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The magnetic-field-dependent conductivity of a square antidot lattice is calculated from the experimentally
determined magnetoresistance and Hall resistance. Close to the commensurability conditions where the mag-
netoresistance always displays pronounced maxima we find a crossover from minima to maxima in the con-
ductivity as a function of antidot size. We interpret this behavior in terms of different classes of electron
trajectories whose relative importance depends on the size of the antidots with respect to the lattice period.

Antidot lattices represent an ideal system to investigate
the electronic properties of lateral superlattices.' So far,
most experiments are dominated by classical effects that rely
on the chaotic and regular trajectories arising in the antidot
potential landscape. Experimentally, pronounced maxima
occur in the magnetoresistance at low magnetic fields where
the classical cyclotron diameter fits around groups of anti-
dots. In the same magnetic-field range the Hall effect dis-
plays plateaulike features and is even quenched or negative
close to B=0.%"# Theoretically, the classical equations of
motion have been solved in the presence of the antidot po-
tential and the conductivity has been calculated using linear
response theory.® The calculated conductivity has been con-
verted to a resistivity and quantitative agreement has been
found with the experimental data.

The quantum-mechanical band structure of an antidot lat-
tice has been calculated by Silberbauer.” Using the Kubo
formula he was also able to calculate the conductivity, con-
vert it into a resistivity, and compare this resistivity with the
experimental data.'’ Again the agreement with the experi-
mental data is almost quantitative. The classical theory as
well as the quantum-mechanical calculation average over a
large ensemble of different electron trajectories or wave
functions, respectively.

The fact that both the classical as well as the quantum-
mechanical theory calculate the components of the conduc-
tivity tensor is purely based on technical reasons. Linear re-
sponse describes the response to an externally applied
voltage in terms of a conductivity. The experimentalists, on
the other hand, measure resistances because this is the only
way to make a well-defined four-terminal measurement. In
the case of a Hall geometry whose dimensions are much
larger than typical internal length scales of the system (elas-
tic mean free path, phase coherence length, Fermi wave-
length) the components of the resistivity tensor can be ex-
tracted in a straightforward manner from the measured
resistances.

It is an experimental fact that in an antidot lattice a pro-
nounced maximum occurs in the magnetoresistance when the
classical cyclotron diameter matches the lattice period. The
situation is not so clear for the higher-order commensurabili-
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ties and depends sensitively on the size of the antidots with
respect to the lattice period.*® In the present literature it is
almost exclusively the magnetoresistance that is discussed
experimentally as well as theoretically in terms of the posi-
tion of the maxima. We want to show in this publication that
the features that occur in the conductivity may be of equal
importance and that a more comprehensive picture of classi-
cal electron trajectories can be obtained this way. In particu-
lar we argue that the occurrence of a maximum in the resis-
tance cannot simply be identified with a pinned orbit.

The fabrication of our samples starts from a high-mobility
two-dimensional electron gas (2DEG) based on the
Al,Ga; _,As/GaAs material system. The pattern was defined
by electron beam lithography and transferred onto the elec-
tron gas by a carefully tuned wet etching step. The details of
this fabrication as well as the experimental setup are de-
scribed in Ref. 11. However, the fabrication process is of
minor importance and we believe that our analysis will lead
to the same basic results if performed on magnetoresistance
traces as obtained on samples fabricated by other technologi-
cal means. All experimental data presented in this paper are
obtained at T=4.2 K.

