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Manifestation of quantum chaos in electronic band structures
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We use semiconductors as an example to show that quantum chaos manifests itself in the energy
spectrum of crystals. We analyze the ab initio band structure of silicon and the tight-binding
spectrum of the alloy Al Gaz As, and show that some of their statistical properties obey the
universal predictions of quantum chaos derived from the theory of random matrices. Also, the
Bloch momenta are interpreted as external, tunable, parameters, acting on the reduced (unit cell)
Hamiltonian, in close analogy to Aharonov-Bohm Suxes threading a torus. They are used in the
investigation of the parametric autocorrelator of crystal velocities. We 6nd that our results are in
good agreement with the universal curves recently proposed by Simons and co-workers.

I. INTRODUCTION

The great success of band-structure theory in provid-
ing a very accurate description of electronic properties of
many materials is a well-established fact. Using few in-
gredients (such as crystal structure and atomic number),
one can obtain a great variety of material-dependent re-
sults (optical and transport properties, phonon spectrum,
etc.) in very good agreement with the available exper-
imental data. However, the implementation of a real-
istic band-structure calculation is not a straightforward
task and usually requires very complicated numerical al-
gorithms. One is then led to ask whether there is some
universal (material-independent) behavior which may lay
hidden in the apparent regularity of the bands. The uni-
versality should express some common characteristic of
the underlying physical systems, in this case crystals. For
instance, in the muon tin approx-imation, the motion of a
valence electron inside a crystal can be pictured as that of
a particle in a periodic billiard structure of smooth walls,
whose classical dynamics is very likely to be chaotic. '

If this simple analogy is valid, then one should be able to
Gnd in the electronic spectra of real crystals some of the
universal signatures of quantum chaos. '

Quantum chaos occurs when a system exhibits chaotic
dynamics in the classical limit. The best way to ob-
serve chaos is to break all continuous symmetries, so
that the only constant of motion left is the total en-
ergy. In this case, we expect the energy spectrum to
show some chaotic behavior, as well as some regularities
(the so-called clean features). Chaos and discrete symme-
tries can coexist: one good example is the Sinai billiard.
However, discrete symmetries imply the partition of the
eigenstates into classes and, consequently, the existence
of degeneracies in the spectrum. As we shall see below,
lifting these degeneracies usually means removing part
of the clean features, resulting in an enhancement of the
universalities.

In a crystalline material the translation invariance al-
lows us to reduce the problem to the study of the electron
motion in a single unit cell with quasiperiodic bound-

ary conditions. Denoting the periodic part of the single-
electron wave function as uh(r ), the Schrodinger equa-
tion becomes

I„- ug(r") = E(k) ug(r ),
where k is the Bloch momentum and the reduced Hamil-
tonian is

H„- = — ( V'+ik )'+ V(r") .
2m

The effective potential V(r" ) has all the discrete sym-
metries (rotation, inversion, reflection, etc.) of the unit
cell. The quasiperiodic boundary conditions provide a
torus geometry to the unit cell and the Bloch momenta
act as Aharonov-Bohm fluxes. s Notice that for k = 0 (at
the so-called I' point) the Hamiltonian is real and time-
reversal (T) symmetric. Any k P 0 internal to the Bril-
louin zone (i.e. , which is not equivalent to —k by umklap-
ping) breaks T The poten.tial removes the translational
symmetry within the torus, making the problem chaotic.

