
PHYSICAL REVIE%' B UOLUME 50, NUMBER 12 15 SEPTEMBER 1994-II

Phenomenological Ginzburg-Landau theory of charge-density-wave spectra
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A phenomenological Ginzburg-Landau theory of charge-density waves is presented. It yields, in
the absence of pinning impurities, a manifold of stable (equal-energy) states that are independent
of the phase of the wave. The pinning of these waves by impurities (both weak and strong pinning)
is examined in detail and spectra for various impurity distributions are analyzed in detail. Strong
dependence on the wave phase, change in harmonic content, and phase shifts are common features,
in addition to the appearance of a continuous background. There is also a plethora of metastable
states, many of which have energies close to the ground state. Comparison between the proposed
theory and experiment in NbSe3 is satisfactory.

I. INTRODUCTION

Charge-density waves (CDW) are a collective phe-
nomenon observed in low-dimensional solids. A strong
electron-phonon coupling in those systems, together with
particular features of the normal-state Fermi surface,
lead to an oscillatory (static) distribution of the elec-
tron charge, to which a periodic lattice distortion (PLD)
is generally associated. In most cases the CDW and the
PLD are incommensurable with the original crystal lat-
tice of the solid. The presence of defects and impuri-
ties pins the CDW to the crystal lattice. Under these
conditions it cannot contribute to the charge-transport
processes, in particular to the electrical conductivity.
The presence of a strong enough electric field depins
the CDW, makes it "mobile" and, therefore, increases
sizably and in a nonlinear fashion the conductivity of
the solid. ' This interesting nonlinear conduction pro-
cess has been the subject of very extensive investigations,
both theoretical''2'io 2o and experimental. @'7'21

In addition to this dynamic efFect, the presence of
pinning impurities, located at random positions in the
lattice, produces a static structural phenomenon (i.e.,
not a transport phenomenon) which has been also ex-
amined in great detail. There are mutually inconsistent
conditions —frustration —arising &om the difFerent geo-
metrical requirements of the CDW, with its own intrinsic
periodicity, and &om the location of the pinning impu-
rities throughout the crystal. In its attempt to achieve
equilibrium, i.e., a minimum of the free energy, the sys-
tem encounters a variety of long-lived, metastable states,
and may be trapped (for long times, even indefinitely)
in a nonequilibrium state. Concurrently, the structure of
the equilibrium state is drastically xnodified by the pres-
ence of the pinning impurities and exhibits very coxnplex
properties.

A vast literature, concerned with theoretical models
and calculations for these efFects, is in existence. It is
thoroughly and clearly summarized in the review ar-

ticle by Griiner, r and the collection of articles in the
book by Gor'kov and Griiner. They range &om classical
or semiclassical models to quantum-mechanical formula-
tions, and from analytic solutions of nonlinear equations
to numerical simulations. They, however, either lack the
inherent sixnplicity of the variational approach proposed
here, or are not susceptible (with a few exceptions2i)
to the quantitative description of the many metastable
states introduced by impurity pinning.

It is the purpose of this contribution to formulate a
phenomenological model that describes these static phe-
nomena where both the amplitude and the phase mod-
iHcation of the CDW in the presence of impurities are
treated in a consistent scheme. In particular it is impor-
tant to obtain a theory that, in the absence of impurities,
yields a CDW state whose energy is phase independent,
i.e., a totally mobile (incommensurable) CDW. Pinning
impurities would then inHuence, in varying degrees, the
phase and the amplitude of the CDW, and simultane-
ously bring to the problem their own geometrical and
structural features.

The phenomenological theory proposed here is in the
spirit of the Ginzburg-Landau xnodel. ' It applies to
one-dimensional CDW's. The natural order parameter
for such systems is the difference in electronic charge den-
sity between the state under study and the normal state,
i.e., that state in which the charge distribution is iden-
tical in every primitive cell. It is a position-dependent
order parameter. Other possible order parameters, such
as the local energy band gap and the PLD, are simply
proportional to the local electronic charge density. Free-
energy contributions of the elastic energy of the PLD and
the electron-phonon interactions are assumed to be taken
into account in the free-energy expression in an implicit
way.

In Sec. II, the &ee-energy expression for a single chain
containing an arbitrary number of impurities is proposed.
Section III contains the solution of the xnodel in the ab-
sence of impurities and a brief discussion of the behavior
of the order parameter, the CDW wavelength, and the
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excitation modes. The response of the chain to impuri-
ties, both in the normal state and in the condensed phase
is discussed in Sec. IV. Finally, Sec. V contains the con-
clusions.

II. THE MODEL

The &ee energy is expanded in the customary fashion,
up to fourth-order terms

Q —Q&+ +4+ g.