Figure 1(a) presents the experimentally determined mag-
netoresistance p,, (solid line) as well as Hall resistance Pxy
(dotted line) of an antidot lattice with period p =480 nm. The
high-field Shubnikov—de Haas (SdH) oscillations are per-
fectly periodic in 1/B and facilitate the precise determination
of the carrier density N of the 2DEG. The magnetic field
B, at which the classical cyclotron diameter matches the
lattice period p is given by B, = 2A 27N /ep, where # is
Planck’s constant and e is the quantum of the electric charge.
This position of the magnetic field B, is indicated by the
vertical straight line in Fig. 1(a). The position of the maxi-
mum in p,, lies very close to this value of B. The respective
components of the conductivity tensor are calculated with
the standard formulas for square geometries of the superlat-
tice 0y = Pur/(P2x + P2))s Ouy = Pry/(P2 + p2,). The ex-
perimental conductivities that are obtained in this way are
presented in Fig. 1(b). In order to obtain a better understand-
ing of the o traces a series of curves for different gate volt-
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FIG. 1. (a) Magnetoresistance p,, (solid line) and Hall resistance p,,
(dotted line) as a function of magnetic field for a gate voltage of
V,=—110 mV. The magnetic field B, where the classical cyclotron diam-
eter exactly matches the lattice period is marked by the vertical line. (b)
Magnetoconductivity o, (solid line) and Hall conductivity o, (dotted line)
as calculated from the data in (a) using the formulas given in the text.
(c)—(e) Magnetoresistance p,, (solid line, right-hand side) and magnetocon-
ductivity o, (dotted line, right-hand side) for several gate voltages V,=0,
+300, and +500 mV. The position of the magnetic field B, where the
classical cyclotron diameter matches the lattice period is marked by the
vertical line. The scale for the solid lines is on the left-hand side, the scale
for the dotted lines on the right-hand side of the respective part of the figure.

ages is presented in Fig. 1. In 1(c)-1(e) the solid lines rep-
resent the magnetoresistance p,,, the dotted lines the
magnetoconductivity o,,. It is obvious especially for the
higher carrier densities in Fig. 1 that the features that are
related to commensurabilities are much less pronounced in
the conductivities compared to the resistivities. This is re-
lated to the overall behavior of the two quantities in the
classical limit. The magnetoresistance of a homogeneous
electron gas in the classical limit is constant and given by
px=1/eN u where u is the Drude mobility of the electron
gas. In the case of an antidot lattice the commensurability
oscillations are superimposed onto a horizontal line and
therefore well discernible. In contrast the conductivity in the
Drude limit is given by o, = eN,u/(1 + p*B?) and there-
fore has an explicit B dependence. Any structure that might
be superimposed on the overall o,,(B) curve is hard to dis-
cern from the strong monotonic decay of o, as a function of
increasing B. Furthermore the position of a maximum or a
minimum may be shifted because of the pronounced back-
ground curve. This is again obvious in the data as presented
in Fig. 1.

The straight vertical lines in Fig. 1 mark the magnetic
field B, as defined above. Again it is obvious that the highest
lying maximum in p,, is clearly positioned at B, within the
experimental accuracy. For larger Fermi energies, i.e., in-
creased carrier densities, the elastic mean free path increases
and a second maximum occurs in p,, for lower B values.

The behavior of o, , on the other hand, is quite different.
For low carrier densities [Fig. 1(b)] there is a pronounced
minimum in o, almost exactly where p,, displays a maxi-
mum. For increasing carrier density, 1(c)—1(e), this mini-
mum becomes less pronounced and shifts to higher fields.
Simultaneously a second minimum occurs at about the
magnetic-field position where the low-field maximum in
Py arises, 1(d). For high carrier densities, finally, the high-
field minimum in o, has almost completely disappeared and
a maximum occurs in o,, at a magnetic field slightly below
B.. It is clear that the oscillatory structure in o, differs
dramatically from the one in p,, .

In the following we will give an interpretation of this data
based on characteristic electron trajectories in the system.
For smooth potentials Fleischmann, Geisel, and Ketzmerick®
found that electrons on pinned electron trajectories occupy a
finite volume in phase space. The question arises as to what
effect this has on the conductivity or the resistivity of the
system. The Einstein relation connects the diffusion coeffi-
cient to the conductivity of the system. Consequently we
expect the diffusion of the electrons to be reduced if pinned
electron orbits exist. This is in agreement with theoretical
calculations that consider the influence of a pinned electron
orbit on the conductivity'? as well as with the experimental
observation in Fig. 1(b). It is very difficult, however, to es-
tablish the influence of a given type of electron trajectory on
the resistivity of the system.'?

