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The question of whether the deuteron glass transition is an equilibrium phase transition or a metasta-
ble kinetic phenomenon, observed because of the finite experimental observation time, is addressed.
Two-dimensional (2D) exchange NMR of O-D...O deuterons in deuteron glasses provides a unique
possibility of a direct determination of the O-D . . .O intra- and interbond exchange times as well as for a
determination of the Edwards-Anderson order parameter deeply in the glassy phase where 1D NMR
methods for order parameter determination fail. On the frequency observation scales of spin-lattice re-
laxation and line-shape studies 10°~10® Hz, the deuteron glass phase appears static. 2D exchange NMR
extends the frequency observation window into the mHz region. The O-D. . .O deuteron intrabond ex-
change time 7, in Rbg ¢5(NDy)g 3,D,As0, has been determined as a function of temperature below 45
K. A very slow fluctuation in the H-bond double minimum potential is detected which averages out the
H-bond asymmetry and the glass order parameter to zero at long-enough times. The deuteron glass
phase is nonergodic, showing a frozen-in disorder at times ¢ << 7,.y,, whereas for times long compared to
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Texch, €rgodicity is restored.

I. INTRODUCTION

The physics of glasses remains one of the great un-
solved problems of condensed-matter physics. The basic
open question is whether we deal with a phase transition
to a new kind of a thermodynamic state or whether the
tremendous slowing down of the structural rearrange-
ment time in glasses is just a kinetic phenomenon and the
observed freezing is due to a finite observation time of ex-
perimental measuring techniques.

One possible answer to this problem has been obtained
for the case of magnetic spin glasses. Here Edwards and
Anderson! introduced a well-defined statistical model
leading to an ergodic-nonergodic phase transition with
local freezing but without long-range ordering. Sher-
rington and Kirkpatrick? introduced an infinite-range
version of this model which has been exactly solved by
Parisi.> Here the low-temperature phase consists of an
infinite number of pure states characterized by an infinite
number of order parameters. The slow response of these
systems below the glass transition temperature is believed
to be due to the fact that the free-energy surface in mi-
croscopic parameter phase space has a highly fractal
mountain landscape, with high barriers separating re-
gions which behave as long-lived phases, and an ul-
trametric overlap structure. Below the spin-glass transi-
tion the system becomes nonergodic and gets trapped
into these pure states. In an external magnetic field the
phase transition is not destroyed as in case of ferromag-
nets. In the magnetic-field—temperature plane there is a
line of phase transitions known as de Almeida—Thouless
line,* below which the paramagnetic phase becomes un-
stable.

On the experimental side, evidence for an equilibrium
phase transition in spin glasses is still inconclusive. The
measurement of field-cooled (fc) and zero-field-cooled
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(zfc) magnetic susceptibilities>® indicates that the estab-
lishment of full thermal equilibrium is a delicate matter.
The distinction between fc and zfc susceptibilities below
the freezing temperature T, depends on the cooling rate
and the fc magnetization slowly changes with time. The
zfc susceptibility, on the other hand, depends strongly on
the time the sample is kept at constant temperature after
cooling prior to field application. According to this,
some authors conclude that the spin-glass state is a non-
equilibrium one, in the thermodynamical sense.

It is not absolutely certain that the above results prove
the nonequilibrium character of the spin-glass state. If
states with a spin-glass order exist as thermal equilibrium
states, they are certainly highly degenerate, with many
order-parameter components. On cooling, the system
would form ordered regions of its various possible order-
parameter components below 7. As these regions grow,
there would be misfit at their walls and hence the growth
of domains might be extremely slow. In view of this al-
ternative possible interpretation of some of the experi-
mental findings, the existence of a unique static freezing
temperature T, was studied.” A frequency-dependent
freezing temperature T;(w) has been determined from
the magnetic susceptibility maximum. The frequency
dependence of T,(w) over the observed frequency range
was however rather weak, so that the @ —0 limit could
not discriminate whether T(w—0) approaches zero ab-
solute temperature or it actually settles down to a
nonzero static value.

Some evidence for an equilibrium phase transition has
been obtained from the measurement of the nonlinear
susceptibility, which is more sensitive to spin-glass order
than the zero-field susceptibility. Various authors® show
that the observed power-law divergence at the freezing
temperature is consistent with the appearance of a ther-
modynamic phase transition. As shown later,’ the data
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are not completely conclusive in the vicinity of T, where
they can be fitted with a rather arbitrary exponent and
there can be as well some ambiguities due to sample inho-
mogeneities on large scales.

All the above experiments have in common that the
data are probably affected by the finite measurement fre-
quency interval or finite observation time of the applied
measuring technique. This is due to the fact that the
spectrum of correlation times for internal motions in spin
glasses as well as in other types of glasses is very broad.
The correlation times cover the range from extremely
short times up to the age of the universe.

In structural glasses such as H-bonded proton and
deuteron glasses the situation is even less clear. Here the
Sherrington-Kirkpatrick model has been extended® to de-
scribe the frozen proton pseudospin-glass (PG) phase ob-
served in the mixed hydrogen-bonded ferro- and antifer-
roelectric crystals such as Rb,_,(NH,) H,PO,, com-
monly abbreviated as RADP. In analogy to spin glasses,
the frozen PG state is believed to be due to quenched ran-
dom interactions between the pseudospin degrees of free-
dom, which represent the two equilibrium positions of
the protons within the O-H. .. O bond. The model was
further refined by introducing an effective local random
field.” This field makes the H bonds asymmetric and is
the consequence of the random substitutional disorder of
Rb™ and (NH,)" ions in the host crystal lattice. In the
random field variance-temperature plane there exists a de
Almeida—Thouless-like line, separating the ergodic
phase, described by a single order parameter of the
Edwards-Anderson type gg,, from the nonergodic phase,
described by an infinite number of order parameters. The
essential difference between the magnetic spin glasses and
the proton pseudospin glasses is the fact that in the latter
an intrinsic random field, generated by substitutional im-
purities, always exists and its presence adds new features
to the PG case. Thus, PG is not just another analog of
the magnetic spin glass. This random field smears out
the PG transition and the onset of ordering of hydrogens
in the H-bonds takes place already at temperatures high
above the nominal glass temperature T;. Isotopic substi-
tution of protons with deuterons drastically reduces the
tunneling frequency and shifts the formation of a deute-
ron glass (DG) phase towards higher temperatures.

The experimental verification of the existence of a
phase transition in proton glasses is still far from being
conclusive. Experimental determination of the field-
cooled and zero-field-cooled static dielectric susceptibili-
ties of the deuteron glass Rbg(ND,), (D,PO, has
shown!C that above the freezing temperature T, the two
susceptibilities are equal, whereas the splitting of the two
branches and a remnant polarization is observed below
T,. The splitting may demonstrate the occurrence of an
ergodic-nonergodic transition on crossing the de
Almeida—Thouless-like line. Repeating the experiment
with an ac field of different frequencies in the range
0.1-0.001 Hz has shown!! that the temperature, where
the splitting of fc and zfc susceptibilities occurs, is fre-
quency dependent, T,=T (w). T;(w) was decreasing
with a decreasing w. The observed value of the freezing
temperature thus depends on the experimental time scale,

suggesting that the freezing process is a dynamical
phenomenon. As one approaches the freezing transition,
the maximum relaxation time is expected to diverge at
the Vogel-Fulcher temperature T,,. T, thus corresponds
to the static freezing temperature 7,(w=0) which may
be, in principle, observed in a static experiment on an
infinite time scale.