Each term contains both short-range and long-range con-
tributions in the single space variable x or, equivalently
in the Fourier-transform variable q. The only long-
range contribution —small q—is normally caused by the
Coulomb interaction.

If n(z) denotes the order parameter —number of elec-
trons per unit length —the most general form of the
second-order term with complete translational invariance
1S

1
F2 = — f(x —y)n(x)n(y)dxdy,

2

F2 = (I/2) ) fql nq I (2)

where

fe ——f f(e)e "de, *

n x = nqe'~

where f(ri) is an even function of g which may contain
b functions and their derivatives. For the sake of clarity,
I'2 will be written in terms of the q variable

B = B' (T —T,) .

The fourth-order term should be positive and short
ranged. These conditions are satisfied by the simplest
possible form

Fe = (C/4) f e (e) de .

Finally, the impurity contribution to the free energy is

E;= Vxnxdx= Ux —8 nxdx, 7

where U(x) is the potential of a single impurity, V(x) is
the sum of all impurity potentials, and R denotes the
location of the mth impurity.

In the cases considered here all impurities are iden-
tical. Their potential is chosen to be a h function
[U(z) = Up b(z)]. The strength of the potential Up and
the positions of impurities along the chain R are, there-
fore, the only parameters necessary to describe the effect
of impurities.

The free-energy functional F has one natural length
scale (2ir/Qp), the ideal wavelength of the CDW. In
addition, I' does not contain the lattice constant as
a parameter. The model is, therefore, a "continuum"
model, and all lattice efFects are ignored. This con-
tinuum approximation is appropriate for the current
problem, but must be reassessed and changed when
looking at other efI'ects, such as the incommensurable-
commensurable CDW phase transition. '

There are two independent dimensionless variables in
the formulated problem. The first, P = B/4A, which
is linearly proportional to the temperature, is the only
parameter needed to describe the condensed phase in the
absence of impurities. The other dimensionless variable,
which gives the strength of the impurity potential, can
be taken to be u = UpQp/C/64A .

and L is the length of the chain. A reasonable choice for

q 1S

III. CDW PHASE WITHOUT IMPURITIES

fq = Gi/(l + G2(7 + Gs (4)
A. The order parameter

where the first is a Coulomb-like term which prevents
long-wavelength oscillations, and especially does not
permit a charge transfer to the chain &om outside

(nq p= 0). The—second is a derivative-in-x term which
prevents very-short-wavelength oscillations. The simplic-
ity of Eq. (2) implies that the transition from the normal
to the COW state occurs when in some region of q space
fq becomes negative. Therefore, it is useful to write fq
in the form

Above the transition point, i.e., when B ) 0, because
all terms in F are non-negative, the order parameter is
necessarily zero. When B becomes negative, the system
can lower its energy if the order parameter assumes a
nonzero value. There is a finite range of wave numbers
in the interval between q and q~,

e+ = Qe (v"+
I

fd
I

e-. v'I & I)

fq ——Al
p

2

I
+B

v j
where Qp ——(ai/G2) f is the value of q for which fq has
its minimum. It is assumed that the two constants A and
Qp are temperature independent, and that B varies lin-

early in T and changes sign at the transition temperature
T

where fq is negative. For any q in this range nq may
have a finite amplitude. The numerically obtained solu-
tion of this problem indicates that the minimum-energy
solution has a well-defined periodicity, i.e., a fundamen-
tal wave number Q—close in value to Qp —together with
its odd harmonics 3Q, 5Q, 7Q, . . . . The absence of even
harmonics is closely linked with the absence in F, Eq. (1),
of a third-order term in n(x). Only one wave number Q
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and its odd-order harmonics are uonzero; all other n~,
even when they are in the interval q ( q ( q+ vanish,
since nonvanishing nz other than those mentioned above
have the effect of increasing I'4 more than they cause I'2
to decrease.

Near the transition temperature, for B negative and
small, the fundamental component of the order parame-
ter is approximately given by

Q = Qo(l —s4p ) for
I p I« 1,

I p I»1.
(10)

(ii)
With the assumption of a temperature-independent pa-
rameter Qo, as it appears in (5), the wave number Q
varies quadratically with (T, —T) near the transition
temperature. This behavior does not conform well with
experimental data where it has been found that the
variation of Q is linear ia (T, —T). This variation has
been interpreted as caused by the change of the nesting
wave vector 2k~. This Fermi-surface change in turn is
a result of the thermal change in occupation of the elec-
tronic bands, those responsible for the CD% transition.
Since the parameter Qo, the "ideal" wave vector, is re-
lated to the nesting wave vector 2k~, the linear variation
of the CDW wave vector Q can only be described in the
current model if Qo is assumed to depend linearly on
temperature. It should be stressed, however, that the
two origins for the variation of Q are unrelated: one is
caused by Fermi-surface effects, the second one by the
nonlinear CDW effects.

