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%'e present a study of the local-field factors for the homogeneous, isotropic, three-dimensional in-

teracting electron liquid as a function of momentum, imaginary frequency (im}, and density (r, ). A vari-

ational approach is used to solve integral equations for the density-density and spin-spin response func-

tions, and it provides approximations to the local-field factors which are exact in the high-density limit.
We derive sum rules which show that for large im, the local-field factors possess maxima (in both q and

im) whose magnitudes are related to the pair-distribution function evaluated at zero separation. We in-

troduce a parametrization scheme which incorporates these sum rules with the known compressibility,
susceptibility, and third-moment sum rules. The local-field factors are then used to calculate the
effective electron-electron interaction using the Vignale-Singwi formalism [Phys. Rev. B 32, 2156 (1985)].
It is found to be significantly larger than that predicted by Hubbard-type local-field factors for small to
intermediate values of the wave vector and imaginary frequency.

I. INTRODUCTION

In many of the problems in condensed-matter physics
concerned with electronic structure, it is useful to de-
scribe the many-body effects of screening, exchange, and
correlation in terms of an effective two-body electron-
electron interaction. Kukkonen and Overhauser' have
provided a physically motivated expression for this
effective interaction in the homogeneous interacting
electron-gas problem. Their expression is derived by con-
sidering the rearrangement of electrons in the vicinity of
a test charge; the rearranged electrons constitute a charge
cloud with which other particles interact through a direct
Coulomb term, but also through an exchange and corre-
lation term. This exchange and correlation term is as-
sumed to be proportional to the direct interaction term
where the constant of proportionality is termed a local-
field factor. These local-field factors can be rigorously
defined in terms of the response functions and their deter-
mination provides a useful starting point for understand-
ing the role of many-body effects in the interacting
electron-gas.

Although many approximations for the static local-
field factors in the interacting electron-gas problem are
available in the literature, relatively few address the issue
of the frequency dependence of the local-field factors.
The importance of this frequency dependence is demon-
strated by the fact that it is not possible to simultaneously
satisfy the compressibility sum rule and the third-
moment sum rule using static local-field factors. It is also
rejected in the lifetime of the volume plasrnon; when
static local field factors are used, the plasmon lifetime is
predicted to be infinite for a momentum less than the
smallest momentum permitting both energy and momen-
tum to be conserved in a single electron-hole pair decay.
In reality, however, the plasmon has a finite lifetime, even
for smaller values of momenta, and this implies that the
local-field factors possess imaginary parts; in turn this im-
plies that they are frequency dependent. This paper wi11

therefore be directed towards an approximate determina-
tion of the local-field factors of the interacting electron
gas. In a later publication, the results of this paper will
be applied to the problem of superconducting order in
the electron gas.

In determining the local-field factors, we will begin by
using a microscopic theory based on a summation of an
infinite class of diagrams within many-body perturbation
theory. This method has the usual disadvantage that at
suSciently low densities it will necessarily be inaccurate.
We overcome this diSculty by parametrizing the local-
field factors in such a way that they approximately ap-
proach the results of the microscopic theory for high den-
sities, but also exactly satisfy the compressibility, suscep-
tibility, and the third-moment sum rules at all densities.
We find it convenient to work with imaginary frequencies
not only because the numerical work is thereby simplified
but also because this framework is needed in many calcu-
lations in the electron gas. We also derive new sum rules
for the local-field factors for large imaginary frequency.
These state that when fi q /2m =Sita, the corresponding
local-field factors approach a local maximum value which
can be expressed in terms of the radial distribution evalu-
ated at zero separation.

In Sec. II, we determine the local-field factors using
linearized vertex equations ' to sum self-energy, ex-

change, and fluctuation terms in the diagrammatic ex-
pansion of the vertex functions. These integral equations
are solved by a variational method ' within a local ap-
proximation. The variational solutions of the vertex
equations are simply related to the leading order (in the
screened interaction) polarization diagrams. The results
for the response functions exactly reproduce the first-
order correction to the random-phase approximation
(RPA) result, but in addition also approximately include
an infinite class of higher-order corrections. Know1edge
of the vertex functions then allows the local-field factors
to be calculated. Our results for the spin-antisymmetric
local-field factor 6, reproduce those of Brosens and co-
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workers and Devreese, Brosens, and Lemmens, except
that the internal Coulomb lines are screened in our calcu-
lation. The spin-symmetric local-field factor 6, also in-
cludes fluctuation diagrams. The first step in evaluating
these polarization diagrams is to separate out the Srst-
order diagrams, which can be reduced to one-dimensional
integrals. The remaining diagrams are related to three-
dimensional integrals over the three-point function
Ap '(p, q ) (see below) and for this purpose we have calcu-
lated this three-point function analytically.

Since our procedure includes correlations, several
features appear here that do not arise in the Hartree-
Fock approach. Most notable is the fact that the local-
field factors will diverge at large momenta unless the
Lindhard function is modified to include the effects of in-
teractions on the occupation numbers nq, an observation
that is consistent with the findings of Vignale. We there-
fore modify the Lindhard function through the choice of
a new local-field factor G„and then derive exact sum
rules for G„and also give a simple parametrization of it.
A further result is that the limit of small momentum of
the spin-antisymmetric local field factor is, for a finite fre-
quency, a finite negative number. This has been previous-
ly predicted on the basis of the third-moment sum rule. 9

We find that the small-q sum rules are well satisfied for
relatively high densities, e.g., for r, (4. Our calculation
indicates that Hubbard-like approximations significantly
underestimate the static local-field factors for intermedi-
ate values of wave vector. In Sec. III, we give a simple
parametrization of the local-field factors which satisfy the
sum rules exactly, have a realistic form for intermediate
wave vector, and are dependent on imaginary frequency.