On the NMR line shape!?”!'® and spin-lattice relaxa-
tion time scale a perfectly static frozen-in disorder of the
local H-bond polarizations has been found. The
Edwards-Anderson order parameter gg, has been deter-
mined in a large temperature interval and its temperature
dependence found to agree with the Pirc-Tadié-Blinc®
(PTB) model. It has been shown that g, is nonzero al-
ready far above the nominal glass transition temperature
T, which was found in Rbg s¢(ND,)y 4,D,PO, to be
around 85 K. This demonstrated the predicted random-
field smearing of the glass transition from the paraelectric
to the ergodic PG phase. gg, could be determined from
the second moment M, of the quadrupole perturbed Zee-
man absorption line. gg,, which is conjugate to the vari-
ance of the random field, measures the order of an ergod-
ic system effectively locked in one of the global or side
minima of the fractal mountainlike free-energy surface in
the phase space. At lower temperatures the system is ex-
pected to become nonergodic and the single order param-
eter gg, should be replaced by an order-parameter distri-
bution function® g(x). No attempt to discriminate be-
tween gg, and g (x) from NMR data has been successful
so far.1

The determination of gg, from the NMR experimental
data thus allows for the possibility that the glassy disor-
der in H-bonded systems like RADP is completely static,
so that we are dealing with an equilibrium phase transi-
tion. It should be, however, kept in mind that the obser-
vation window of the NMR line-shape measuring tech-
nique lies in the kHz region. To test the above con-
clusion, it is necessary to extend the observation window
of NMR towards lower frequencies by several orders of
magnitude. Such an extension is possible by the applica-
tion of two-dimensional (2D) “‘exchange” NMR spectros-
copy. Here one can correlate a certain state of the inves-
tigated system in two distinct instants of time, separated
by a certain time interval. Since the same state is moni-
tored in two successive times in a coherent manner, one
can detect the internal motions, which have time con-
stants as slow as is the time separation between the two
observations of the system. The separation time interval
is called the mixing time. It can be as long as the spin-
lattice relaxation time. Since the latter in DRADP mix-
tures amounts to several hundred seconds for deuteron
nuclei at temperatures below 50 K, the observation win-
dow of 2D exchange technique falls in the Milli-Hertz re-
gion. The application of this technique should thus eluci-
date, whether the frozen-in glass disorder—as seen by
the NMR line-shape analysis—is a true equilibrium state
of the system, or it only appears static because of the
finite observation window of the measurement technique.
In addition such measurements yield information on the
local dynamics of deuteron glasses which has not been
systematically studied so far. Site-specific dynamic mea-
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surements, in particular, can determine whether the
O-D. .. O deuterons are indeed the basic two-position
reorientable dipoles in deuteron glasses as assumed by the
PTB (Ref. 9) model or not.

II. TWO-DIMENSIONAL EXCHANGE NMR
OF DEUTERONS IN H-BONDED SYSTEMS

Two-dimensional exchange NMR of nuclei with spin
I=1 has been considered in detail by Spiess and co-
workers.!”!® The basic pulse sequence consists of four
pulses [Fig. 1(a)]. The preparation pulse i creates trans-
verse magnetization, which precesses freely in the evolu-
tion period, characterized by the time variable ¢;. The
second pulse ¢ stores the information on the spin preces-
sion angle during ¢, into the longitudinal magnetization.
In the mixing period, characterized by the time interval
7., the spin magnetization is aligned along the magnetic
field and is subjected to spin-lattice relaxation. The mix-
ing period is normally much longer than any other period
in the 2D exchange experiment. If chemical exchange
takes place during that period, the nucleus changes its
chemical environment, resulting in a different local pre-
cession frequency. This difference for spin I =1 mainly
arises from the change in the electric-field-gradient (EFG)
tensor. One can say that during the mixing period the
nucleus has changed its Hamiltonian. At the end of the
mixing period a two-pulse detection scheme, with pulses
separated by a time 7, is applied. The acquisition of the
signal is made in the detection period, with the time vari-
able labeled ¢,. In this period the spin system precesses
freely with the frequency, corresponding to the new
Hamiltonian. In the case that the exchange is slow, tak-
ing place only during the extended mixing period, the sig-
nal is actually independent of the time 7 and an undis-
torted line-shape results.!” For fast exchange, taking
place in all time intervals of the pulse sequence, the line
shape is affected by the evolution in the time 7 as well.'®
The coherence transfer pathway diagram!® used to select
the proper form of the signal is shown in Fig. 1(b). Here
p =M,, —M,, is the difference in magnetic quantum num-
bers of the two spin states |m ) and |n ), coupled by a
given coherence. The above pathway is achieved by cy-
cling the pulses ¢ and ¢ in steps of 7 and « in steps of
w/2. Pulse B is shifted for /2 from the phase of a.
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FIG. 1. (a) Pulse sequence for 2D exchange NMR of deu-

terons (I =1). (b) Coherence transfer pathway diagram follow-
ing the phase cycling procedure of Table 1.

TABLE I. Phase cycle of the four pulses and the receiver
phase for 2D exchange experiment of spins with 7 =1.

14 ¢ a B ¢~
+X +X +X +Y +X
X +X +X +Y —X
+X —-X +X +Y —X
—X —-X +X +Y +X
+X +X +X -Y +X
—X +X +X -Y —X
+X —X +X -Y —X
—X —X +X -Y +X
+X +X +Y —-X +Y
—X +X +Y —X -Y
+X —X +Y —-X -Y
—X —-X +Y —-X +Y
+X +X +Y +X +Y
-X +X +Y +X -Y
+X —-X +Y +X -Y
—X —-X +Y +X +Y
+X +X —-X -Y —X
—X +X —-X -Y +X
+X —X —-X -Y +X
—X X X -Y —X
+X +X —X +Y —X
—-X +X -X +Y +X
+X —X —X +Y +X
—X —X —-X +Y —-X
+X +X -Y +X -Y
—-X +X -Y +X +Y
+X —-X -Y +X +Y
—X —X -Y +X -Y
+X +X -Y —X -Y
—X +X -Y —-X +Y
+X —-X -Y —X +Y
—X —X -Y —X —Y

The appropriate receiver phase shift (Table I) is also ap-
plied. The Cyclops phase cycle for elimination of the
quadrature detection errors is inherent in that cycle. The
above cycle selects the signal of the form

T./T, ) (1)
Here »'® is the absorption frequency, corresponding to
the nuclear spin Hamiltonian of the evolution period and
'? is the frequency of the detection period Hamiltonian.
When no chemical exchange takes place, ©''=0'? and
the absorption peak lies on the diagonal of the 2D spec-
trum. If chemical exchange between two physically non-
equivalent sites has occurred, the peak lies at the cross
position (0'®,»'?) in the 2D spectrum, with 009,
The amplitude of the signal given by Eq. (1) is the largest
when the length of all four pulses is 90°.

F,, < cosw'¥t coso'?t,e

(e

III. EXCHANGE IN AN ASYMMETRIC
TWO-SITE POTENTIAL

In hydrogen-bonded systems, like deuterated DRADP,
acid deuterons are located in the O-D. .. O bonds. It has
been shown? that interbond exchange of deuterons be-
tween different H bonds is completely frozen already far
above the onset of the glass phase, so that only the intra-
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bond O-D. .. O exchange results in pseudospin reversal.
A given H bond is represented by a double minimum po-
tential (Fig. 2), with A4 and B describing the two possible
locations of the deuteron in the bond. In general, the H
bond is asymmetric with an energy difference A between
the two equilibrium sites. In the course of time, the
deuteron can change its position A<>B either by in-
coherent thermally activated jumps over the barrier or by
a coherent quantum tunneling. In the following the term
“exchange” will be used to describe the intrabond deu-
teron jumps. The two exchange rates satisfy the detailed A B
balance conditions

FIG. 2. A schematic representation of the asymmetric
K, o= A/2KT (2a) hydrogen-bond double-well potential.
AB T 850 ’

= (). A/2KT
Kpa=Qoe™ ™, (2b) Fo(t},7,7t;)=1Re[G_+G, ] . @
where Qo=7;c‘h=(‘roe5" /kr)“1 is the jump frequency for

the symmetric bond and the index 4B denotes the jumps
A —B. We define a 2 X2 population matrix W, the diag- Gy (¢,,7,,7,t,)

onal elements of which represent the equilibrium popula- ~ ~ ~ - ~

tions of the sites 4 and B: =(1104+(£,)04 (10 + (1)K, ,(1,,)0 , (¢ )WI1) .