Normally, one solves Eq. (1) for k varying along some
special symmetry lines of the Brillouin zone and most
bands calculated in this way will be degenerate. When
we vary k away &om the planes and lines of symmetry, all
discrete symmetries of H& are broken and all degeneracies
are lifted, resulting in a "spaghetti" of bands (in this work
we do not consider spin-orbit coupling or strong magnetic
fields and Kramers degeneracy is always present). As an
illustration, suppose we select a set of bands that are de-
generate at the I' point and then follow them as we move
in k space. We will notice that the bands split; eventu-
ally, some of them may come close together again, but
if vre do not cross any symmetry line, they will always
"repel" (anticross) each other. Therefore, the Bloch mo-
mentum can be regarded as an external parameter that
drives the system out of the partial integrability of the
symmetry points and into a region where the spectrum
is chaotic and bands are strongly correlated.
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We expect the regions of the spectrum where chaos
dominates to be short ranged, since chaos and the conse-
quent universality appear at very long time scales, trans-
lating into short energy scales. The clean features, on the
other hand, are connected to the classical periodic orbits
(short time scale), which do not probe large portions of
phase space: They will prevail in regions of the Brillouin
zone close to the symmetry points, but can also be visible
elsewhere.

We should contrast this view of chaos in crystals whose
unit cells are fairly simple (few atoms per unit cell) with
the more commonly discussed case of chaos in small dis-
ordered metallic grains (quantum dots). When there is
no order or symmetry, but the system is small enough
for individual energy levels to be distinguishable, it is
very natural to study the level repulsion characteristic
of quantum chaos and consider its implications to the
thermodynamical properties of the system. ' One can,
for example, explore how much disorder is necessary to
switch the system from nonchaotic to chaotic and how
this crossover takes place. Another idea which so far has
only been developed theoretically is the study of chaos
in arrays of identical disordered unit cells. ' The trans-
lational invariance in these systems leads to the Hamil-
tonian of Eq. (2) and the same considerations we have
just made for an elementary crystal should apply to the
array of identical quantum dots. The only difI'erence in
this case is that the unit cell has no discrete symmetry
and the spectrum is more likely to indicate strong chaotic
dynamics. The clean features which persist in the band
structure of the supercrystal will disappear after ensem-
ble averaging.

The traditional diagnostic of quantum chaos derives
from the original works of Wigner, Dyson, and Mehta
on the theory of random matrices, which was initially
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FIG. 1. The band structure for Si. The Bloch momentum
runs from the I' point (k = 0) to the boundary of the Brillouin
zone, passing through the center of mass of the irreducible
part. The scale is such that A: = 1 at the CM.

designed for the study of statistical properties in nu-

clear physics. They have introduced most of the nec-
essary mathematical tools: level spacing distributions,
cluster functions, and several statistics, all focusing on
level correlations. When a quantum system is subjected
to an external perturbation, there are alternative ways
to characterize chaoticity. ' The parametric correla-
tion functions obtained by this approach are directly
related to the transport properties of the system, hence
bringing some important physical insight.

In this paper, we show that an appropriate analysis
of energy spectra obtained by band-structure calcula-
tions indicates the unambiguous manifestation of quan-
tum chaos in crystalline materials. Here we consider Si
as an example of a crystal that can be viewed as a quan-
tum chaotic system with a particularly simple (diatomic)
unit cell. Despite the fact that T is broken for an in-

ternal k, the space-inversion symmetry of the Si crystal
yields a false time-reversal violation and the system is
described by the Gaussian orthogonal ensemble (GOE)
in the entire Brillouin zone. In contrast to Si, we also
study the supercrystal formed by complex Al Gaz As

cells. In this case, chaos can be enhanced by increasing
the amount of disorder through changing the concentra-
tion x. The lack of inversion symmetry of the unit ce11.

causes T to be quickly broken outside the I' point and,
therefore, the ensemble is unitary (GUE).

II. THE SILICON BAND STRUCTURE
AND QUANTUM CHAOS

In order to look for quantum chaos, we have to avoid
doing the analysis of the spectrum at the I' point or at
any symmetry point of the Brillouin zone. The effect of
setting an internal k g 0 is not just to lift the degenera-
cies caused by the point symmetries of the unit cell. The
Bloch momentum also serves to help increase the statis-
tics by acting as a three-component external parameter.
Once we have reached a region in the Brillouin zone where
chaos is well developed and regularities are weak, we can
tune k to generate a large number of spectra and hence
facilitate the analysis.