Many calculations incorporating local-field factors in-
volve an effective electron-electron interaction. Pro-
cedures for calculating this efFective electron-electron in-
teraction in an electron gas have been proposed by Kuk-
konen and Overhauser' (KO) and also by Vignale and
Singwi' (VS). These procedures result in effective in-
teractions which can be expressed in terms of the spin-

symmetric and the spin-antisymmetric local-field factors.
The KO and VS equations indicate three main sources of
contributions to these efFective interactions: the direct
Coulomb interaction, interactions arising from exchange
of charge fluctuations, and interactions arising from ex-
change of spin fluctuations. Some earlier expressions for
the effective interactions" depended only on the spin-
symmetric local-field factor and sufFered from the defect
of including direct and exchange contributions in an in-
consistent way. For densities lower than a critical densi-

ty where the compressibility vanishes, these effective in-
teractions then contain physically implausible singulari-
ties. Since the KO and VS expressions include direct and
exchange contributions in a consistent manner, they en-
tail no physically implausible singularities.

In Sec. IV effective interactions which include dynami-
cal local-field factors are discussed and compared with
those obtained using Hubbard-like static local-field fac-
tors.

II. CALCULATION OF LOCAL-FIELD FACTORS

In what follows we calculate the local-field factors
from approximate integral equations ' determining the
spin-spin and the density-density response functions.
These integral equations are represented diagrammatical-
ly in Fig. 1. They include RPA screened-exchange and
self-energy lines. However, the integral equation for the
density-density response function also includes Quctua-
tion diagrams. By using an integral equation to approxi-
mately sum an infinite number of diagrams, we can con-
siderably extend the density range where perturbation
theory is accurate. However, as noted, at sufficiently low
density the neglected diagrains will eventually become
important.

The solution to the integral equations is obtained by a
variational approach. ' We start by noting that the in-
tegral equations are given by [see Figs. 1(a) and 1(b)]

A"(p, q)=1 —Tr, [u„p„(p—P ')+I"'(P,P ', q)]Gp(P '+q)Gp(P ')A"(P ', q)
—A"(p', q)Tr, [Gp(P+q)Gp(P '+q)+Gp(P')Gp(P ')]uap~(P ' P'), (1)

where Tr stands for (4Ef) J(dwp/2n)(2kf) Jd p/(2ir), u„p~ is the Coulomb interaction screened in the RPA ap-
proximation,

I"(P,P';q)=TrkvRp~(k)vip~(k+q)Gp(k p)[Gp(p' —k)+Gp(k+p'+q)], (2)

I'=0 .

Except where otherwise noted, we will express all momenta in units of 2A'kf and all energies in units of 4Ef =2A kf /m.
In addition, we will use the four-vector notation, namely, q =(iw, q) and q = ~q~. Equation (1) can be written as

Tr,K "(If,p ')A"(p ', q )=1,
where

K"(P,P ') =5(P—P ') [1+Tr „vap~(p "—P)[Gp(p)Gp(p ")+Gp(p+q )Gp(P "+q )]J

+Gp(P '+q )Gp(P ')[vRPA(P ' —P)+ I "(P ' P q ) l .
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FIG. 2. The polarization diagrams required in the calcula-
tion of the local-field factors; (a) shows the self-energy diagrams,
(b) shows the exchange diagram, and finally, (c) shows the Auc-

tuation diagrams.

FIG. 1. Diagrammatic representations of (a) the integral
equation for the spin-antisymmetric vertex function and (b) the
integral equation for the spin-symmetric vertex functions. (c)
shows the diagramatic representation of the screened interac-
tion lines.

the additional term II„(q). The terms II„(q), II,„(q),
and Iis(q } are shown in Fig. 2 and can be otherwise ex-

pressed as

Here, as in Eq. (1}, Go(q)=(4EI) '(iwq —
q +p) ' is

the Green's function of the noninteracting system. Next,
we note that Eq. (4) also results from the vanishing of a
functional derivative, i.e.,

II„(q ) = —2Re Tr& Trk v Rp~(p )Gp(k )

X Gv(k+q)Go(k+q+P),

II,„(q ) = —2 Tr Trk v RpA(p )GO( k )Gp(k +q )

(10)

5F"[Aj
A

=0,

where

F"[A]=Tr Tr,A' (p, q)GO(p+q)

X Go(P)K&(p, p ')A"(p ', q )

—2Tr Gv(p+ q )GD(P )A"(p,q ) .

By taking a trial solution A"(P,q) =A"(q) (this is the
local approximation) we find

IIv(q }
A'(q) =

Ilo(q ) —II„(q )
—II,„(q ) —II„(q )

and

The expression for the spin-spin vertex function is there-
fore the same as that of Refs. 6 and 7, except that here
the internal lines in our function are screened. The ex-

pression for the density-density vertex function contains

X Go(k+q+p )Go(k+p ),
where II&(q ) is given later in Eq. (25).