(5)

The functions G are written in the form

1 eA/2kT 0

W = Scosh(A/2kT) )

0 e AVUT [1) is a two-component unit vector

Following the definitions of Spiess,18 we write the NMR

signal, produced by the pulse sequence of Fig. 1 for the )= . (6)
general case, when the intrabond exchange can occur in _
any of the time intervals of the pulse sequence as The 2 X2 matrix Q(¢) has a form

(g+Ee M+H(n—Ee™  Qued/HT(em—e ™M)
Qoe—A/ZkT(ent_e~m) (n_g)e—nl+(n+§)ent

A i(lwytog) 1
Qocosh=——F +
oCOSIokT 2 T,

=1
Q.(t)= 2 exp

_ )

Here T, is the spin-spin relaxation time and 0 =(wz —w 4)/2 is half the difference between the absorption frequencies
of the 4 and B sites. The parameters § and 7 are

. .. A
§=im—ﬂosmhﬁ , (8a)

1=VETR. o

The matrix Q . (¢) describes the free precession of spins as well as the exchange during precession. The exchange matrix
K, (7,,) describes the exchange and spin-lattice relaxation during the mixing period:

_ —2Q,7, cosh(A/2kT —2Q,7,_cosh(A/2kT)
Tm eA/ZkT+e A/ZkTe 0'm eA/ZkT( 1 —e 0'm )

El/l(Tm) _Tl

1
T A AL X - kT -20, h(A/2kT)
) COSh(A/2kT) p e —A/ZkT( l—e ZQorm cosh(A/2 )) e —A/ZkT+eA/2kTe 0T m COSh(A/.

9)

Here T, is the spin-lattice relaxation time which is taken to be the same for both sites of the double potential. The case
when the relaxation rates r ,=1/T, 4and rz=1/T,p of the sites 4 and B differ is treated in Appendix A. The case
when T'; depends on the bond asymmetry A, describing a distribution of T, =T,(A), is treated in Appendix B.

In general the evolution and detection periods are of negligible duration in comparison to the mixing period. If ex-
change occurs only during mixing, one obtains the signal F,, [Eq. (4)] in the form

~Tm /Ty, =0 +1)/T;

F (t;,t),1,,)=e {a,4(1,, )cosw 4t ,cosw 4t +age(T, Jcoswgt coswpt,

+aAB(Tm )cosﬂ)Atlcosthz +aBA(Tm )COS(DBtlcOSCDAtz} ) (10)

where the assumption of an exponential decay of the signal has been made. The first two terms in the curly bracket.of
Eq. (10) give the diagonal peaks in the spectrum, whereas the last two terms give the cross peaks. The intensities
a;;(7,,) are given by
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1 A/KT —2001-mcosh(A/2kT)]
a44(T)= [ +e , (11a)
A4 m T [2cosh(A /2kT)T?
1 —AJKT.y . — 297, cosh(A/2kT)
agp(1, )= [ + , (11b)
BT [2cosh(A/2kT) P
1 —2Q47,, cosh(A/2kT)
(T )=ag (1,)= [ - om ] . (11c)
B4 Tm ) ABAT T Cosh(A /2kT)
The 2D spectrum is obtained by a 2D Fourier transformation
© © —iwt;, —iw,t
Ia.((l)l,a)z,Tm,A)= fo fo FCC(tl’tZ’Tm’A)e ! le zzdtldtz , (12)
[
where the dependence on the asymmetry of the H-bond A x =0T, » (16a)
is explicitly emphasized. In the case that the exchange is _
not occurring during the mixing period only, the evolu- u=A/2kT , (16b)
tion of the signal [Eq. (4)] is not so simple and it is the ;54 use
best to treat it numerically.
We evaluate the diagonal and cross peak intensities plAYdA=g(u)du . (16c)
[Egs. (11a)-(11c)] in the limit of long mixing times . .
Qor,, >>1 (taking T, — 0 ): The intensities now become
2u
1 _1
a4 (0)= eA/kT | (13a) (a4(x))=— du g (u)
44 [2 cosh(A /2kT)]? 4 f “max sh2
1 AJKT " f Upax d () —2x coshu (17a)
app(o0)= e~ , (13b) - ugu)————, a
be [2 cosh(A /2kT)? 4 Y —up, cosh?u
@ 45(e0)=ag ()= L (130) (agpl)) =7 [ duglu)$ -
4B B4 [2cosh(A/2kT)]? BB 4 osh?u
The assumption T; — o is actually unnecessary since the + 1 f “max du g (u) ~ 2x coshu (17b)
quantities of interest will be the ratios between cross and 4 Y —up,, cosh’u
diagonal peak intensities. In case that T, is independent (a.,n(x))= (a (x))
of the deuteron sites 4 and B, i.e., one is dealing with a 4B B4
single constant T, the term involving T'; appears as a _1 f ¥ max du 2 (u)
common prefactor in the formulas for cross and diagonal ax “g sh2
peak intensities. In the calculation of the ratios, these —2x coshu
terms cancel. —= f max d ug (u)T (17¢)
coshu

IV. EXCHANGE SPECTRUM IN THE GLASSY STATE

We apply now the results of the previous section to an
ensemble of H bonds with a random distribution of bond
asymmetries, forming a deuteron glass phase. The asym-
metries are distributed with a distribution function p(A),
which is symmetric,

p(A)=p(—A), (14)

and centered around A=0. This accounts for the fact
that in the glass phase there exists no macroscopic order
of deuterons in the H bonds and the average polarization
p of the bonds is zero,

A \_
Wg)= émmZkT>—o. (15)

Here W and Wy represent the equilibrium populations
of the two sites in the bond, given by the elements of the
matrix W [Eq. (3)] and the average is made over all bonds
in the crystal.

We average now the intensities [Egs. (11a)-(11c)] over
the distribution p(A). We make the definitions

(pr=(Ww,—

Here we integrate on a symmetric interval between
U 0y, Where |u . | represents the maximum asymmetry
of the double-well potential. Since g(u) is symmetric,
both diagonal peaks have equal intensities,

(a4(x))
Tﬁio?)T: (18a)
We define
1=["7" dugw- Sz;u, (18b)
—2x coshu
Lx=[" v duglu)S—s—, (18¢)
Ic=f m: du g(u) h2 , (18d)

and write the ratio of the cross to diagonal peak intensi-
ties:

<aBA(x)>
(a4(x))

_L—L,(x)

R(x)= AETACIE

(18e)
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Due to Egs. (17c) and (18a) this ratio is the same for
both pairs of cross and diagonal peaks: (ap,)/
(aAA>=(aAB )/<aBB )

Let us now consider first this ratio for the trivial case
when all the bonds are symmetric. We take g(u)=26(u)
and label the ratio of the cross to diagonal peak intensi-
ties as Ry(x). We get

I,=I.,=1, I(x)=e ¥,
and

Ry(x)=tanhx . (19a)

The saturated value of this ratio for long mixing times
(x =Q01'm — 0 ) iS

Ry(®)=1. (19b)

Next we consider the distribution g(u), which has a
certain width and is symmetric. This should properly de-
scribe the glass phase. We look for the asymptotic value
of the ratio R (x) for long mixing times x — . Here
I,(0)=0 and we have

{ag())
R — %4 %)/
<aAA( ) >
I f_m“ du g(u)(1/cosh’u)
=1 = e (20a)
e f_u du g (u)(e® /cosh’u)
We rewrite
u 2u
max umax h2u
dug(u)—5——=2 du g (u) 25258
f_ ¥ max 8 COShzu J.0 g coshzu
(20b)
and find the inequality
f_mu du g (u)(1/cosh’u)
R( 00 ): = Y max <1 , (20(:)

f_:u du g (u)(cosh2u /cosh®u)
max
since denominator is always larger than numerator.

This important result states the following: as soon as
the glassy phase is characterized by a symmetric distribu-
tion of H-bond asymmetries with zero mean value, the sa-
turated value of the ratio of cross peak to diagonal peak
intensities will be less than one. It will become unity only
in the limit when all individual H bonds are symmetric.

