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Instantons and the spectral function of electrons in the half-Riled Landau level
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We calculate the instanton —anti-instantou action Sstit(r) in the gauge theory of the half-filled Landau level.

It is found that Suu(r) =(3—r/)[Qo(r/) r] ~t "I for a class of interactions v(q) = Vo/q" (0~ r/(2) between

electrons. This means that the instanton —anti-instanton pairs are confining so that a well-defined "charged"
composite fermion can exist. It is also shown that Suit(r) can be used to calculate the spectral function of
electrons from the microscopic theory within a semiclassical approximation. The resulting spectral function

/~ I/(2 —r/)
varies as e o~"~" at low energies.

The idea of composite ferrnions' has been used to explain
the hierarchical structure of fractional quantum Hall (FQH)
liquids. Using the fact that composite fermions in the filling
fraction v= —,

' state feel zero magnetic field at the mean-field
level and employing the fermionic Chem-Simons gauge
theory of the FQH states, ' Halperin, Lee, and Read con-
structed a renormalized Fermi-liquid theory of the half-filled
Landau level. As a direct consequence of a well-defined
Fermi surface at the mean-field level, the integral quantum
Hall effect of composite fermions can be viewed as an ex-
treme form of the Shubnikov —de Haas effect. Although sev-
eral experiments already appeared to support the existence
of a well-defined Fermi surface, from the theoretical point of
view, the strong gauge-field fluctuations and the resulting
divergent effective mass of fermion reflect the difficulty of
explaining the success of the mean-field theory.

It is well known that in (2+1)-dimensional compact Max-
well U(1) gauge theory or QED, the existence of the instan-
ton solutions leads to the confinement of charges and signifi-
cantly changes the infrared behavior of the theory. This
happens because instantons or monopoles effectively change
the logarithmic interaction to a linear one.

Thus one may worry about the confinement of composite
fermions in the compact gauge theory of the v= state. By
calculating instanton —anti-instanton action, it is shown that
instantons are confining in the gauge theory of the v= state
so that well-defined composite fermions can exist. This prob-
lem is important because, if instantons were not confining,
well-defined composite fermions would not exist and there
would be no well-defined Fermi surface for composite fer-
mions, which is necessary to explain experiments.

We also calculated one-electron Green's function of the
v=-,' state from the microscopic theory. Here we are in a
completely different situation (compared to the usual case)
that the electron operator not only creates a composite ferm-
ion but also creates flux quanta. Therefore we need to de-
velop a method to calculate the correlation functions of elec-
trons. It is found that, using the calculated instanton —anti-
instanton action, one can compute the spectral function of
electrons in a semiclassical approximation. The resulting
spectral function shows a strong suppression at low energies
which may explain a recent measurement of the low-
temperature I-V tunneling characteristics of a double-layer
FQH system near v=-,'. It is worthwhile to mention that this
highly suppressed spectral density in the infrared limit is not
realized in the usual Fermi liquid. There are some numerical

calculations of small size systems"' and a phenomenologi-
cal model based on the low-lying density fluctuations" suc-
cessfully explained the experiment. However, the calculation
presented here is a microscopic derivation which shows
some deviations from the phenomenological construction.

In a recent paper (see also Refs. 13 and 14), Diamantini,
Sodano, and Trugenberger' discussed the instanton effect in

a (2+1)-dimensional compact U(1) gauge theory with the
Chem-Simons term. It was found that the effect of the
Chem-Simons term dominates the role of monopoles in the
infrared limit so that the monopoles are linearly confining.
Our problem is more delicate because there are also fermions
in the theory and this fermionic degree of freedom generates
particle-hole excitations across the Fermi surface which may
affect the dynamics of the gauge field. ' ' Recently,
Nagaosa' investigated a dissipative U(1) gauge model that
is a simplified version of the gauge theory of high-T, super-
conductors. He found that the above-mentioned low-energy
excitations give rise to a dissipative effect on the gauge field
so that the confinement of charges is strongly suppressed. '

In the gauge theory of the v= —,
' state, both the low-energy

particle-hole excitations and the Chem-Simons term exist. In
this paper, it is shown that the effect of the low-energy
particle-hole excitations dominates the effect of the Chern-
Simons term for a class of interactions between electrons:
v(tI)=Vo/q" (O~r/(2). This leads to a confinement of
instantons similar to that in the gauge theory of high-T,
superconductors. '