The problem of calculating the local-field factors has
now been reduced to evaluating the three types of low-
order polarization diagrams shown in Fig. 2. In order to
compute these diagrams, we separate them into first-
order diagrams and higher-order diagrams. The first-
order diagrams can be simplified by following the method
of Ref. 6 and writing the momentum integrals in cylindri-
cal coordinate. By proceeding this way, Brosens and co-
workers were able to obtain a two-dimensional integral
for the diagrams. For the special case of w =0, the first-
order diagrams have been expressed in terms of one-
dimensional integrals by Engel and Vosko. ' We are able
to extend these results by reducing all first-order dia-
grams for arbitrary frequency and momenta to one-
dimensional integrals. By extending the result of Ref. 6
to imaginary frequencies, the first-order correction to the
response can then be written as

II,(q, iw)=II,',"(q,iw)+II+(q, iw)+II (q, iw), (12)

where II,',"(q, iw) is the sum of first-order self-energy dia-
grams and

1
II+(q, iw) =

(4mao) (e /2ao)

I 1X Re dz dz'
iud +q +qz +im+q +qz'

u —v+s++ W+(z, z')
X —,

' W+(z, z') —
—,'(u +v +s~ )+2v ln

2s+
(13)
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Here u =1—z, v =1—z', s+ =2q+z+z', s =z —z', and

W~(z, z')=[(u —v) +2s~(u +v)+s+]'/2 .

By writing

1 a
ln(iw+q +qz),

iw+q2+qz q Bz

(14)

we can integrate by parts to perform one further integral and we can also reduce the self-energy expression to a one-
dimensional integral by noting that after a simple frequency integration, the self-energy diagram expressed in cylindri-
cal coordinates becomes

~())( .
)

f 0 R
i/2

d
(1/4 —x ) p(k a ) 2)/2

~'a0(e'/2a0) -»2 o (iw +q +2qz)

X [XHF([p +z +q +2qz]'/ ) —XHF([p2+z2]'/')], (16)

where XHF(p) is the Hartree-Fock self-energy. The integral over p can then be performed in the first term by invoking
the substitution' x =[p +z +q +2qz]'/ and in the second with the substitution' x =[p +z )'/ . The final result,
though quite cumbersome, is nevertheless straightforward to evaluate and can be expressed as

2II,(q, iw) =-
(4m a0 ) ( e /2a0 )q

XRe
2 (iw+q —q)ln(iw+q —q) —

2 (iw+q +q)ln(iw+q +q)+-
q q q

2 iw+q w +q (q+1)X -ln(lw+q2+q)-ln(lw+q2-q)- ' ln
2

'2'
2w +q2(q —1)

where

+—[ln (iw+q +q) —ln (iw+q —q)]
2

q +iw iw+q +q 8
ln +c.c.

iw+q —
qJ

[(iw+q +q)[ln(iw+q +q) —2]
q

(iw+q2 ——
q )ln(iw +q —q)[ln(iw+q —q) —2]]

1+21n(iw+q +qz)
(1 2)l 1+z

[1 (2 + )2]1
1+2q+z

lw +q'+qz 1 —z 1 —(2q+z)

1 1+ 1+4q +4qz '

1+4q +4qz ' iw+q +qz 1 —1+4q + z '

X [A(q, w, z}ln(iw+q +qz)+ 8q (q +z)]

+4J dz ln(iw+q +qz) —2f dz I(q, w, z)
2q+z . 2 i ln(iw+q +qz)

1+4q +4qz iw+q +qz

1
A,(q, w, z) = [q(q+z}(l+20q +56q +(14+92q )qz+36q z }+2w (1+4q +4qz)q(l+4q +4qz)

+iw(1+18q'+48q'+(3+19q')4qz+28q z )],
A 2w (1+2q +2q+2qz +z —(q)z( )(q —1) iq (q —1)(2(q —+z (

B)—
2w(1+2q —2q +2qz —z —

~q +z) )(q +1)—iq (q —1)(2[q +z B)—
2w(1+2q +2q +2qz +z —

(q +z~ )(q —1) iq (q —1)(2(q +—z)+B)
2w(l+2q —2q +2qz —z —

~q +z~ )(q+1) iq(q 1)(2)q +—z})+B)—

(18)

(19)
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and

A = [q —12w q
—w +(q —3w }2qz+q z ]+ [3q —

q +w +(1+3q )qz+2q z ],
q q

(20)

2

8=2 (q+z) — (1+4q +4qz)+iw (—q+z)(1+2qz)
q q

(21)

It should be noted that when this result is analytically continued to real w, logarithmic singularities occur when
w=q kq. They are, however, simply unphysical artifacts of finite-order perturbation theory, resulting from the
second-order pole in the diagrams with self-energy corrections. We can see this by noting that if we had used the full
Hartree-Fock Green's function we would have obtained

4(k/ap) n'„—n'„+,
IIO(q, w)+ II„(q,w) = fa 0(e /2au ) (2n. ) w+ i5+ e&

—e&+&+XHP(k) —XHP(k+q)
(22)

1 8 8

4E/ B(iw~ ) B(iwP )

x [Av' '(p, q ) —AIi '(q, p )], (23)

II,„(P) =II' "(P)+—'Trq [vRpA(q ) u

(2k/)

X [A,"'(P,q)+A,"'(q,p)
—Ao '( —p, q ) —Ao '(q, —p )],

(24}

At m =q +q we can evaluate leading order behavior of
this expression; to do so we consider the small-r, limit of
(k/) '[110(q,w=q +q)+II„(q,w=q kq)]. Since the
self-energy (here in units of 4E/) vanishes at r, =0, the
integrand in Eq. (22) diverges for r, =0 when k =

—,
' and

cos(8}=+1,where 8 is the angle between k and q. To
analyze the effects of this singularity for 0 & r, «1, it is
sufficient to set k =

—,
' and cos(8}=+1 in the self-energies.