We can relate the ratio R(«) to the Edwards-
Anderson order parameter

QEA=(P2> , (21a)

where p =tanhu and the average is taken over all bonds.
We have

_ fumax
9EA —u

ma.

du g(u)tanh?u

1
cosh?u

=1— "™ duglu) : 21b)

T ¥ma,

taking into account the fact that g(u) is normalized to

unity. For the ratio R( ) we get

1—qgga
R(w)=—"—, (22)
1+qggs

thus a nonzero value of gg, immediately implies the ratio
R() to be less than one. Alternatively, the measured
value of R( ) could be used to determine gg,:

_1-R(»)

A 2D NMR measurement of R( o) thus allows for a
determination of the Edwards-Anderson order parameter
gga in the slow motion regime where the determination
of gg, from line-shape data'® is no longer possible.

So far the asymmetry distribution function has not
been specified explicitly. In the random-bond-random-
field model' the distribution function of local polariza-
tion W (p) has been derived, using the replica formalism.®
For the replica symmetric phase an analytic result has
been obtained:

1 1 arctanh?p
W(p)=——= exp |— , (24a)
P amgt 1-p2 P [ 20?
with
T —_—

where gqg, is determined from the self-consistent equa-
tion

qpa = ‘/—12_; f:o dz exp(—z%/2)

X tanh? (24c)

T ——

Here T;=J/ky and A=A/J? are the glass transition
temperature and the variance of the random field. The
parameters J2 and A specify the widths of the random-
bond and random-field distributions.’ Since
p =tanh(A /2kT)=tanhu we can relate W(p) to g (u) via
W (p)dp =g (u)du and obtain

2

_ u
20*?

) (24d)

1
(): €.
SRRVt R

which is a Gaussian distribution of the asymmetries of
the H bonds. In Fig. 3 the calculated ratio of cross peak
to diagonal peak intensities R (x), defined by Eq. (18e), is
shown as a function of the normalized mixing time
x=Qq7,, for different temperatures. The parameters
T5=90 K and A=0.35 are taken from the O-D...O
deuteron line-shape analysis'> in Rbyg s¢(ND,)g 44D,PO,
and the distribution function g (u) of Eq. (24d) has been
used. The main feature of the result—based on a com-
pletely static frozen-in disorder picture—is the appear-
ance of a saturated value R (o) which is less than unity
and tends to zero, when the glass order parameter gg,
tends to one. R( ) equals one only for the case that all
individual H bonds are symmetric.
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R (x)

FIG. 3. The calculated ratio [Eq. (18e)] of the cross peak to
diagonal peak intensities R (x) as a function of the normalized
mixing time x =Q,7,, for a static glass (random-bond-random-
field Ising model) at different temperatures. The parameters
T =90 K and A =0.35 are taken from the line-shape analysis.

V. O-D. .. O DEUTERON INTRABOND EXCHANGE
IN Rbo 68( ND4 )o_ 32D2ASO4

A 2D NMR experiment, showing an O-D. .. O intra-
bond exchange has been performed in
Rbyg 63(NDy)g 3,D,As0, (DRADA-32) at temperatures
below 50 K. According to the line-shape analysis, the
system is at these temperatures already deeply in the
glass phase. A 1D O-D. .. O spectrum at an orientation
alHy,/c,H;,=45°, and T =40 K is shown in Fig. 4. The
spectrum is symmetric around the dashed line, the left
part corresponding to the 1—0 transitions and the right
part to the 0— 1 transitions. The H-bond network [Fig.
5(a)] lies in the X, Y plane and consists of two sets of mu-
tually perpendicular chains of H bonds, linking together
adjacent AsO, tetrahedra. The lines 4 and B correspond
to the so-called X, and X_ bonds.2! Here X stands for
the direction of the bond chain. There are two kinds of X

0—-1

50000 ‘ 0
w/2m (Hz)

FIG. 4. One-dimensional O-D... O deuteron spectrum of

-50000

Rbg 6s(NDy)o.3,D,As0, at T=40 K and orientation
alH,,zc,H,=45° [vo(?H)=41.403 MHz]. For the spectral lines
assignation see text.

bonds because of the 0.5° angle between the direction of
these bonds and the plane, formed by the X and Y axes.
The + and — subscripts denote whether the “upper” end
of a bond is in the positive or negative X direction. Lines
E and F correspond to the Y and Y_ bonds. These two
lines are not well resolved at that orientation but rather
the line E appears as a shoulder in the line F.

Let us now look at a given X chain. A part of the
chain, consisting of three AsO, tetrahedra, linked by two
H bonds (one X, and one X _ ) is shown schematically in
Fig. 5(b). There are two possible deuteron sites in each of
the two bonds, labeled as 4’ and B in the left and 4 and
B’ in the right bond. The eigenvector of the largest prin-
cipal value ¢,, of the EFG tensor points along the direc-
tion of the O-D. . . O bond.?? The intermediate value é,,
lies normal to the plane, formed by the deuteron, its
nearest oxygen and the arsenic ion in the middle of the
AsO, tetrahedron. ¢,, from the two deuteron sites A
and B makes angle +35° with respect to the Z axis, which
makes these two sites physically inequivalent and gives
rise to resolved lines in the spectrum. From crystal sym-
metry it follows that sites 4 and 4’ have the same EFG

! t VAL y_ponds
b . (I N

A7 A s
R It I

I

X -bonds

b)

FIG. 5. (a) The projection of the DRADA crystal structure
onto the (a,b) plane, showing the H-bond network. (b) A part
of the X-bond chain, showing one X, and one X _ H bond, link-
ing adjacent AsO, tetrahedra. Deuteron sites 4 and A4’ are
physically equivalent due to the same orientation of the EFG
tensor principal axes. The same holds for the sites B and B’.
The sites 4 and B are physically inequivalent and give rise to
resolved lines in the spectrum.
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tensors and are thus physically equivalent, contributing
to the intensity of the same absorption line. The same is
true for sites B and B’. At high temperatures fast intra-
bond motion 4<>B’' and A4'«<>B averages the two EFG
tensors, resulting in a tensor with ¢,, in the Z direction
and a single line in the spectrum. In a 2D exchange spec-
trum we expect the intrabond exchange cross peaks to
appear between the peaks 4 and B of Fig. 4 (and the mir-
ror situation on the other two satellites C and D). A
similar situation should appear for the Y bonds (lines E
and F), but the lines are not well resolved and the cross
peaks are less clear to observe. Two-dimensional ex-
change spectroscopy is a powerful method to detect the
intrabond motion in the limit of slow exchange, i.e., when

al
tm=53
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[ 1 1 1 J
50000 0 -50000
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the motion is slow compared to the splitting of the reso-
nance lines of the two exchanging sites. A 2D O-D... O
deuteron exchange spectrum in DRADA-32 at T=40 K
is shown in Fig. 6(a) as a contour plot and in Fig. 6(b) as
a three-dimensional plot. The mixing time is taken
T, =35 s. In the evolution period 80 ¢, values were sam-
pled with an increment At,=2 us. The signal was zero
filled in t; to 512 points before Fourier transformation.
In the detection period 1 K of complex signal points have
been recorded, forming a 512X512 points 2D matrix
after a 2D Fourier transformation. Shifted sine-bell win-
dows were used in both domains for the signal apodiza-
tion. At the end the magnitude spectrum has been com-
puted. Only one repetition of the phase cycle, consisting

-50000

wy/2n
(Hz)

50000

FIG. 6. (a) A 2D O-D...0O
deuteron exchange spectrum in
DRADA x=0.32 at T=40 K,
shown as a contour plot. The
orientation is the same as that in
Fig. 4 and the mixing time is
Tm =5 8. The part of the spec-
trum, enclosed in a dashed box,
corresponds to the X, bonds
(lines 4 and B in Fig. 4). (b)
Same spectrum displayed as a
three-dimensional plot.
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of 32 phases (Table I) has been used. At 40 K the pulse
sequence was repeated every 150 s, which is about two
times the spin-lattice relaxation time, and the whole 2D
experiment took 4 days of continuous acquisition. Thus,
a good stability of the electronics and temperature con-
trol is a necessary prerequisite to perform such experi-
ments. In our case the temperature stability was better
than 0.1 K during the whole experiment. In Fig. 6(a), it
is seen that there are absorption lines lying on both diag-
onals of the 2D spectrum. The two diagonals represent
two mirror copies of the same spectrum, arising from the
fact that the signal is real in ¢, and complex in ¢,,

: (d)
0"t
S(t,,t,)<cosw'®tie 2

The fact that the two copies do not have the same intensi-
ty is due to the nonunitary character of the mixing propa-
gator.!® For the analysis of the spectrum only one copy
needs to be considered, which we take for convenience
from the upper right to the lower left corner of the 2D
matrix.