In the fermionic Chem-Simons gauge theory of FQH
states, the problem of interacting electrons in a uniform
magnetic field can be transformed to an equivalent system in
which a fermion is minimally coupled to a statistical gauge
field a„(r) as well as the uniform magnetic field. The ferm-
ion operator pt is related to the electron operator l/tt (Refs. 2
and 4) as

t/tt= t/'ttexp i P d r' p(rt—r')p(r'),

where tp(r —r') is the angle between r r' and th—e x axis,
and p(r) is the electron or fermion density operator at the
point r. For fermionic theory, P should be even integers and
especially /=2 for the v= 2 state. In this fermionic lan-
guage, the Hamiltonian can be written as
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H=Hp+ V,

V= —,
' d r d r'v(r —r'):p(r)p(r'):,

(2)

annihilate flux quanta. The creation and annihilation of flux

quanta is represented by a singular boundary condition on
the gauge field and 8(MM) represents this boundary condi-
tion. Notice that the creation (annihilation) of a fiux quantum
corresponds to inserting a monopole (antimonopole) in

space-time. Formally, Eq. (4) can be written as

where the colons represent the normal ordering and m* is the
effective mass of the fermion. Here we assume that interac-
tion between electrons takes a form (in Fourier space):
v(q) = Vo/qo (0~ g(2). b, a(r) =a(r) —eA(r) is the fluc-
tuation above the mean-field configuration a(r) =eA(r) and

a(r) = Pf d r 'rt/q(r r')—p(r')
In the rest of the paper, a~(r) means the fluctuation above

the mean-field configuration, i.e., ha„(r). We will use the
Euclidean functional-integral formalism and choose the tem-

poral gauge in which ap=O. The effective action of the

gauge field can be obtained after integrating out the fermions
in the original action. Since only the transverse fluctuation of
the gauge field is important in the low-energy limit, ' ' we
will drop the longitudinal fluctuation from now on. It turns

out that the gauge-field propagator is not renormalized by the
fluctuations beyond the random-phase approximation. '

Therefore, we can employ the same gauge-field fluctuation
as that of Ref. 4. The effective gauge-field action can be
written as the following

S,g=Sp+5„,

d q dc@
Sp= z [e(q, cu)e (q, co)e ( —q, —ru)

+p(q, ru)b(q, ru)b( —q, —ru)],

mS„=—i dad r —e~„iaJ'„z,

where e =Boa (n=1,2), b=8, az —Bza, , m=1/(2m/),
and f„„=B„a„—o(„a„.The dielectric function e(q, ru) and

the magnetic permeability p, (q, co) (for the statistical gauge
field) are given by e(q, co)= v, /Jru~q (vi=2n, /m*vF) and

p, (q, ru) =1/12mm*+ v(q)/(2m/) .
Before the calculation of instanton —anti-instanton action

and the demonstration of confinement of instantons, we
would like to show a relation between the electron Green's
function and the instanton —anti-instanton action. The one-
electron Green's function G+(r) = (P,(0, r) P, (0,0)) can be
calculated semiclassically in the spirit of the WKB
approximation. ' In the functional integral approach,
G+(r) can be written as

G+(~) = D0'DWDa„f, (~)0,'(0)e "u 'u' '

—S ~ aDftDrPDa P(7.)gt(0)8(MM)eIJ.

(4)

where S(gt, (/I, a ) is the action given by Eq. (2). Notice
that, since an electron is a fermion plus two flux quanta, the
creation and annihilation of electrons at times zero and r not
only create and annihilate a ferrnion, they also create and

G+(r) = Da„8(MM)(p(r)(/it(0)), e 'o '~~, (5)

where

((/(~)A'(0)). = D0'DAN(~)0'(0)e " ' ' '/e '~' ',

(6)

e
—seo(a~) D ptD pe

—s(f, p, a~)

Notice that both (p(r)(/It(0)), and e eo('~& are not gauge
invariant. Let us introduce S,rr(a~, j~)=S,(r(a~)—fd r aJ„,where j„is the fermion current corresponding
to the straight-line path and has the following form:

j =[~(xo ~) ~(xo)]8(xi)8(xz)b o.