Baskin ez al.'® have calculated the electron trajectories in
an antidot lattice with hard walls. For 2R =P they find an
enhanced diffusion coefficient and therefore maxima in the
conductivity for so-called runaway trajectories that bounce
off neighboring antidots and therefore channel between the
rows of antidots. This situation is similar to the experimental
data as presented in Fig. 1(e) where the features in o,, are
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FIG. 2. The circles mark the equipotential lines where the antidot poten-
tials penetrate the Fermi energy. The electron trajectory is calculated using
the classical equations of motion with the potential as given in the text. The
size of an antidot at the Fermi energy is chosen to be 0.4 of the lattice
period. The magnetic field is such that the condition 2R .=p is fulfilled. At
the upper right a typical pinned electron orbit occurs. On the bottom of the
figure an electron travels along six lattice periods in terms of a quasirun-
away trajectory.

only weakly pronounced but a clear maximum arises in p,,
at a magnetic field just below the commensurability condi-
tion 2R, =p. Apparently in a typical antidot potential elec-
trons on chaotic paths follow runaway as well as pinned
trajectories for some time. This leads to quasipinned® as well
as quasirunaway trajectories. We use this terminology in line
with the original literature.'?

In Fig. 2 we present a typical electron trajectory calcu-
lated for a potential V(x,y)= Vycos*(mx)cos*(mry) where the
circles show the equipotential lines V(x,y)=FEf. The mag-
netic field is chosen such that 2R =p. It is obvious that
along the trajectory there are regions where the electron
channels between the rows of antidots and other regions
where it orbits around a single antidot. The smaller the anti-
dots and the harder the potential walls, the more likely it is
that quasirunaway trajectories exist. For very large antidots
or very smooth potential walls the pinned orbits are thought
to dominate the trajectories.

A very similar trajectory is presented in Fig. 8 of Ref. 7.
There the electron channels along the diagonal of the square
for some length of the trajectory while it predominantly en-
circles single antidots for the rest of its path.

This scenario is in agreement with the picture that evolves
from Fig. 1. For low carrier densities the antidots will be
rather large and the potential walls are smooth. Conse-
quently, the electrons tend to encircle single antidots and the
conductivity displays a minimum. Since the magnetoresis-
tance is much larger than the Hall resistance p,,>p,, it fol-
lows from the above relations that p,, * 1/0,, . Consequently
we expect a maximum in p,, as observed in Fig. 1(a). For
increasing gate voltage the carrier density and therefore the
Fermi energy rises. This leads to smaller antidots and steeper
potential walls as caused by the improved screening behavior
of the electron gas. Experimentally this development is dis-
played through Figs. 1(a)—1(e). The minimum [Fig. 1(b)] in
0, gradually turns into a maximum [Fig. 1(e)]. Simulta-
neously the overall resistance decreases and we are now in a
situation where p,,<p,, . The maximum in p,, corresponds
to a shoulder in o,,. In this kind of potential landscape we
expect that the conductivity is not dominated by pinned or-
bits but rather it is strongly influenced by runaway trajecto-
ries in agreement with the experimental findings.

The arguments as given above hold for the fundamental
commensurability 2R .= p where the electrons classically en-
circle a single antidot. For larger cyclotron diameters, i.e.,
smaller magnetic fields, runaway trajectories are extremely
unlikely to occur. We expect that in this case pinned electron
orbits represent the favorable trajectories. We anticipate that
minima will occur in the conductivity as can be seen in the
experimental data in Figs. 1(d) at B~0.1 T. In order to check
this conjecture in more detail we fabricated an antidot lattice
with the same lattice period and a smaller distance (27 nm)
of the 2DEG to the surface. This facilitates the fabrication of
smaller antidots and consequently more features in the mag-
netoresistance spectra.

Figure 3(a) presents the Hall resistance as well as the
magnetoresistance for such a sample where we estimate the
diameter of the antidots at the Fermi energy to be about 20%
of the lattice period. In addition to the pronounced maximum
in p,, that occurs at the commensurability condition a series
of low-field maxima appear. The respective conductivities
o, and o,, are displayed in Fig. 3(b). The features in o,
are superimposed on a pronounced background and hard to
resolve in detail. In order to extract more information we
made a fit to the o, data assuming a Drude-like background
with o,,=P,/(1+P,B?) where P; and P, are the fitting
parameters. The results of this procedure are indicated by the
dashed line in Fig. 3(b). The dotted line in 3(c) shows the
normalized conductivity (difference between o, and the fit)
together with the results for p,, (solid line). The details of
the normalized conductivity do not depend critically on the
fitting process. The straight vertical lines mark the magnetic-
field positions where maxima occur in p,, .