In Fig. 6(a) the two lines 4 and B are enclosed in a
dashed box. The cross peaks are clearly seen and form,
with the diagonal peaks, a square. The intensities of the
diagonal peaks come from those deuterons, which during
the mixing time stayed at their initial positions, located
either in the left or right site of the double potential H
bond (Fig. 2). The intensities of the two cross peaks arise
from the deuterons, which during mixing period jumped
either from left to right site or in the opposite direction.
The existence of the cross peaks is a direct evidence for
the deuteron intrabond exchange and is up to the au-
thors’ knowledge the first direct evidence for that.

A systematic study of the exchange motion has been
made by varying the mixing time at different tempera-
tures from 45 to 24 K. Part of the spectrum, correspond-
ing to the X bonds [dashed box of Fig. 6(a)] is shown in
Fig. 7 at 40 K for three mixing times 7,, =1, 10, and 30 s.

DRADA -32
T=40K
tmix = 30s

DRADA - 32
T=40K
tmix=1s

L 1 1 1

813

The peak assignation is shown as an inset in Fig. 7. The
ratio of the cross to diagonal peak intensities
R(r,,)=(ag,(1,))/{a u(1,)) versus 7, is shown in
Fig. 8(a) for four different temperatures 45, 40, 35, and 24
K. What is remarkable is that at all temperatures the sa-
turated value R(o0)=(ap ())/{a (o)) is equal to
one and not less than one, as predicted from Egs. (20a),
(20c), and (22) for a static glass. Using the values!® of
qea for DRADP-44, which is very similar to the
DRADA-32, one should get the saturated values as low
as R()=0.32 at 50 K, 0.27 at 40 K and 0.13 at 20 K.
The above results are clearly incompatible with the
prediction for a static glass. As shown in Eq. (19b) the
saturated value R( ) equals to unity only when all indi-
vidual H bonds are symmetric. The curves of Fig. 8(a)
have been fitted by Eq. (19a) and the correlation times
Texeh =0 | are plotted versus temperature in Fig. 8(b).
The slowness of the exchange process is demonstrated by
macroscopic values of 7.,,. At T=45K, 7,,=14.4 s
and at T=24 K it amounts to 236 s. 7. acts as

. E,/kT . ¢
thermally activated, 7., =7¢¢e ° , with E; =12.8 meV

and 7,=0.43 s. This is very different from the single-

. . . . /kT ",
particle deuteron intrabond jump time 7,=7_,e ¢ with
E,=74 meV and 7,=2.8X107!2 5 as determined from
deuteron spin-lattice (T,) data.”® The difference in the
attempt frequencies 7, ! and 7! is 11 orders of magni-
tude. The unusually large value of 7,=0.43 s points to a
fact that the 2D exchange experiment does not observe a
single-particle motion but a correlated motion of a larger
ensemble of particles like clusters of microdomains. This
slow motion restores ergodicity of the glassy phase on
time scales ¢ > 7,,,. The increase of the size of the basic
reorientable electric dipole should be however accom-
plished by an increase of the activation energy, which is
not observed in this case. The 7y and E, values have been
determined from the assumption of an Arrhenius type of
thermally activated motion which does not reproduce

FIG. 7. O-D...O deuteron
2D exchange spectrum in
DRADA x=0.32 at T=40 K
for three different mixing times
7m,=1, 10, and 30 s. Only the

1
40 30 20 10 40 30 20
wy/2m (kHz) wy/2m (kHz)

DRADA - 32
T =40K

0 part of the spectrum correspond-
ing to the X bonds [dashed box
of Fig. 6(a)] is shown. At long
mixing times cross peaks and di-
agonal peaks have the same in-
tensities. In the lower right
corner the assignation of the

tmix = 10s

peaks in the 2D spectrum is
shown.

L
40 30 20 10
wy/ 2m (kHz)
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FIG. 8. (a) Experimental ratio of the cross peak to diagonal
peak intensities R(7,,) vs the mixing time 7, at four different
temperatures T =45, 40, 35, and 24 K. The curves represent
the fit with Eq. (19a), describing the case when all H bonds are
symmetric. (b) Temperature dependence of the intra-H-bond
deuteron exchange time 7,,.,= Qg !, determined from 2D NMR.
The single-particle intra-H-bond jump time 7., extrapolated
from the T} minimum around 90 K, is shown as a dashed line.
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correctly also the low-temperature T, data!* in DRADP
x =0.44. A more elaborate model of the O-D. . . O intra-
bond motion, taking into account tunneling, seems to be
necessary to clarify this point.

The same behavior of the cross and diagonal peak in-
tensities ratio can be predicted also from a spin-diffusion
effect. The spin-diffusion time constant is, however, tem-
perature independent®* which is to be contrasted with the
thermally activated form of 7, in Fig. 8(b). Another
test to prove or eliminate the presence of spin diffusion is
to vary the frequency separation between X, and X _
deuteron lines, which can be achieved by changing the
orientation of the crystal in the magnetic field. The
spin-diffusion time constant in the weakest case increases
as the square of the frequency distance between
the  lines,*Tgy < (Av)2.  Stronger  dependencies
like**Tgp, < (Av)* and exponential®® have also been pre-
dicted. We performed two sets of 2D exchange experi-
ments at T =40 K for two different orientations and plot
the R (x) curves. The first experiment has been made at
the orientation alHy,/Zc,Hy=45°, where the X, splitting
amounts to 11.3 kHz whereas the second has been made
at the orientation alHy,/c,Hy=65° with X, splitting of
8.7 kHz. At these two orientations X, and Y. do not
overlap. The X, splitting at Zc,H,=45° is 30% larger
than the one at Zc,H,=65°, which should yield in the
weakest case [Tsp < (Av)?] about 70% larger time con-
stant. No change in the exchange time has however been
detected (Fig. 9), which together with the thermally ac-
tivated form of 7,4, rules out the effects of spin diffusion.

VI. O-D. .. ODEUTERON INTERBOND
(X<—> Y) EXCHANGE IN Rbo 68( ND4 )0. 32D2ASO4

In addition to the intra-H-bond exchange, O-D... O
deuterons also undergo exchange between different X and
Y bonds. This interbond exchange has been first studied
by Schmidt and Uehling'® in DKDP. They selectively sa-
turated X-bond deuteron quadrupole perturbed Zeeman
NMR line. This saturation was in the course of time
transferred into the Y-bond line by the deuteron XY
exchange. The average correlation time for the XY ex-

e e e . e
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T FIG. 9. Experimental ratio of the deuteron
cross to diagonal peak intensities R(7,,) vs the
mixing time 7, at T=40 K in DRADA
x=0.32. Two experiments have been per-
formed at two different orientations: (a)
alH,,Zc,Hy=45° (solid circles) where the X
deuteron lines splitting amounts to 11.3 kHz;
(b) alHy,zc,H,=65° (open circles) with X
splitting of 8.7 kHz. Solid line represents the
fit R(7,,)=tanh(7,, /Texep) With T =14.4 s.
Dashed line represents a calculated curve
R(r,,)=tanh(r,, /Tsp), which would be ob-
tained at the orientation with 8.7-kHz splitting
in case of spin diffusion, assuming quadratic
dependence of Tgsp on the line separation

10 20 30 40 50

Tmis)

S
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change at room temperature was found to be 7yy=0.4 s.
The exchange was thermally activated with the activation
energy E,=0.58 eV. Extrapolated to temperatures
below T; ~90 K, where the glassy phase in DRADP and
DRADA exists, this gives unphysically large exchange
times 7yy and the interbond motion is effectively frozen
on the experimental time scale. The interbond motion
does not participate in the formation of the glassy phase
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and only the intrabond motion has to be considered in
this context. It is, however, interesting to observe direct-
ly the deuteron inter-XY-bond exchange with the 2D ex-
change NMR at temperatures high enough that 7y is
reasonably short, e.g., at room temperature. In the case
of interbond exchange one expects cross peaks between
the X and Y deuteron lines in the 2D spectrum. The ex-
istence of the cross peaks gives a direct evidence for the