As we have argued in the Introduction, even crystals
with fairly simple unit cells should show quantum chaos.
In order to verify this prediction, we have performed ab

initio electronic structure calculations of the Si energy
bands. Our calculations were based on the local-density-
functional and pseudopotential approximations. Details
of the method are presented elsewhere. A plane-wave
cutoK of 15 Ry was used in order to ensure a faithful
description of the higher bands, which are most likely to
show chaotic behavior than the low-lying ones.

The typical band dispersion for Si is shown in Fig. 1.
The momentum varies from the I' point to the boundary
of the Brillouin zone, passing by the center of mass (GM)
of the irreducible part. Notice the band splitting for k g
0. If the bands are truly uncorrelated, the distribution of
band spacings e is Poisson-like: P(e) oc e ' (hereafter
we mill always express energies in units of the mean band
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spacing). If any correlation is present, the bands will
tend to repel each other and P(e ~ 0) + 0. In Fig. 1
we see that several sets of bands that are degenerate at
the I' point remain quite close together and do not seem
to interact very much. This is caused by the presence of
symmetry lines in the vicinity of the direction we have
chosen to plot the bands. Indeed, this "memory efFect"
is very strong in the band structure of Si and led us to
concentrate our analysis at a small region around the
CM, which is reasonably far &om the I' point and other
symmetry points.

It is clear from Eq. (2) that H& is neither invariant un-

der T, nor under space inversion (P), in spite of the fact
that the potential V(r ) = V( r)—for Si. In this case,
however, Hg is invariant under the antiunitary combina-
tion Tp and this is sufBcient to lead to GOE Huctuations,
instead of GUE as one might naively expect. 9

The two most popular diagnostics of quantum chaos
originally &om random matrix theory (RMT) are the
nearest-neighbor level spacing distribution P(s) and the
rigidity of the spectrum, the so-called A3 statistics.
There is no expression for P(s) in closed form, but, as an
excellent approximation, %igner has proposed the sur-

mise P(s) oc cI e 'I", where P = 1 and ci ——7r/4 for

GOE, and P = 2 and c2 ——4/m for GUE. The As statis-
tics measure the variance of the number of levels found

in an interval of length I:
E+L/2

&s(L) = — min~ s dE [X(E) —aE + b]
E—I /2

(3)

where N(E) is the number of energy levels below the
energy E. The average indicated in Eq. (3) is per-
formed over E (i.e., over nonoverlapping intervals be-
tween E —L/2 and E + L/2), but in our study it is

also taken over points in k space. %hen the levels
are completely uncorrelated (Poisson statistics), we have

63(I ) = iz . In the opposite limit of equally spaced lev-

els, Es(L) = z&. Sitting in between these two limits
are the curves drawn from RMT, which have the L » 1
asymptotics

b,.(I,) = —,ln(I, ) —0.006 96
1

(GOE), (4)

6,(L) =, ln(I, ) + 0.0590
1

2%2
(GUE) .

In addition to these two quantities, RMT has also a
prediction about the density-density (two-point) correla-
tion function, here defined as

&(~) = (p(II+ ~)p(fI)} —(p)' (6)

where p(O) = P b(Q —s„), and s„=E . The function
R(aI) behaves differently depending on the particular en-
semble: For GOE, it is linear close to u = 0, and then
monotonically saturates to 1 at around u = 1, whereas
for GUE it starts as quadratic and then oscillates until
it reaches saturation around the same values.

In Figs. 2(a), 2(b), and 2(c) we compare the statistical
properties of the Si spectrum with the RMT predictions.
The data were extracted from a set of 80 high-energy
eigenvalues corresponding to 343 k points (a 7 x 7 x 7
cube) around the CM. Notice the good agreement with
the GOE result, in contrast to GUE. The deviation be-
tween the data points and the GOE curve for the Q3
statistics at large L [Fig. 2(c)] is expected because of the
presence of clean features when we consider large por-
tions of the spectrum.