The result is that II„(q,w =q +q ) [and hence
G(q, w =q kq }] contains a term proportional to ln(r, ).
Because of this nonanalytic dependence on r„ it is clear
that the result could not have been obtained by using
finite-order perturbation theory. This is the origin of the
divergence noted above and also obtained in Refs. 6 and
7. In our theory, we approximately sum the diagrams re-
quired to give Eq. (22), but our approximation is
insufficiently accurate to obtain the correct behavior at
w =q +q. However, provided we consider extensions to
imaginary frequencies no such problems arise.

All of the remaining diagrams can be described in
terms of the three-point function' according to

II„(p)=III,"(p)+Tr [VRP~(q) —v ]

and once it is known, the integrals above can be evalu-
ated numerically. An analytic form of the three-
dimensional three-point function as a function of real fre-
quency has bene provided by Cenni and Saracco. ' The
extension to imaginary frequencies, which we require, is
given in the Appendix, where we also present an analytic
derivation of the three-dimensional three-point function.

There are two ways to express the response functions
in terms of local-field factors. The first is to write the
response functions as

IIV(q }
lls, a(- )—

1+v G, , (q )IIO(q )
(27)

and the alternative is to write

Ilo(q )
11"(q}=

1+u G, ,(q)IIO(q)
(28)

11,(q)
llo(q ) =

1+v G„(q)IIO(q }

With this choice of parametrization, we have

(30)

where IIO(q) is the Lindhard function with the particle
number for the noninteracting case replaced by the in-
teracting equivalent, i.e.,

4(kIao) d k ng ni,+-
avi(e /2au) (2n. ) iw~

—ez+~+e„'

where nk is the exact occupation number in the interact-
ing system. Since the exact occupation numbers are un-

known, Eq. (29) cannot be directly used to obtain IIO(q );
therefore a parametrization of this function is needed.
Motivated by Eqs. (27) and (28), we are led to
parametrize IIO(q ) as

and G, ,(q)=G, ,(q)+G„(q) . (31)

+fl(P} TrqvRPA(q )VRPA(P

x [Ao '(q, P q)+AD '(P q, q )]— —(25)

The three-point function AIi '(q,P ), is given by

Ao '(q, p }=—2 Trk Go(k )Go(k+q )Go(k+q+P), (26)

In Sec. III, Eq. (29) will be used to derive exact limits for
the new local-field factor G„(q ), but for the present Eqs.
(27) and (28) can simply be regarded as the definitions of
the local-field factors G„(q ) and G, , (q ). In the second
representation of the response functions the large-q limits
of G, ,(q ) approach known constants, ' namely,
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and

4g (0)—1
lim G, (q)=

q~oo 3
(32)

3 I I / I

I

I I I I

(

I I I I

t's= 2
(d= 0

lim G, (q)= —,'[l —g(0)],
q~ oo

(33)

where g (0) is the radial distribution function evaluated at
zero separation. In contrast, the large-q limits of G, ,(q )

diverge as a(r, )q . An expression for a(r, ) in terms of
the correlation energy is given in Eq. (52). When consid-
ering the effective electron-electron interaction it is actu-
ally more convenient to use the functions G, , (q ), and
IIo(q). This refiects the fact that if the local-field factors
diverge for large q, then the effective interaction will no
longer approach its correct large-q limit.

In order to actually calculate G, , (q }, we must deter-
mine IIo(q). This is achieved by isolating the part of
II„(q} which results solely from the change of the elec-
tron occupation numbers from the noninteracting to the
interacting values. To do this, we note that
IIII(q)+II„(q) can be written as

GEE(k )
Ilo(q ) + II„(q ) =Ef 'Re Tr

iwq
—

q
—2k q

I

0 1 g
2Kf

FIG. 3. Local-field factors for r, =2 and w =0. The solid
lines correspond to the parametrized local-field factors, Eqs.
(53)-(65), and the dotted lines to the local-field factors calculat-
ed using Eqs. (35)-(37). The differences at large q are due to the
failure of Eqs. (35)-(37) to adequately satisfy the large-q sum
rules, in contrast to the parametrized forms, which are con-
strained by these rules.

G(k )
—Go(k )

+Sf 'Re Trk
iw —

q
—2k q

Go(k )

(iwq q 2k q)

X [XRpp (k +q } XRpp (k )] (34)

The results are plotted in Figs. 3-5 at relatively high
density (r, =2). Since the local-field factors are only
moderately sensitive to the density, the results in these
figures are representative of the entire metallic density
range. The local-field factors for very low densities will
be discussed at more length elsewhere.

where X„p~(k ) is the self-energy in the RPA approxima-
tion. The first term is the Lindhard term. The second
represents the change in the Lindhard function resulting
from occupation number changes induced by interac-
tions. The sum of the first two terms is therefore II Io"(q)
and the remaining term is II (q). Here III'I '(q) is the
first-order (in the number of RPA lines) approximation to
IIo(q ). We evaluate this by noting that the expression for
II (q) is given by an expression similar to Eq. (23), but
with the three-point function modified to include the ex-
tra k q that is present in the denominator of Eq. (34).