B. Excitation modes

The formalism described above yields a CDW with
complete phase independence. In other words, the
charge-density distribution can be translated uniformly
by any length without changing the total free energy of
the system. This translation is a zero-energy excitation,
the so-called q = 0 phason mode. It corresponds to a
particular wave vector (q = 0) of a continuous branch
of excitation modes, the phasons. Although only the
q = 0 mode has zero excitation energy, the whole branch
carries, for any wave vector, a low energy of excitation.

I nq I= QI B
I /3C,

and the higher harmonics vary as

In~2 +1}q I / Inq I
~ IP I

for any m & 1. For a CDW peaked at the origin (i.e.,
nq is a positive real number), the third harmonic nsq
is negative in sign [more generally sign of n~2~+q}q is

(—1) ]. This has the effect of distorting the pure sinu-
soidal towards a square-wave form. As the temperature is
lowered further, the harmonic content increases and the
CDW wave form approaches to a true square-wave [i.e.,
n~2~+q}q/nq m (—1) /(2m+ 1) ia the limit B ~ —oo].

It should be noted that, because of the increase of har-
monic content with increasing

I
B I, the CDW wave num-

ber Q varies with temperature,

The phasoas are responsible for the electrical traasport
properties~ associated with CDW's. It is of iaterest to
investigate these excitation modes. The way to do that is
to follow the prescription set up originally by Landau.
It consists of taking the second-order functional deriva-
tive of the &ee energy with respect to the electron density
(a generalized inverse susceptibility tensor)

b2F
4' z;z' nx nx' (12)

4(z; x')Q(z')dz' = u)g(z) . (i4)

In these equations n(z) is the CDW that minimizes Ii,
and has a fued (but arbitrary) phase. The quantity 4,
as defined above, is symmetric and periodic29

4(z; x') = O(x+ 2z./Q;z'+ 2~/Q) .

Bloch's theorem thea yields for the eigenfunction

vP g(z) = e* u g(z),

where a is an index and u I, (x) is a periodic function of
z with period 2z/Q. The quantity k is the wave vec-
tor of the excitation. The eaergy of the excitationz
is proportional to the square root of the eigenvalue ~ ~.
By taking an appropriate linear combination of Q g and

q, real-valued eigeafunctioas can be obtained. A
typical dispersion relation u I, is shown in Fig. 1. The
excitations corresponding to the lowest baud (a = 0) are
phasons. For the special case of k = 0, uo g—0 is zero,
and $0 q —o(z), which is proportional to dn(z)/dz, cor-
responds to the uniform translation of the CDW. As ex-
pected, ufo g has, for small values, a quadratic dependence
on k. Thus, phason modes are very sensitive to applied
external potentials, such as impurities (because of the low
excitation energies). At the zone boundaries k = +Q/2,
all bands, including the phasons, are degenerate in pairs,
i.e., all bands "stick together. " It is, therefore, possi-
ble (although not desirable) to describe all modes in a
double-zone scheme, in the interval —Q & k & Q.

In addition to the phason there are in6nitely many
other modes, each with 6nite energies throughout the
zone. They all involve amplitude modulation and are
generically called "amplitudons. " The lowest amplitudon
mode (n = 1, k = 0) has an eigenvalue tuq g—o which
varies linearly with B, i.e., an "excitation gap" which
is proportional to (T —T) in the vicinity of T,. There-
fore, low-energy amplitudons may play an important role
in the response of the CDW system to impurities near
the transition temperature. At low enough temperatures
(large and negative B) the importance of the amplitudons
decreases, their energy increases, and there are level in-

which, according to Eqs. (1)—(6), takes the form

4(z;z') = f(z —x') + 3C n(z)2 b(z —x'), (13)

and then determine its eigenvalues ~ and eigenfunctions
&(z)
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FIG. 2. The linear response of the charge density (arbitrary
units) to an attractive impurity at the origin for (a) P = —0.2
and (b) P = —0.6. At Q and 3Q, bns diverges to infinity for
an infinite chain length, although ng and n3q are still finite.
These curves are obtained with the application of periodic
boundary conditions to a long chain (with a length of 100
wavelengths) and, therefore, bns is finite for all q.