-50 000

FIG. 10. (a) A 2D O-D... O deuteron ex-
change spectrum in DRADA x=0.32 at
T=40 K and an orientation alH,,/c,H,-65°
[vo(*H)=41.463 MHz]. The mixing time is
Tm=35 s. X4 deuteron lines are partially
resolved, whereas Y. lines overlap, as can be
seen from the 1D spectrum at the top. The in-
trabond exchange is manifested in the square-
like shape of the contour plots of the X-bond
lines. The absence of the cross peaks between
X and Y lines indicates the absence of inter-
bond (XY) exchange at this temperature. (b)
The same experiment repeated at 7=293 K
using the mixing time 7, =0.4s. X4 and Y4
splittings are averaged out by the fast O-
D... O deuteron intrabond motion, yielding
sharp X and Y lines. In the middle of the spec-
trum the rotationally averaged ND, deuteron
line is observed. The cross peaks between the
X and Y lines now appear, giving a direct proof
for the existence of the interbond (XY) ex-
change at room temperature.
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XY exchange.

The 2D deuteron exchange experiment has been per-
formed in Rbj¢(NDy)g 3,D,AsO4 at an orientation
alHg,Zc,Hy=65" at two temperatures T =40 and 293 K.
At this orientation the inner pair of lines corresponds to
the X-bond O-D. . . O deuterons and the outer pair to the
Y-bond deuterons. The 2D exchange spectrum at T =40
K is displayed in Fig. 10(a) for the mixing time 7,, =5 s.
The corresponding 1D spectrum [projection at the top of
Fig. 10(a)] shows partially resolved X, and X_ lines,
whereas Y. lines overlap and give one broad line. The
intrabond exchange at this temperature is manifested in
the squarelike shape of the contour plots of the X-bond
lines, since the peaks are not resolved enough to give
resolved diagonal and cross peaks. There are, however,
no cross peaks between X and Y lines, indicating the ab-
sence of interbond (XY) exchange at this temperature.
The experiment has been repeated at T =293 K using the
mixing time 7,, =0.4 s under otherwise identical condi-
tions [Fig. 10(b)]. At this temperature X, and Y, split-
tings are no more observed as they are averaged out by
the fast deuteron intrabond motion. The 1D spectrum
displays sharp X and Y O-D. . . O lines and an additional
ND, deuteron line in the middle of the spectrum. The
ND, line cannot be observed at low temperatures, since
after the ND, rotation freeze-out below 7=100 K this
line disappears from the spectrum. What is remarkable
in the 2D spectrum is the appearance of the cross peaks
between the X and Y lines, giving a direct proof for the
existence of the interbond (XY) exchange at room tem-
perature. No systematic variation of 7,, has been made
in our measurements and we did not determine the inter-
bond exchange time 7yy. The appearance of the cross
peaks for 7,,=0.4 s is, however, in agreement with the
expectations from the DKDP (Ref. 19) results where
Tyy =0.4 s at room temperatures has been determined.

VII. DISCUSSION

It is now clear why the NMR line-shape and spin-
lattice relaxation studies see the glassy disorder as static.
These techniques are sensitive to the molecular motions
in the 108~10° Hz window. A motion with milli-Hz fre-
quencies appears static on this time scale. When ob-
served with a technique, sensitive to motions in an obser-
vation window at lower frequencies, the glass disorder
turns out to be a dynamic phenomenon. This suggests
the answer to the question whether in the case of proton
glasses we deal with a new kind of a thermodynamic
phase transition, or the appearance of a glass state is a
kinetic phenomenon. By observing the system on a short
time scale, there is a lot of evidence for an equilibrium
ergodic-nonergodic phase transition and the random-
bond-random-field theory’ correctly describes the
features of the glass phase. In this theory the local polar-
ization of a given H bond is given by

p;=(S?), (25)

where S? represents the Ising pseudospin,?® S7=+1 and
the brackets { - -+ ) represent a thermodynamic (mean-

field) average. The average polarization of all bonds in
the glass phase vanishes,

p~—~2<sz [{(S7)]a=0. (26)

Here the summation goes over all H bonds, N is the num-
ber of lattice sites, and [ - - - ],, denotes the disorder aver-
age,8 i.e., the simultaneous average over random bonds
and random fields. The average square local polarization
is however different from zero as the bonds are polarized
but in a random spatial manner. The free energy of a
glassy state in a phase space is believed to be highly de-
generate exhibiting many global and local minima [Fig.
11(a)]. The pseudospin system can in general visit many
of these minima and the order parameter appropriate to
desécribe such a case is the “multivalley” order parame-
ter

S PSP,
;

2

2P,<S ) Q7

av

1
N2

Here P, is the probability of finding the system in the /th
valley and the summation over all valleys is made. An
experiment over a short time however measures the prop-
erties of the system effectively locked in one of the global
or local minima. Such “single-valley” order parameter
corresponds to the case of infinitely high barriers AU be-
tween different valleys. This order parameter is of the
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FIG. 11. (a) Free-energy surface in phase space of a glassy

state exhibiting degeneracy with many global and side minima.
(b) Time dependence of the pseudospin variable S}, reflecting
random jumps of proton or deuteron between two possible sites
in the H bond.
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“Edwards-Anderson” type
aea=y 3 (SPI=[(SD),, 28)

and is obtained from the multivalley order parameter g
when all the probabilities P; are equal to zero, except one
which is equal to 1.

The above definitions of p;, g, and g, are made on the
basis of a static model. It is possible, however, to define
these quantities also in terms of dynamics. The S7 vari-
able assumes in time randomly the values *1 [Fig. 11(b)].
The time-dependent local polarization is obtained as the
time integral of S7(¢) over the observation time ¢ :

tQ
= [ siar 29)

obs

pi(tobs)= t

In the limit ¢, — o one obtains the equilibrium polar-
ization p; [Eq. (25)]. The time-dependent glass order pa-
rameter is obtained as an average time-autocorrelation
function® of S7:

q(1)=[{SHO)SHt)) 1.y > (30)
where the time average ( - - * ), is performed over an ob-
servation time ¢ :

l ‘Obs ’ Z, ’ Z, ’
(SHOISED) = fo dt'[SHe)SHt'+1)] . (1)
obs

Edwards-Anderson (single-valley) order parameter gg, is
obtained as the limiting case of g (¢) when the barriers be-
tween the valleys AU diverge and the time ¢ tends to
infinity
=lim i 1) . 32
ea= fim fim_ a0 o2
If the barriers stay finite we obtain the multivalley order
parameter g

g=limgq(¢). (33)
t—

Another interesting limit is obtained with regard to ¢,,.
In the limit of an infinitely short observation time one ob-
serves an ‘“instant-time” picture, where the system is in a
single valley and everything is perfectly ordered in the
moment of observation, yielding

limoq(t)=1 . (34)
t

obs

In the intermediate case when ¢, in neither infinitely
short nor infinitely long the value of ¢(¢) actually de-
pends on the integration time ¢, and will thus depend
on the observation window in frequency space of different
experimental techniques. What is important is the rela-
tion between the frequency windows of experimental
measurement techniques and internal molecular motions.
Observation of the system with a window much higher in
frequency than the frequencies of molecular motions will
probe the system as completely frozen static, whereas the
dynamic character appears in observation with the fre-
quency window shifted towards lower frequencies.

In deuteron glasses the glassy phase appears as a conse-
quence of the deuteron intra-H-bond motion freeze-out.
In a NMR spin-lattice and line-shape experiment below
70 K we observe the system on the time scale much

shorter than the characteristic deuteron intrabond ex-
change time 7, and the ergodicity is broken. The glass
phase appears ordered and the order parameter is
different from zero. In a 2D NMR exchange experiment
the observation time becomes long compared to 7,.
The slow intrabond exchange restores ergodicity, the
time correlation of S? [Eq. (30)] is lost and g () tends to-
wards zero.