From Eqs. (8), (9), (28), and (30) we have

5 I

(

I I I I

(

I I I I

(

I I I I

f's = 2
QJ= 0.5

Gs

—1
G, (q, iw) = [II„(q,iw)+II, „(q,iw)

Uqllii(q, IW)

+ IIs(q, iw) ],
—1

G, (q, iw)= [II (q, iw)+II,„(q,iw)],
UqIIEI(q, Ew)

and

G„(q,iw)= [II0 '(q, iw) —IIII(q, iw)] .
Us IIII(q, iw)

(35)

(36)

I I I I I I I I I I I I I I

1 q 2 3

2Kf

FIG. 4. Local-field factors for r, =2 and w =0.5. The solid
lines correspond to the parametrized local-field Eqs. (53)-(65),
and the dotted lines to the local-field factors calculated using
Eqs. (35)-(37). The differences at large q are due to the failure
of Eqs. (35)-(37}to adequately satisfy the large-q sum rules, in
contrast to the parametrized forms, which are constrained by
these rules.
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ps=2
&=2

from the third-moment sum rule' and is given by

3 2'JTQ 2

a
(40)

We can derive a result for A, '„"'(r, ) by considering the ex-
pression for the modified Lindhard function,

4(kfap)
IIp(q, iw) =

ao(e /2ao)q

G,

k 1 im —
q +2kq

(2n ) k iw —
q

—2kq

For small q and large w, this becomes

(41)

1 q 2

2Kf

FIG. 5. Local-field factors for r, =2 and ur =2.0. The solid
lines correspond to the parametrized local-field factors, Eqs.
(53)-(65), and the dotted lines are the local-field factors calcu-
lated using Eqs. (35)-(37). Again, the differences at large q are
due to the failure of Eqs. (35)-(37) to adequately satisfy the
large-q sum rules, in contrast to the parametrized forms, which
are constrained by these rules.

32(kfap) q~
IIp(q, iw) =IIo(q, iw)+

ap(e /2ap) w

d k
X I (n„—n„)k . (42)

(2n. )

The correction term in this expression is proportional to
the difference in the kinetic energy between the interact-
ing and noninteracting systems and this can be related to
the correlation energy by the virial theorem. This implies
that

III. PARAMKTRIZATION
OF THK LOCAI FIELD FACTORS

For practical applications, two difBculties arise with
the above procedure: (i) for problems involving multidi-
mensional integrals whose integrands depend on G (q, iw),
the numerical work becomes burdensome; (ii) for low
densities the calculation we have described becomes inac-
curate. We attempt to solve both problems by proposing
a simple parametrization for the. local-field factors which
incorporates the known sum rules.

First, we utilize what is known exactly about the
local-field factors. For w =0, we know that G, (q, O)

', '(r, )q, , G, (q, 0)=A,,' '(r, )q, and G„(q,O)

=A, '„'(r, }q,all in the limit of small q. Of the three func-
tions A,,' ', A, ', ', and X'„' thereby introduced, the combina-
tion I,,' '(r, )+A, '„'(r, ) is obtained from the compressibility
sum rule, and using the parametrization' of the correla-
tion energy from the Green's-function Monte Carlo simu-
lations we have'

a2

A, '„"'=3nar, [r,e, (r, )] .
dr~

(43)

We determine A,
' '(r, ) from our numerical calculation by

noting that A, '„'(r, )/[ A, ', '( r, ) +A.'„'(r, ) ] can be approxi-
mately parametrized as

'„'(r, ) ,
—0. 11r,

', '(r, )+, A,„'(r, ) 1+0 33r,
(44)

For r, &20, this parametrization provides a reasonably
accurate description of the numerical results of Eqs. (36)
and (37). For larger r„where Eqs. (36) and (37) are not
expected to be very accurate, Eq. (44) underestimates the
numerical results. Thus Eq. (44) should be considered as
a conservative estimate for A, '„' for the low-density case.
In the limit of large frequency we can show that all three
local-field factors possess an extremum for q at or near

. For the cases of G, and G„ this result follows from
the analysis of Niklasson' and of Zhu and Overhauser. '

In particular, their expression for the large-(q, w) limit of
the local-field factors, when analytically continued to
imaginary frequency reads

where a=(4/9m)'~ and e, is the correlation energy ex-
pressed in units of Rydbergs. Here A, ', '(r, ) +A, '„'(r, ) is
given in terms of the spin susceptibility or equivalently by

' 2/3
a2

Qg2
A,

' '(r )+A, ' '(r )=1+3a s n s 3
(39}

where g is the spin polarization. On the other hand, in
the limit of large w, we know that G, (q, iw)=A,' '(r, )q, ,

G, (q, iw) = —
—,
' [1—2g(0) ], and G„(q, iw) =A.'„"'(r, )q,

again, all in the limit of small q. Further A,I '(r, ) follows

a(q, w)=—,+—1 (iw+q ) 1 (iw —q2)2

2 (iw —
q ) 2 (iw+q )

(46)

If we differentiate Eq. (45) with respect to q or with

G, , (q, iw)= g g a(q, w) —q, (cr, o'}1

q' uo' q Vq

X[S (q') —5,],
where ri, (o.,a')=1, g, (o,o')=sgn(o"o'), and S,(q'} is
the static structure factor. The quantity a(q, w} is given
by
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respect to w, we find that maxima occur at q =w. For
the spin-symmetric and spin-antisymmetric local-field
factors these maxima are given (for a given density) by

and

lim G, (q =w, iw )=—', [1—g (0)]
40~ oo

lim G, (q =w, iw)= —', [1+2g(0)] .

