quency integral, a momentum-&equency RG procedure
is necessary to obtain this How equation. To illustrate
the procedure we restrict ourselves to zeroth order in the
disorder, and show how to obtain a How equation for I'
whose zeroth order approximation is given by Eq. (A4).
To proceed we split q„,„, into high- and low-frequency
components,

by a scale dependent function p given by

+ +„,(,. 2 +0
1

+ —ln b'.

Using z = 2 + e one obtains

(o)

&+ &(') lnb'

(A7)

(A8)

g g O(~IO
~

ni n2]) O(]%1 —D2 AO/h )

+q, „,e(flo/h' —]~i —n2]), (A5)

with z the dynamical scaling exponent, z = 2 + O(e).
Examining the Gaussian action given by Eqs. (2.5) we

see that the last term in Eq. (2.5c) couples tI) and q(.
Therefore, even at zeroth order in the disorder the fre-

quency shell RG will cause a nontrivial renormalization
of the action. This is not true if one considers only the
particle-hole channel, where q) and q( do not couple at
that order. The renormalization can be carried out in the
usual way by integrating out the q) degrees of freedom.
Here we follow a slightly different, but equivalent, route.
At zero momentum, and for m = —nq —n2 ) 0, the
last term in the Cooper propagator given by Eq. (2.6b)
is proportional to

(A6)

Now, after the renormalization Oo in Eq. (A6) is replaced

by Oo/b'. To compensate for this, p, l must be replaced

or the RG How equation

dI'

dlnb
(A9)

Note that it is not quite clear in this approach whether
the Cooper interaction amplitude p, or the Cooper prop-
agator I' is the renormalized quantity. However, because
Oo/b' ~ 0 as b ~ oo these quantities become identical
in the critical limit.

The most important conclusion that we draw from
these considerations is that a Wilson-type RG approach
leads to the same flow equations as the field-theoretic
renormalization procedure. It therefore follows that the
inconsistency found within the field-theoretic approach is
common to both procedures. To put it another way, the
inversion problem posed in terms of the Bethe-Salpeter
equation must be solved, irrespective of which variant of
the RG one is using. If one worked strictly within the RG
framework, we would expect that calculations to higher
order in the disorder will show that additional nontrivial
terms in the renormalized action are generated by the
RG.
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