Now we can write the integrand of the functional integral as
a product of two gauge-invariant objects:

G+(r) = Da„b'(MM) (P(7)Pt(0)),

I'

Xexp — d r a ie ..ee'&' ~, (8)

where (p(r)(/it(0)), exp( —fd raJ~) and e 'e'~' ~ are

gauge invariant. Notice that the two terms in S,(r(a„,j„)are
not gauge invariant, respectively, due to the presence of the
monopoles for the first term and nonconservation of the cur-
rent j~ for the second term (an electron is created and anni-

hilated). However, the total effective action S,o(a„,j~) is

gauge invariant. Notice also that, in the semiclassical limit,
the paths of the fermions are close to the straight-line path in
a given gauge-field background, thus the factor
exp( —Jd r aJ ) is almost compensated by the contribution
from the fermions (P(7)f (0)), . Therefore, the saddle
point of the integrand is dominated by e e~'~'~ . By tak-
ing out the saddle-point value S,n(a„,j ) in which the
boundary condition 8'(MM) should be incorporated, one can
do the following semiclassical approximation:

-sG+(r) =e 'o 'I'~ Dha„(i/I(7) pt(0)),

(

&&exp — d r ag'„e"I
where Ba is the fluctuation around the saddle point and

S,ir(ha~) can be taken as a quadratic expansion in Ba„.
Combined with the boundary condition on the gauge field,

j~ of Eq. (7) is exactly the source of the instanton —anti-
instanton (or inonopole-antimonopole) solution of the effec-
tive gauge-field action. In other words, the monopole and
antirnonopole are connected by a string of source j„in Eu-
clidean space. From these arguments, we can identify
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S,n(a„,j„) as the monopole-antimonopole action S~~.
Therefore, the electron Green's function can be written as

G (r)=G (r)e ~+MI~I

where Go(r) is at most an algebraically decaying function of
r (Ref. 20) because of the above-mentioned compensation
effect in the semiclassical approximation. It will be shown
that e ~~ '~ is the dominant suppression factor of low-

energy electron spectral function.
Now let us concentrate on the evaluation of S~~(r) in

our model. We will use the same idea of Ref. 15 to calculate

the monopole-antimonopole action from an equivalent self-
dual model.

First of all, the equations of motion that are derived from
the action given in Eq. (3) are found to be

e(q, cu)q e (q, cu)+mb(q, co) =0,
(11)

c(q, o))o) e pep(q, o))+p(q, o))q b(q, o)) m—e (q, cu) =0,

where n=1,2. Let us define f„as the dual of the field
strength tensor f „:f„=e „„f„„/2'' '. The Euclidean par-
tition function of an equivalent dual theory can be written as

Z Df Df me
sE(fp—,fpa)

p p,

1 d q
SE(f„,f„')= 2„2 3 p(q ~)fofo —p—(q ~)foe(q ~)(qif2 —q2fi)+e(q ~)fi fi ——e(q, ~)ft I p(q ~)q2fo

1
-e(q. ~)~f2]+e(q.~)f2f2- —e(q. ~)f2 [a(q ~)~f1-p(q ~)qlfo] (12)

where f„*(q,cu)=f„(—q, —cu). One can easily check that
the above action gives the same equations of motion as Eq.
(11). In the lattice version of the action, as a result of the
appropriate regularization, we can separate out singularities
from f„.' Now we can define the regularized dual field
strength tensor f"'s as f =f"s (1/m) j„, w—here the string
singularity j„is given by Eq. (7). This singularity acts as a
source for f'„'s (Ref. 15) and the corresponding equations of
motion for f"s can be written as

re re re ~f'o" —e(q, ~)-(qtf2's-q2f'7) = jo—

The monopole-antimonopole action can be obtained from
Eqs. (12) and (14),'

11 dq 1
SMM(r) = 2,2,3 2 i2 J i277) m

&& p(q, ~)Goo(q, ~)jo(q, ~)
1I' dq 1

2) (2~)'m'Jo

[m +e (q, o))(u ]p(q, (o)

m + e(q, a))[e(q, (u) o)2+ p(q, co)q2]

reft" —[p(q ~-)q2fo'-e(q ~)~f2"]=o, (13) (16)

ref2" —[e(q ~)~fr"- p(q ~)qtfo"]=0.

Inverting these equations, we can get the following solutions:

1
f'„"(q,~)= —G,.(q, ~)j.(q, ~), (14)

where

A„„(q,to)

G„„(q,co) = (A ') „(q,o)),

—q2p, (q, cu)/m

q, p, (q, co)/m

q2e(q, cu)/m

1
—o)e(q, o))/m

—qte(q, co)/m )
roe(q, co)/m

)

(15)
Equation (14) represents the monopole-antimonopole solu-
tion of the effective gauge theory.