(47)

(48)

We can show from Eq. (41) that G„(q,iw) has a minimum

at q =(}/2&3—3)w =0.68w with the peak height given

by

G„(q =q;„,iw)=1. 180wnar, [r,e, (r, )] (49)

in the large-w limit. Finally we have the sum rules valid
for large q but arbitrary w, namely,

lim G, (q, iw) = ', [1——g (0)], (50)

and

4g (0)—1
lim G, (q, iw }=

g —moo 3
(51)

lim G„(q,iw)/q = mar—, [r,e, (r, )]=—
—,'k'„"' . (52)

g~ 00 S

Equations (35)—(37), though approximate, give a rela-
tively clear guide to the expected form that the local-field
factors should take. We now examine the particular
qualitative features that should be included in the param-
etrization. Most importantly there is a peak at q =1 for
all three of the static local-field factors (see Fig. 3) and at
large frequencies, this peak moves out to larger q (see
Figs. 4 and 5). In fact, for G, and G, at very large w, the
peak is actually at q =w, and we find that for arbitrary

f

a, (w)q +b, (w) ', [1—g(0)—]q
G, (q, iw) =

1+c,(w)q +b, (w)q

where, guided by the sum rules, we take

(53)

frequency, it is roughly located at q =1+w. Similarly,
for G„, the peak is roughly located at q

= 1+0.68w. The
peak in the function G„(q,iw) diverges toward negative
infinity for very large w.

In deciding how to parametrize the local-field factors it
is important to use physical information that we expect
to remain valid throughout the entire density range, and
in most instances this is achieved through use of these
sum rules. There is, however, one piece of information
that is not related to a suin rule, namely, the peak height
of the static local-field factors at q =1. This region is
enhanced by nonanalytic terms which cause the deriva-
tive of the local-field factors with respect to momentum
to be very large near q =1. If we neglect this nonanalytic
structure, we find that our numerical results are well ap-
proximated by taking G, (q =i,w=0)=0. 9AI '(r, ) and

G, (q = l, w =0)=A,,' '(r, ). Although this soinewhat un-

derestimates the peak height near q =1, it does allow for
a reasonably accurate description for small to intermedi-
ate momenta. However, at large r„our numerical results
are not expected to be very accurate. According to our
calculation, for r, &31 there is a charge-density-wave
(CDW) instability. In other calculations, 's ~0 the CDW
instability either occurs at much larger r, or not at all.
Therefore, in the case of very low densities the condition
G, (q =1,w =0) =0.9A,,' '(r, ) should be modified so that
the CDW instability occurs at larger r, . Otherwise in the
metallic density range, the condition G, (q = 1, =0)
=0.9AI '(r, ) is expected to be accurate.

Given these considerations, we parametrize the spin-
symmetric local-field factors as follows:

a, (w)
b, (w)=

3a, (w)(1+w) ——', [1—g (0)](1+w)' —Zc, (w)[1—g (0)](1+w)
(54)

and

u, '"'
S

4[1—g (0)]

u, ,'"'
4 —1 a+

4[1—g (0)]
1+y,w

(55)

g(0) g( ~ )

a, (w}=A,,'"'+
1+y,m

(56)

The expression for b, (w) follows from the condition that the peak height be found at q =1+w. The expression for
c,(w) results from requiring that the peak height equal aA,,' ' for w =0 and —', [1—g (0)] in the limit of large frequency.
The constant y, is determined to be I9/16[1 —g(0)] IA.,' '+ —,'+ —,'(1—1/a) by requiring the derivative with respect to
frequency of G, (q, iw) vanish when q =w for large w. In the following, we will take a=0.9, which corresponds to
G, (q =1,w =0)=0.9A,,' '(r, ). Since the peak height is typically greater than unity in this case, this approximation will
result in a C%D instability; we find that this occurs at r, =36. At very low densities it may actually be preferable to use
a smaller value of a so that the CDW will occur at lower densities.

We use a very similar procedure to parametrize the spin-antisymmetric local field factors, namely,

y, w a, (w)q +b, (w)P(w)q
G, (q, iw}=—

—,'[1—2g(0}] 2 2 + (57)1+y, w 1+c,(w)q +b, (w)q
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where (again guided by the sum rules}

a, (w)
b. (w)=

3a, (w)(1+ w) —4P(w)(1+ w) —3c,(w)P(w)(1+ w)

1+ 3g(~)
( )

—3g( )

1+y, w

gto) g(~ )

a, (w)=X',"'+
1+y, w

and

2 w 2

P( w ) = —,
' [4g (0)—1]+—,

' [1—2g (0)] 1+y, w

The constant y, is given by —', A, ',"'+
—,'.