A pronounced maximum occurs in the normalized con-
ductivity close to the commensurability condition 2R,=p at
B=0.35T. This structure can already clearly be identified as
a maximum in the original conductivity as presented in Fig.
3(b). The calculated data for o, by Silberbauer and
Rossler' show a very similar behavior. For smaller magnetic
fields where larger cyclotron orbits become important more
features occur in the magnetoresistance p,,. There are al-
ways features in the normalized conductivity that are closely
related to the maxima in p,, . However, for smaller magnetic
fields these are clearly minima as indicated by the dash-
dotted vertical lines. We conclude that for small magnetic
fields maxima in p,, are related to minima in o, while for
large magnetic fields maxima occur in both curves. This is
again in agreement with the general picture as presented be-
fore. In this particular sample with very small antidots run-
away trajectories are very likely to occur for cyclotron diam-
eters comparable in size to the lattice period. This leads to an
enhanced diffusion coefficient and consequently to a maxi-
mum in the conductivity. For smaller magnetic fields, how-
ever, runaway trajectories have to traverse many lattice peri-
ods and we expect the pinned orbits to take over which
explains the observed minima in the normalized conductiv-
ity.

It is possible to assess theoretically the significance of a
special kind of trajectory and its particular influence on the
conductivity in contrast to the resistivity'? in agreement with
the arguments given above. The details of the experimental
antidot potential at the Fermi energy are difficult to access.
The extreme cases are, however, relatively clear. For an an-
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FIG. 3. Magnetoresistance and Hall resistance (a), magnetoconductivity
and Hall conductivity (b), and magnetoresistance and normalized conduc-
tivity (c) for a sample with especially small antidots. The scale for the solid
lines is on the left-hand side, the scale for the dotted lines on the right-hand
side of the figure. The solid vertical line that goes through all three parts of
the figure marks the magnetic field B, where the commensurability condi-
tion 2R =p is fulfilled. The dashed curve in (b) is a fit to the solid curve
o, by the formula given in the text. The normalized conductivity [dotted
curve in (c)] is obtained from the subtraction of the fit curve to o,, from the
real o, curve as displayed in (b). The straight vertical lines in (c) mark the
magnetic fields where maxima occur in p,, . At the solid lines the normal-
ized conductivity displays maxima, while at the positions of the dash-dotted
lines it exhibits minima.

tidot lattice with large antidots runaway trajectories can
hardly exist and we expect pinned orbits to give the impor-
tant contribution to the commensurability oscillations. On

the other hand, if the antidots are very small the potential
between the antidots is fairly flat and the electrons will fol-
low almost unperturbed cyclotron orbits. However, runaway
trajectories can exist even down to very small antidots with
very steep walls.

These arguments follow from experimental observations
but are not bound to our particular set of samples. Very simi-
lar conductivity data can be obtained from other experimen-
tal data as well as from the calculations. The experiments as
well as the classical and quantum-mechanical observations
on antidot superlattices from other authors also fall within
this general picture. We think, however, that our interpreta-
tion combines two extreme theoretical points of view and
enriches the interpretation of magnetotransport data on anti-
dot lattices. In particular we conclude that the standard pic-
ture that maxima in the magnetoresistance can simply be
identified with pinned electron orbits has to be modified and
extended.

We have presented a selection of experimentally deter-
mined magnetotransport traces as obtained on square antidot
lattices. While the general features of the components of both
the conductivity as well as the resistivity tensors can be re-
produced nicely by classical and quantum-mechanical calcu-
lations our interpretation of various characteristic electron
trajectories emphasizes the importance of the antidot poten-
tial landscape. We argue that for large antidots pinned elec-
tron orbits around groups of antidots are dominant leading to
maxima in the conductivity. For very small antidots so-called
runaway trajectories become important and the electrons
channeling through the rows of antidots conceivably lead to
an enhanced diffusion and therefore an enhanced conductiv-
ity. All of these effects result in pronounced maxima in the
magnetoresistance independent on the details of the system.
The usual simple identification of a maximum in the magne-
toresistance with a pinned electron orbit has to be modified.
In addition the question of whether the conductivity or the
resistivity contains the fundamental physics has to be asked
anew. We believe, however, that the analysis of the conduc-
tivity can give more physical insight in the present case.
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