Notice that the appearance of m in the fractional expression
reflects the screening effect of the Chem-Simons term. In the
Maxwell-Chem-Simons theory, a = p, = 1 so that the m term
dominates in the infrared limit and this screening effect con-
fines the monopole-antimonopole pairs. ' However, in our
model, e and p, are divergent (p, is divergent for r/)0) in
the infrared limit so that the m term becomes irrelevant.
Therefore, the contributions from the dielectric function and
the magnetic permeability due to the particle-hole excitations
dominate the screening effect of the Chem-Simons term.
Now we can safely set m = 0 in the numerator and the de-
nominator of the fractional expression in Eq. (16); then
S~M(r) can be written as

d q t dry (2m/) e(q, cu)p(q, o))co
Sv~(r) =

(2m.) J 2m co e(q, co)a) +p(q, (o)q

X [1—cos(cur)], (17)

where /=2 for v=2. The above result can be easily under-
stood once we realize that the Chem-Simons term is irrel-
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evant in the infrared limit. After dropping the Chem-Simons
term, the effective action S,tt( a„) [see Eq. (3)] is essentially
the Maxwell theory with frequency and momentum-

dependent dielectric function e(q, co) and magnetic perme-
ability p, (q, to). (17) is just the monopole-antimonopole ac-
tion in this generalized Maxwell theory. '

For the Coulomb interaction v(q) =2me /eq, p, can be
approximated as [2me /e(2m/) ](1/q):

2 too f oo

SMM( r) = gr/P dx dX s/2 [1—cos(x3')]
2m@ ) 0 ) 0 xy 1+x

=2 vA p(1)r, (Ig)

where P=e2l, /4e (I, is the magnetic length) (Ref. 11) and

Qp(1) = rre /el, . Therefore, the monopole-antimonopole
pair is confining but the action is proportional to the square
root of the distance between monopole and antimonopole
which is different from the linearly confining monopole-
antimonopole solution of the Maxwell-Chem-Simons theory.
The confinement of monopoles means the existence of a
well-defined "charged" particle or composite fermion.

The same calculation can be done for a class of interac-
tions v(q) = Vp /q v (0~ rl &2). Using the fact that

p, =[Vp/(2m/) ](I/qv) (r/&0) and p, = I/12mm*+ Vp/

(2m/) (r/=0), we get S~st(r) =(3—rI)[Ap(rg) r]"
with

Vpl 271 1
P(&'" 4~ (3-,)zi, l4-, i'r

m ' (
X csc cscl, (19)

rI / I, 3 rI/

2 '7T

&p(r/=0)=
g7/2 3 4 l23 r (-,'),

where y = I/12 mm *+Vp /(2 m$) is the effective dia-
magnetic susceptibility of the fermions. Therefore, the
monopole-antimonopole pair is still confining.

From (10) and (19), we can see that the electron
Green's function has a form G+(r)
=Gp(r)exp{(3 —r/)[Op(r/)r]" "l). After the relatively un-

important factor Go is dropped, it has the same functional
form as the result of He, Platzman, and Halperin ' in the case
of the Coulomb interaction (r/=1). Notice that our Op(1) is
two times larger than coo they obtained in a similar
expression. "The low-frequency behavior of the correspond-
ing spectral function A+(to), which is the inverse Laplace
transform of G+," is given by exp( —[Ap(rl)/co]" /l). It
was pointed out that the exponential suppression of the spec-
tral density leads to the stron~ suppression of the tunneling
current at low voltage biases. ' These results show that the
one-electron Green's function has very different behavior
compared to that in the usual Fermi liquid although two-
particle correlation functions may be Fermi-liquid-like. ' '

Recently, Bonesteel extended the analysis of Ref. 4 to
the double-layer system near v=-,'. It was found that the dy-
namics of the gauge-field fluctuations in two layers separates
into out-of-phase mode and in-phase mode between two lay-
ers. The out-of-phase mode behaves as if there is no Cou-
lomb interaction. The tunneling between two layers corre-
sponds to the creation of a monopole in one layer and an
antimonopole in the other layer which only couple to the
out-of-phase mode of the gauge field. Thus the tunneling
current will be directly proportional to e ~& ' with y=0
(for short-range interaction). Replacing y by the appropriate
effective diamagnetic susceptibility of out-of-phase current

—8A 0//eVfluctuations, we get I(V)-e o l/' l where the factor 8
comes from the existence of two layers. We expect the above
to be valid at low biases where the interlayer screening be-
comes important.
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