The local-field factor related to the change in occupation numbers in the Lindhard function is parametrized as

a„(w)q +b„(w)( —A.'„"'/3)q
G„(q,iw) =

1+c„(w)q +b„(w)q

where

—3b„(w)=,
,

(a„(w)+A, '„"'+—', A, '„"'c„(w)(1+y„w)
2A, '„"'(1+y„w )

(&9)

(60)

(61)

(62)

3y„(w)
c„(w)=

1.18(1+y„w)

+ [ [a„(w ) +A,
' "'+ —'A, ' "'c„(w )( 1+y „w ) ] +—', a„(w g, '„"'] '

)

g(0)+ 2g( ) 1 18(1+y w) 1+y2w2

(63)

(64)

and

a„(w) =A, '„"'+
1 +y2w2

(65)

IV. EFFECTIVE ELECTRON-ELECTRON
INTERACTIONS

As noted above, in many problems in condensed-
matter physics involving electronic structure, it is useful

The constant y„ is 0.68. The procedure we use to deter-
mine the parametrization for G„ is very similar to the
procedures used to parametrize the other local-field fac-
tors.

In Figs. 3—5, the results for the local-field factors are
shown. The discrepancies between our parametrization
of the local-field factors and the numerical calculation
arise primarily for two reasons. First, as expected, the re-
sults of the numerical calculation do not exactly satisfy
the sum rules; this leads to a fairly large error in the
large-q results from the numerical calculation. Second,
the parametrization neglects the sharp peak in the static
local-field factors at q =1. Because they satisfy the sum
rules, the parametrized local-field factors can be expected
to be more accurate than the numerically calculated
local-field factors at metallic and lower densities. As
shown in Fig. 6, the effective potentials resulting from the
use of both the parametrized and the numerical local-field
factors are actually not very different.

u G, (q) ~11 (q)uq "q s q o q

e(q ) 1+u (G, (q )IIO(q )

[u G, (q ) ] (q )IIO(q )+o. -o.'

1+u G, (q)IIO(q)
(66)

where v is the bare Coulomb interaction, A(q } is the ver-
tex function and is given by

A(q)= 1

1+v G, (q )IIO(q )
(67)

o are the Pauli matrices, and e(q ) is the dielectric func-
tion, given by

e(q ) = 1 —v IIO(q )A(q ) . (68)

Vignale and Singwi have also derived similar expres-

I

to describe the many-body effects of screening, exchange,
and correlation in terms of an effective two-body
electron-electron interaction. A physically motivated ex-
pression for this effective interaction in the interacting
electron-gas problem has already been given by Kuk-
konen and Overhauser. ' Their expression is derived by
considering the rearrangement of electrons in the vicinity
of a test charge; the rearranged electrons constitute a
charge cloud which interacts with other particles through
a direct Coulomb term, but also through an exchange
term which is proportional to the local-field factor. The
KO result can be written
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om E s. (66) with r, =2 and w =0. The inset shows the corresponding real-spaceFIG. 6. Effective electron-electron interaction from Eqs. ( ) wit r, = an w —.
in ~~s. (53)-(65), the dashedtive interaction. The solid lines are calculated using the local-Seld factors defined in ~s.

ines are ca '
in s. (35)-(37), and the dotted lines are calculated using the local-Seld fac-lines are calculated using the local-field factors defined in Eqs. 35 —,an e o e

tors of Takada (Ref. 20).

sions based on a diagrammatic study of the irreducible
article-particle interaction. ' In their theory, ladder dia-
rams are summed in the local approximation, and their

results give precisely the same V„. as the KO expressio,eff

but augmented by an additional term representing trans-
verse spin fluctuations, namely,

(vG. )'ll,I';—,(Pi-P2-0 =2,
a 0

(69)

This term is incorporated into the irreducible particle-
particle interaction J in the following manner:

~„(Pi P2 0)= I",,'(W ~ (Pi P2 e)——

and

,(Pi P2 W=& ,—(W &,' ,(Pi P-2— -—
The term representing the transverse spin Suctuations cs
not present in the KO expression because the KO formal-
ism is a strictly local formalism and therefore cannot lead
to terms which depend on the transverse momentum
transfer. However, for the case of the gap equation for
superconductivity, Vignale and Singwi ' have shown that
th

'
expression for the effective interaction is approxi-eir

f themately equivalent to the KO expression. Since one o t e
more interesting applications ' of the effective interac-

tion is indeed in the area of superconductivity, we will
use the form of the efFective interaction that is appropri-
ate for the kernel in the gap equation, namely, Eq. (66).
Note that the spin fiuctuations mediate a repulsive in-
teraction for singlet pairing, but an attractive interaction
for triplet pairing. Note also that the local-field factors
play a crucial role.

In Fig. 6, we compare the static effective interaction
obtained from Eq. (66) using the local-field factors de-

s
d here with the static efFective interaction obtained

using the Hubbard-like parametrization of Takada. t
is because the fully interacting particle numbers nk are
used in our calculation through the local-field factor G„
that the effective interaction is larger in our case for the
q =0 limit. If we ignore 6„,we find that the effective in-
teraction is then equal to Takada's result at q =0, but at
higher q, our effective interaction is considerably larger
than that predicted by Takada's approximation. The
discrepancy for immediate wave vectors results directly
from the peaked structure of the local-field factors ap-
parenarent in Fig. 3. The effective interaction in real space is
also shown in Fig. 6. The Friedel oscillations are much
larger in our approximation than in Hubbard-like ap-
proximations because of the peak in the local-field factors
at q =1. In Fig. 7, we plot the effective interaction as a
function of frequency. From the difference in frequency
dependence of the effective interaction shown in this
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figure, it is clear that it is necessary to use frequency-
dependent local-field factors in order to accurately pre-
dict the effective interaction.