The Bloch momentum can be used as an external, con-
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FIG. 2. Statistical proper-
ties of 90 high-energy bands of
Si around the CM point. The
solid and dashed lines are the
GOE and GUE predictions, re-
spectively. (a) is the band spac-
ing distribution; (b) is the au-
tocorrelator of density of states
(rescaled to (p) = 1); (c) is the
As statistics; (d) is the crys-
tal velocity correlation function
c(z). Error bars are of the
order of the data point sym-
bol size or smaller, whenever
not indicated. For all curves
the average was taken over the
bands and k points. The sets
of points in (d) dier by the
number of bands used in the
estimate of the local average
drift, (BE„(k )/Bk). They cor-
respond to: 7 (circles), 9 (trian-
gles), and 11 bands (diamonds).
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tinuous, parameter, allowing us to evaluate "dynamical"
universal correlation functions of the spectrum. For this
purpose, one needs a scaling parameter, QC„„(0),which

is related to the spectrum response to k, namely,

BE„(k)BE„(k)
(7)

where the average is performed over many energy bands
(the index n), as well as over k points. Because in our

study we dealt with correlation over small regions in k
space, it was a good approximation to assume isotropy,
i.e. , C„„(0) = C(0) for all p, , v. After performing the
rescaling z = QC(0) k„, where p denotes some direction
in k space, we evaluated one of the simplest correlation
functions one can study, ' which is the autocorrelator
of crystal velocities,

Be„(z+ z) Be„(z)
t9x Bx (8)

It is. important to notice that in both Eqs. (7) and (8)
the bands E„(k) have to be corrected for any possible
drift. The way we have proceeded was to estimate the
local average drift 6„= (BE„(k)/Bk) and then subtract
it from the crystal velocities. We have found that c(z)
agrees reasonably with the universal form introduced in
Ref. 17 for the pure GOE case [see Fig. 2(d)]. The small,
but visible, discrepancy is understandable: We have used

only seven points along each k direction and it is dificult
to perform a good estimate of C(0) and 6„ for such a
short interval.

III. QUANTUM CHAOS IN THE AI~Gaq ~As
ALLOY

In contrast to crystalline materials with simple unit
cells, where the existence of symmetries causes partial
integrability and the regularities in the spectrum tend
to hide the underlying chaotic dynamics, disordered sys-
tems are the ideal case to study. Classically, the mo-
tion of an electron inside a disordered grain is that of
a particle being repeatedly scattered by an irregular po-
tential: The complete lack of symmetries will give rise
to a strong chaotic motion. As a result, electronic dis-
ordered systems show very clear signatures of quantum
chaos and the concept; of universality is generally valid.
The universal conductance Quctuations in mesoscopics
systems are a good example of a phenomenon related
to the chaotic dynamics of the electron in the sample.

If there is one disadvantage of disordered systems over
pure crystalline materials, it is the lack of Bloch mo-
menta. From the theoretical viewpoint, the natural way
to solve this problem is to impose quasiperiodic bound-
ary conditions to the disordered grain and thus form
a superlattice of identical complex unit cells. The band
structure of this supercrystal can then be explored much
in the same way as we did for Si.

In the analysis that follows we have chosen the widely
studied Al Gaq As to demonstrate that it is indeed a
good example of a quantum chaotic system and to illus-
trate the applicability of the parametric correlation func-
tions to characterize quantum chaos. Alloys are a good
example of weakly-disordered systems when their com-
ponents do not differ remarkably. If the sample is small
enough (mesoscopic), the average level spacing can be
resolved experimentally2 and it makes sense to address
the statistical properties of the spectrum. The absence of
discrete symmetries in the unit cell guarantees that there
are no degeneracies in the spectrum, although some reg-
ularities may occur and they are usually connected to the
nonuniversal features carried by the isolated components
of the alloy.