phase with the CDW increasing the local amplitude of
the CDW (hence can be termed as Friedel oscillations)
and is mostly the response due to the lowest energy am-
plitudon mode. As explained in the previous section, as
the temperature approaches to T, &om below, the "ex-
citation gap" of the lowest amplitudon mode decrease
resulting in larger contribution of the in-phase response
of the charge density in such a way that the response is
divergent at T = T, . Moreover, the healing length of
the in-phase response increase in this limit with a tem-
perature dependence

~
P

~

~ . Therefore, the in-phase
Friedel oscillation created by a single impurity becomes
the dominant response as the transition temperature is
approached (the response is divergent as one approaches
T, &om below similar to what happens when approach-
ing &om above). This qualitative behavior can be seen
in Fig. 3. If there are many impurities, then the phase
of the CD%' at the position of each impurity is the im-
portant quantity that determines the response. In such a
case "gapless" phason modes signi6cantly contribute to
the local response. The overall effect is the change of the
CDW wavelength in both neighborhoods of the impurity.

(c) Impurities in the CDW phase: Pnite-amplitude ef
fects. Linear-response theory is not valid when either the
impurity potential is large or the concentration is small.

FIG. 3. The linear response of the charge density to a single
impurity (u = —1) at the origin for (a) P = —0.01 and for
(b) P = —0.2. In (a) the dominant response is the Friedel
oscillations of the electronic charge density in phase with the
CDW contributed mostly by the lowest amplitudon modes
and with a healing length ( 1.13A. In (b) the healing
length is considerably smaller. Friedel oscillations die quickly
within a wavelength and the dominant response appears as a
long-range phase shift contributed mostly by phasons.

In the present formulation of the problem, one can obtain
the charge density by using numerical methods.

For a 6nite density of impurities, the nonlinear prob-
lem has been solved under the assumption of periodic
boundary conditions (i.e., the impurity distribution and
the charge density are assumed to have a fixed, predeter-
mined period). The artificial period of the distribution,
a = MA, is chosen as an integral multiple M of the CDW
wavelength A at the given temperature. The impurity
concentration c is defined as the number c = (N/M),
corresponding to N impurities per length a. For suffi-
ciently large a and for constant N/M the solution should
depict the features of the infinite system, where the im-
purities are distributed randomly.

To obtain the solutions a cutoff approximation is made
whereby the charge-density components in q space, nq,
are taken to be zero for

~ q ~
) Q, where Q is a

large wave number. The solutions are then obtained by
minimization of the &ee energy, Eq. (1) with respect to
nq, following standard numerical procedures.

A change in the CD& wavelength, and the presence
of several metastable states are found to be the charac-
teristic features in the nonlinear regime. Figures 4 and
5 show the charge density for the minimum-energy state
for two distributions in an N = 2, M = 10 case, i.e., two
identical impurities (u = —0.1), in a period a = 10 A

at a temperature given by P = —0.5. The distances be-
tween the impurities in the two cases were chosen close
to a discontinuity of the CDW phase at B = 3A/2. For
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minima at Qp and —Qo.
The function f~ is of central importance in this the-

ory. Through Eq. (2) it determines the energy required
to create not only an electronic charge-density distribu-
tion, but also the elastic energy of the lattice distortion
and the electron-phonon interaction energy. It, therefore,
determines the linear response of the coupled electron-
phonon system to externally applied static fields in the
normal state. For this reason it can be related to the mi-

croscopic properties of the electron gas. The short-range
(small q) and the long-range (large q) behavior of f~ is
consistent with such calculations (which determines aq

and a2). However, for intermediate values of q close to
the minimum, fq is quite sensitive to the normal-state
Fermi surface and to the temperature. The minimum of
fz is at Qp = 2 k~ and the curvature of f~ at this point
is strongly temperature dependent in such a way that a
cusp exists at T = 0 (and, therefore, these properties
are not determined solely by constants aq and a2). For
finite temperatures however, fq is analytic and the form
in Eq. (5) is appropriate around the transition tempera-
ture when the variation of the curvature with respect to
temperature is insignificant.

One important property of the form of fq in Eq. (4)
is that the wave vector of the CDW can change slightly
without costing too much energy. Examples of this kind
of changes of Q were given in the previous section which
are forced on the CDW by the presence of impurities.
It is seen that this change in Q not only depends on the
configuration of the impurity distribution but also on the
(metastable) state. Since the CDW wave vector is related
to the Fermi wave vector by Q = 2k~, these changes are
interpreted as changes in the Fermi surface. This pic-
ture conforms well with a recent experiment on NbSe3,
where it has been observed that details of the Fermi sur-
face are strongly dependent on the impurity pinning and
the metastable state in which the system has settled. A
similar phenomenon is present in the normal state of
NbSe3 where, depending on the type and concentration
of the impurities, the lattice distortions adopt a chang-
ing periodicity. *The current theory has been applied to
this phenomenon with satisfactory results.