V. CONCLUSIONS

We have calculated the local-Geld factors using an in-

tegral equation to sum an infinite number of diagrams for
the response functions. The results for the local-field fac-
tors have been related to low-order polarization dia-
grams. We reduced the first-order diagrams to one-
dimensional integrals and the higher-order diagrams were
related to three-dimensional integ rais involving the
three-point function. It was necessary to associate some
self-energy terms with a new local-field factor which we
used to modify the Lindhard function to include the
effects of correlations on the particle occupation number.
We then suggested a parametrization scheme to simplify
the calculation of the local-field factors and to make sure
that they satisfy the known sum rules. We have also
found new sum rules showing that for large iw, the local-
field factors have a peak at or near q =w and the peak
height is related to the radial distribution function at zero
separation.

We used the local-field factors to calculate the effective
electron-electron interaction and as a consequence we ob-
serve several significant differences between our result
and results obtained using Hubbard-like local-field fac-

p 5
0.0 0.5 g~ 1.0 1.5 2.0

4E)

FIG. 7. ES'ective electron-electron interaction from Eq. (66)
for r, =2 and q =0.5. The solid line is calculated using the
local-field factors defined in Eqs. (53)-(65), the dashed line is
calculating using the local-field factors defined in Eqs. (35)-(37),
and the dotted line is calculated using the local-field factors of
Takada (Ref. 20}.

tors. The effective interaction obtained using the local-
field factors which we derived is considerably larger for
q (1 and w & 1 than the effective interaction obtained us-
ing Hubbard-like local-field factors because of the proper
inclusion of particle number renormalization in our
description and because of the peaked structure of our
local-field factors near q =1. Our conclusion is that it is
necessary to use local-Geld factors which have a peaked
structure, are frequency dependent, and include the
effects of correlation on the electron occupation numbers
to correctly predict the effective electron-electron interac-
tion.

An interesting problem where the effective electron-
electron interaction is clearly required is the question of
intrinsic superconductivity in the electron gas. ' This
problem has been addressed by Takada using simple
Hubbard-like forms for the local-field factors. The re-
sults of the present paper provide a more accurate
effective electron-electron interaction which can be used
in the Eliashberg equation to predict the temperature
where a superconducting transition could occur. This
matter will be dealt with at more length in a separate
publication. 2

APPENDIX

Derivation of the three-point function

The three-point function is defined in Eq. (26). We can
carry out a simple frequency integral to obtain'

A (~oq, p }= I(q, q+p ) —I( q,p }+I—( ——
q

—p, —p ),
(Al)

where

I(q,p) = 2

ao(e /2ao)(k&ao)

d k
X 8(—,

' —k)
(2~) q +2k q

—iw

X
1

p +2k p
—lw

(A2)

As written, the angular integrals in this expression are
difBcult to evaluate. To simplify them we use the so-
called "Feynman trick" to combine the two terms in I
into a single term, according to
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d k
I(q,p)= z I 36(—,

' —k)I dx[+(q iw )(1 x)+—(p i —)w+x2k~q—(l —x)+px~eos(8)]
ao(e /2ao)(k&ao) (2w)

(A3}

In Eq. (A3), the plus (minus) sign is chosen if w w positive (negative). This ensures that there is no singularity in the
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integrand and that the order of integration can be changed. After integrating over angles we have

I(q,P)=
z f k dk f dxI [+(q —iwe)(1 —x)+(p —iw )x] —4k ~q(1 —x)+px~ }2n uo(e /2ao)(kfao)

(A4)

We write the denominator of Eq. (A4) as (ao —a, k )+2(bo b—, k )x+(co—ctk )x . The x integral can then be easily
be performed giving

+l 1/2 co+ ho (c—) +b ( )k —k [a+Pk ]
'~

4n ao(e /2ao)(kfao) o [a+Pk ]'~ bo b, k— k[a—+Pk ]'~

co+ho (c,—+b, )k +k [a+Pk ]'~—1n
b bk—+k[a+Pk ]'

where a=(aoc, +coa, —2bob, ) and P=b, —a,c, . By writing

a+ k
1 8

[a+Pk']'" P»
we can integrate by parts to obtain

(A5)

(A6)

1(q,P)=
4' Pao(e /2ao)(kfao)

co+bo —
(can+bi )/4 —1/2[a+P/4]'i

X [a+P/4]'~ ln
bo b, /—4—1/2[a+P/4]'~

co+ bo —(c ) +b, )/4+ 1/2[a+P/4]'—ln
bo b) /4+ 1/—2[a+P/4]'~

+ [in[1—-'C/(Cf)'"] —in[1+ ~ C/(Cf)~~2] j2h(Cf) ~ 2

2h(Cg)'~~
[»[1—

—,'C/(Cg)'~ ]—in[1+—'C/(Cg) ~2]] (A7)

where h =(B +4AC)', f =g/2+h/2, g =B/2 h/2, 3 =—(co+bo)2, g= 2(c +b —)(c, +b, )
—a, C=p—(c&+b& ), r=2a(co+bo), and finally o =2a(c, +b, )+4p(co+bo).
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