Our study of the Al Ga~ As supercrystals is based on
a semiempirical tight-binding method, with matrix ele-
ments taken from the sp 8* parametrization suggested
by Vogl et at,. Several ensemble realizations of a 216-
atom basic cluster were independently generated and
solved (the electron wave function was subjected to
quasiperiodic boundary conditions). For each realiza-
tion, Al and Ga atoms were randomly distributed in the
group-III sublattice according to the aimed alloy com-
position. Alloy properties are calculated as ensemble
averages for each composition. This method has been
successfully used in the study of gap properties of the
random Al Gaq As alloy.

We begin by calculating the level spacing distribu-
tion of Al Gaq As at the I' point (hence the boundary
conditions are periodic) for three diferent compositions,
namely z = 0.1, 0.3, and 0.5 (note that for 0 ( z ( 1
the spectrum is completely nondegenerate). The results
for the level spacing distribution are shown in Fig. 3. For
a given composition x, the averaging is done over high-
energy levels and over 20 realizations. Notice that as the
disorder increases, we move from a Poisson-like law to
a GOE-like, Wigner-Dyson, distribution (remember that
at the I point there is no T breaking). Another indica-
tion of the crossover between weakly to strongly corre-
lated energy levels can be seen in Fig. 4, where we have
plotted the 63 statistics for the three alloy compositions.

Next we introduce phases to the boundary conditions
to obtain the dispersion of the bands with the Bloch
momenta. In Fig. 5 we show a typical set of bands at
the high-energy part of the spectrum for a composition
x = 0.5. As for the case of Si, we restrict our analysis to
the region surrounding the CM. The clean features now
are fewer and usually related to regularities found in the
band structure of AlAs and GaAs; one can be seen in
the upper part of Fig. 5.

Focusing on the high-energy bands and averaging over
nine realizations, we obtain the results shown in Fig. 6.
Notice the excellent agreement with the GUE predic-
tions. For any Bloch momentum outside the I' point,
T is fully broken and since the unit cell is not invariant
under space inversion, we naively expect the statistics
to be GUE. In fact, this issue is more subtle. There
is a continuous change from GOB to GUE as we move
away from the I' point and the typical range of this
crossover will depend on the specific system under study.
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FIG. 6. Statistical proper-
ties for the high-energy bands
of the Al Gaz As supercrys-
tal around the CM point at
x = 0.5. The circles indi-
cate the data and the solid and
dashed lines the GUE and GOE
predictions, respectively (error
bars are typically smaller than
the circles). Figure (a) is the
band spacing distribution; (b)
is the autocorrelator of density
of states; (c) is the b, s statis-
tics; (d) is the crystal velocity
correlation function c(x). For
(a), (b), and (c) the average was
taken over bands and ensemble
(9 realizations); for (d) the av-
erage was only over ensembles.
The data for c(x) were found to
be insensitive to the way the av-

erage drift was estimated.

IV. CONCLUSIONS

In summary, we have demonstrated that quantum
chaos is present in the band structures of Si and of the
Al Gaq As supercrystal. %e have argued that this
should hold true for any crystal because valence elec-
trons exhibit classical chaotic dynamics at the level of
the unit cell. The Bloch momentum can be viewed as an
external parameter which can be tuned to break the dis-
crete symmetries of the unit cell and reveal the quantum
chaos hidden in the regularity of the band structure. Any
crystal whose unit cell is invariant under space inversion
should be described by the GDE statistics. Violation of
the inversion symmetry combined with a deviation from
the I" point drives the system to GUE statistics. The
parametric correlation functions were shown to be a good
diagnostic of quantum chaos, not only for systems with
complex unit cells, like the supercrystal of Al Gaq As,
but also for the diatomic unit cell case of Si. The impor-
tant result of our work is that there exists universality
in band structures. The implications of this property to

experiments may, however, be limited. For instance, the
optical properties of crystals are usually defined by few,
low-lying, bands close to the Fermi level, which do not
show very strong quantum chaos. One way to increase
the complexity of low energy levels is to consider real
crystals with polyatomic unit cells.
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