The glass order parameter thus depends on the obser-
vation time—or frequency—window of the applied ex-
perimental technique. Similar time-dependent effects in a
glass state of a polymer have been reported?’ by the use
of multidimensional NMR. There the authors analyzed
the nonexponential behavior of the relaxation processes
in the glass state. They found the distribution of correla-
tion times to be heterogeneous (nonergodic) on the time
scale of the average correlation time, becoming homo-
geneous (ergodic) at later times due to fluctuations which
were 2 orders of magnitude slower. This time-recovered
homogeneous distribution shows a Markovian character
of the system where the ergodicity is inherent in the Mar-
kovian type of motion.

The fact that the experimental R(7,,— ) curves of
Fig. 8 all reach the value 1, yielding zero glass order pa-
rameter, can be explained as follows. This results cannot
be obtained for the model of a static glass, since all the
bond asymmetries A should be strictly zero during the
time of the experiment. This is a completely unphysical
assumption for the proton glasses. The results can be,
however, explained by considering the asymmetries to be
time dependent, A=A(¢), as a consequence of the
thermal motion of the lattice. In a 2D exchange experi-
ment one observes the time average asymmetry A(7),
where the average is made over the observation time.
Since all other time intervals in the pulse sequence of Fig.
1 are of negligible duration compared to the mixing time
T, One can attribute the time dependence of A solely to
Tm» A(E)=A(7,,). The time average asymmetry can be
much smaller than the instant value of A(r,,) and eventu-
ally becomes zero, yielding zero value of the glass order
parameter as determined from the R(r, — o) curves.
To consider the glassy phase for long observation times a
dynamic glass theory is needed. Such theory has not
been made so far.

VIII. CONCLUSIONS

Two-dimensional exchange NMR results show that the
glass state in proton glasses is not a thermodynamic
long-lived state but rather a dynamic phenomenon. It
shows a frozen-in static disorder only when observed
with observation windows in the frequency range which
is smaller than the full width of the spectrum of correla-
tion times for internal motions. In the limit of long ob-
servation times, the asymmetries of the H-bonds—which
play the essential role in the formation of the glass phase
in proton or deuteron glasses—show a time-averaged
symmetric form, leading to no net time-average order of
deuterons in H bonds. The static random-
bond-random-field (PTB) (Ref. 9) pseudospin Ising mod-
el provides for a valid description of deuteron glasses for
observation times short compared to the O-D. . . O intra-
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bond exchange time, which at T=30 K amounts to
several hundred seconds. For longer observation times a
dynamic theory is necessary. Unfortunately it does not
exist as yet.

The observed ergodicity breaking in deuteron glasses
on short-time scales and ergodicity recovering on long-
time scales may provide for a conceptual link between the
glass transition and classical structural transitions. In
glasses the free-energy hypersurface in the N-dimensional
phase space of local polarizations is rough, microdomains
are small and ergodicity is restored on long enough time
scales, whereas in the case of ferroelectric and other
structural transitions the free-energy surface is smooth,
the domains are macroscopic, and the lifetime for spon-
taneous domain reorientation is essentially infinite.

APPENDIX A: 2D EXCHANGE SPECTRUM
IN THE PRESENCE OF TWO DIFFERENT
RELAXATION RATES

Here we analyze the effect of spin-lattice relaxation on
the cross to diagonal peak ratio R (x) in the case that nu-

J

clei experience different relaxation rates in the two sites
A and B of the H bond. We are interested to see how
different relaxation rates affect the saturated value of the
cross to diagonal peak ratio R( ) in the glassy state us-
ing the random-bond-random-field model. In case of a
single relaxation rate this model predicts R( ) to be al-
ways less than unity except in the trivial case when all the
bond asymmetries are zero and R(o )=1. The micro-
scopic reason why the relaxation rates r ,=1/T,, and
rg=1/T,p of the two sites differ need not be specified ex-
plicitly for the purpose of this calculation. One obvious
reason could be the fact that the two EFG tensors of the
sites 4 and B differ. The lattice vibrations could thus
produce different quadrupolar relaxation at the two sites
in the absence of nuclear exchange. In the presence of
fast nuclear exchange the two relaxation rates will be re-
placed by a single effective one as known from the theory
of exchange processes.

We use the same formalism'® as before and compute
the diagonal and cross peak intensities which replace Egs.
(11a)-(11c) in the case r ,rp. We get

_ 1 AJ2KT. ~Tm [Qocosh(A/2KT) +(r  +rg)/2] |, —¢r , €T .

= m + m4(e'— 1, Al
Gl Tm )= G oS A /2kT) (" +x"e (e'=k"e "] (A1

1 —AJ2KT. ~Tm [Qoeosh(A/2KT) +(r g +rg)/2) , —¢'r L. T

= " - m+(e'+ "}, A2
2587 ) 4¢’cosh(A /2kT) ¢ He'=x"e (e +u)e ™} (A2)

— — 1 — 7, [Qgcosh(A/2kT)+(r , +rp)/2] gr,  —e71,

= = m Q - . (A3
aAB(Tm) aBA(Tm) 4E'COSh(A/2kT) o(e e ) )

k' and ¢’ are defined as

= ry—7p
2

=V

We now apply these results to the glassy state. We aver-
age Egs. (A1)-(A3) over the distribution function p(A) of
bond asymmetries. Let us first recall the case r  =rp.
There we find from Eq. (18a) that the diagonal peaks have
the same intensities (a,,(x)) ={(agg(x)) as a conse-
quence of the fact that p(A)=p(—A) is symmetric and
we are integrating on a symmetric interval. The cross
peaks also have the same intensities (a,p(x))
=(ag,(x)), as seen from Eq. (17c). We thus have for
the case r , =rp a single cross to diagonal peak intensity
ratio R (x) which is the same for both pairs of cross and
diagonal peaks,

—Qgsinh A , (A4)

2kT

(AS)

_ (ag,(x)) _ (a 5(x))
(a(x))  Cagg(x)) ~

The situation is different in the case r, #rp. Let us
define rg =Ar ,, r , =u,, and introduce parameter

R(x) (A6)

_ra7rp _ u(1—A})
20, 2

14

We take r, to be smaller of the two relaxation rates
(A=1) and larger than Q, (x> 1). ¥ falls in the interval

I

[— ,0] and y =0 represents the r , =rp case. We define
the quantities

R (x)= S28alx)) (a7a)

1= <aAA(x)> ’ a
(a 5(x))

Rz(x)—m ; (A7b)

which represent the cross to diagonal peak intensity ra-
tios of two distinct pairs of cross and diagonal peaks.
R (x) and R,(x) have been calculated numerically (Fig.
12) for a number of y values using Egs. (A1)-(AS). In-
specting the limiting behavior of R (x) and R,(x) for
x — o we find that the two ratios R,(« ) and R,( ) are
no more equal as in the ¥ =0 case. The cross peaks still
have the same intensities, but the diagonal peaks now
differ. Consequently R, falls below the value of R ob-
tained in the r , =rp (¥ =0) case, whereas R, lies above
R. The random-bond-random-field distribution function
of bond asymmetries g(u) [Eq. (24d)] has been used
which is related to p(A) [Eqgs. (16b) and (16¢)]. The
curves are calculated for 7 =50 K and glass parameters
T5=90 K and A=0.35. Using these parameters we ob-
tain in the case r,=rp (y=0) a saturated value of the
cross to diagonal peak intensity ratio R (o0 )=0.26.
R,(x) always lies below this value and continuously ap-
proaches zero for x — o whereas R,(x) lies above for all
¥ <0 values and continuously grows towards infinity for
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08 - -

06 — -04

04 - —

FIG. 12. The calculated ratios of the cross to diagonal peak
intensities R,(x)={(ap,(x))/{a,,(x)) (dashed lines) and
Ry(x)={a p(x))/{agp(x)) (solid lines) as a function of the
normalized mixing time x =7, in the case that the spin-
lattice relaxation rates r , and rp of the two sites 4 and B in the
H-bond double-potential differ. The calculation has been made
for a static glass (random-bond-random-field model) at T =50
K using model parameters T =90 K and A=0.35. Parameter
¥=u(1—A)/2 has been varied between 0 and —1 (rz=Ar,,
r,=uy) and y=0 curve (dotted line) represents the case
r ,=rpg, corresponding to the curves of Fig. 13.

x — . For long mixing times neither of the two ratios
R, and R, reaches a constant plateau as in the r ,=rp
case and the difference R, — R is growing continuously.