The long-range Coulomb interaction between the elec-
trons ensures that the effects of impurities are completely
screened at long distances. The characteristic length
scale for the decay of the charge disturbance is (, the
healing length, which diverges to infinity as the transi-
tion temperature is approached from both sides. This
conclusion remains true for any impurity potential V(x)
that either decays faster than f(x) or is proportional to
f(x) for large values of

~

x ~, whatever the form of f(x)
Consequently it can be argued that the model is partic-
ularly well suited for CDW systems that have metallic
character, such as NbSe3, because of the screening ef-
fects.

In the presence of a single impurity, the charge-density
response displays oscillations in both the normal and
CDW phases with a wave vector close to Qo. In the
CD% phase the wave vector of these oscillations is iden-
tical with the CDW wave vector Q. Since Qo is related
to the nesting vector of the Fermi surface 2k~, it can be

claimed that these are Priedel oscillations. However, one
distinct nature of these oscillations is that they decay
exponentially (except at T,), unlike the Friedel oscilla-
tions in real materials which decay with a power law.
The Priedel oscillations are caused by the singular behav-
ior of the wave-vector-dependent susceptibility at 2k~.
However, in the current model the wave-vector depen-
dent susceptibility is [ I/—f (q) ] and it is a smooth, non-

singular function for all finite q. To be able to describe
long-range Friedel oscillations one has to include the sin-
gularities in the model f~ &om the beginning. On the
other hand, true singularities in the susceptibility exist
only at T = 0. For a finite temperature it can be claimed
that the current approach should work well, and that the
Friedel oscillations have a finite range.

The main properties of the model described here are
the following.

(I) The harmonic content of the charge density is found
to increase with decreasing temperature. This property
follows naturally from the increase of the magnitude of
nq and the nonlinearity of the equations. The increased
harmonic content makes the CDW look like a square
wave, a consequence of the special form chosen for I"4.

(2) Increasing harmonic contribution with decreasing
temperature implies that the CDW wave vector Q de-
creases as the temperature is lowered, which follows from
the fact that higher harmonics contribute larger energies
because of the q2 term in Eq. (5).

(3) The model exhibits "electron-hole" symmetry, in-
variance under the sign change of the charge density
[n(z) m —n(z)], i.e. , a dependence of the free energy
only on even powers of n(z).

(4) Because of the "electron-hole" symmetry there are
no even harmonics in the spectrum nq.

(5) Also because of the "electron-hole" symmetry all
collective excitations are degenerate at the boundaries of
the Brillouin zone.

(6) Impurities produce a variety of effects in the CDW
phase, the most important one being the fixing of the
otherwise undetermined phase (pinning).

(7) A second important effect of the impurities consists
of long-range phase shifts of the CDW, shifts that essen-

tially extend to infinite distances. This effect appears
as a divergence in the spectrum of n~ at the odd multi-

ples of the fundamental wave vector Q. The phase shifts
and the divergences result from the large contribution of
low-energy phason modes.

(8) A third effect is a local disturbance of the charge
density in the neighborhood of the pinning impurities, an
eR'ect that heals over short distances —a healing length

—1

proportional to

(9) In the strong pinning regime, one observes changes
of the wavelength or equivalently changes in the wave

vector of the singularity in the q space. These changes in
magnitude and shape of the charge-density spectra have
a strong dependence on the impurity positions and also
on the strength of the impurity potential; it is possible
to observe discontinuous transitions between states when
one parameter is changed continuously.

(10) In this regime one also observes several metastable
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states which have their own characteristic period distri-
butions. As a function of the main parameters of the
problem, they too show significant variation in ordering,
i.e., level crossings which are apparent in Table I.

(11) Metastable states exist for all temperatures in the
CDW state. Numerical results indicate that when the
temperature is close to the transition point their stability
and abundance is observed to decrease. (i.e., for lower
temperatures one is more likely to encounter metastable
states. )

(12) The existence of very many metastable configura-
tions makes observation of the true minimum &ee-energy
state difficult, and achieving equilibrium in reasonable
times, a doubtful proposition.

For real, three-dimensional anisotropic systems in-
teraction between chains is important, an eÃect ig-
nored here. The efFect of interchain interactions on the
metastable states is an interesting subject that needs
further investigation. The current theory should be ex-

panded to be able to answer all questions associated with
three dimensionality in a satisfactory way. It would be
interesting also to develop a time-dependent Ginzburg-
Landau theory which would explain quantitatively the
complex transport phenomena characteristic of CDW
systems.
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