The main feature emerging from the difference of the
spin-lattice relaxation rates » , and ry is the fact that one
has to distinguish between two kinds of cross to diagonal
peak intensity ratios, belonging to two pairs of cross and
diagonal peaks. Each pair is affected by the spin-lattice
relaxation in the opposite sense. In the limit x — « one
of them tends towards zero and the other grows continu-
ously to a value which can be much larger than unity.
These results cannot give an alternative explanation to
our “ergodicity restoring” results where for long mixing
times in DRADA we obtain all cross and diagonal peak
intensities to be the same (see spectrum with 7,, =30 s in
Fig. 7) and both ratios R;(« ) and R,(«) are equal to
one.

APPENDIX B: 2D EXCHANGE SPECTRUM
IN THE PRESENCE OF A DISTRIBUTION
OF RELAXATION RATES

In this appendix we analyze the influence of spin-lattice
relaxation on the cross to diagonal peak intensity ratio
for the case that T'; depends on the asymmetry A of the
bond, T\ =T,(A). Since in the glassy state asymmetries
A are distributed with the distribution function p(A) we
are dealing also with a distribution of relaxation rates
[Ty(A)] .

The quadrupolar spin-lattice relaxation rate for the
spin I =1 case can be written as

_=W1+2W2 . (Bl)

Here W, and W, represent the Am ==1 and Am =12
transition probabilities, which depend on the time fluc-
tuating parts of the EFG tensor elements AV;(z):

2

E| po ——e—r
Wi=4 |5 J7 1AV, 004, ()
+AV, (0AV, (1]e'™dr, (B2a)
2
_NEL o 1 e
wy=4 | = f_w{z[AVxx(O)AVxx(*r)
+A47,,(0)AV,,(1)]

+AV, (0AV,, (n}e" “"dr
(B2b)

Here E =e?Q /4, the bar represents an ensemble average,
and 7w, is the energy difference between two adjacent
quadrupole perturbed Zeeman levels.

To evaluate W, and W, for DRADA we have to look
at the EFG tensor of deuterons. In the crystal fixed
frame the tensor has the following form:?8

Vaa 0 =V,
Y= 0 V, *V.|. (B3)
= Vac = Vbc Vcc

The elements V. and V,, fluctuate between + values due
to the intrabond exchange of deuterons and only these
two have to be considered as time dependent in this cal-
culation. We transform the tensor into the laboratory
frame and compute time-dependent elements for the
orientation alH,,/c,H,=45°, where the measurements
have been made. We find four time-dependent elements:

V,()=—V, (1),
V)=V, (1),

Vi ()==V2/2V, (1),
Vo ()=V2/2V,(1) .

We write the elements V,.(¢) and V. (¢) for a deuteron in
a given hydrogen bond in the form

V,.()=ap(t),
Vi (1)=Bp(1) ,

where p () represents the polarization of the bond. p(t)
can be separated into a static part p =tanh(A /2kT) and
a time fluctuating part Ap(z):

p(t)=p+Ap(1).

W, and W, can now be written as

W, =2a? (B4a)

2
E ®© —————— g T
‘g] I7 B (@dp()e™dr,
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2

E
W,=2a* |
2T

2 —_— 2iw,T
1+—232 ] [ Bp(@ap(re ™ dr .
a — o

(B4b)

Thg autocorrelation function Ap(0)Ap(7) can be written
1
as

T/T

Ap(0)Ap(r)=(1—p2e "'’ (B5)
and the correlation time 7, is given by
1

I :KAB +KBA ‘_‘2\()40(:0811A

. kT (B6)

We also use ¥ =A/2kT and write T,(u) using Egs. (B1),
J

50
(B4a), and (B4b):
1 _ a%*Q? 1
T,(u) 16%* Qqcoshu
1 2+p*/a?
cosh’u +w}/403  cosh’u +wd/Q% |
(B7)

T, is a symmetric function of bond asymmetries,
T (u)=T(—u).

Now we compute the cross and diagonal peak intensi-
ties. Equations (11a)—(11c) have to be modified to

0 ()= 1 o /T, (A/2KT) [eA/"T+e ~2047, cosh(A/2KT) ] , (BSa)
[2 cosh(A/2kT)]

agp(r )= 1 e /T |(A/2KT) [e_A/kT+e—2ﬂormcosh(A/2kT)] ’ (BSb)
[2 cosh(A /2kT)]

0 p(r ) =ap (1, )= 1 — 1, /T (A/2KT) [l—e —ZQOfmcosh(A/2kT)J (BSc)

[2 cosh(A/2kT)]?

In the glassy state we have to average these expressions
over the symmetric distribution function p(A). We trans-
form again to the variable u using Egs. (16a)-(16c). We
define

—x/QyT (w) e

u
o= " duglue , (B9a)
¢ f"‘max & cosh®u
I,(x)_fumax du (u)e—X/QOTl(u)gixco_Shi (ng)
b S cosh’u ’
Y max —x/QT,(u) 1
I'(x)= du g(ue ont (B9c)
¢ f_umax 8 COShzu
The cross to diagonal peak intensity ratio is given by
(an () I'6)—I!(x)
Rix)=—24 " ="¢ b (B10)

Cagux))  LxO+HIx)
Since g (u) and T,(u) are symmetric and we are integrat-
ing on a symmetric interval, we find that the diagonal
peaks have the same intensities {a,,(x))={agp(x)).

The ratio R(x) is thus the same for both pairs of cross
and diagonal peaks,

(aBA(‘x)) _ <aAB(x))

R(x)= = .
() (aAA(x)> (aBB(x)>

The ratio R (x) has been calculated numerically, using
the random-bond-random-field distribution function
g (u) [Eq. (24d)] with the glass parameters T; =90 K and
A=0.35. The curves are calculated for T =30 K and are
displayed in Fig. 13. In the calculation we used different
T,(u =0) values as parameters and took Qg '=4s. This
enabled us to evaluate T',(u) [Eq. (B7)]. Different curves

I

correspond to different T,(u =0) values, ranging from
few seconds to infinity. A comparison to the case of a
single constant T, [Eq. (18e) and Fig. 3], which is ob-
tained in the limit T (¥ =0)— o, is made. From Fig. 13
it is seen that R (x) in case of a distribution of relaxation
rates becomes even smaller than in the case of a single
constant rate. The reason is the fact that T, (u) from Egq.
(B7) becomes longer for bonds with a larger asymmetry
u=A/2kT. The diagonal and cross peak intensities are
T, weighted sums of the contributions from all individual

03 T v —T T T T T
02~ 7
R L T(u=0) = |
01 - 40s 7
75s
0.0 L 1 L | L 1 L 1 N
0 2 4 6 8 10

X

FIG. 13. Calculated ratio of the cross to diagonal peak inten-
sities R(x) as a function of the normalized mixing time
x=Qy7, in the case of a distribution of relaxation rates
T{'=[T,(x)]”'. Random-bond-random-field model of the
glass phase has been used with glass parameters T =90 K and
A=0.35. The curves are calculated for T=30 K. Different
T,(u =0) values are taken as parameters and Q;'=4 s is as-
sumed. The T,(u =0)— o curve recovers the results of a sin-
gle constant T';.
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bonds and those with larger asymmetry have a larger
weight in the sum, whereas in the case of a single con-
stant T, they all appear with the same weight. The cross
to diagonal peak intensity ratio R (x) in the case of a dis-
tribution of relaxation rates is even smaller than in the
case of a single constant rate and cannot account for our
“ergodicity restoring” results, where for long mixing

times in DRADA the cross to diagonal peak intensity ra-
tio R(o) becomes equal to one. Here it should be
stressed also that in DRADA at T=30 K T, amounts
approximately to 300 s and the R (x) curve of Fig. 13
practically does not deviate from the T;(u =0)—
curve.
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FIG. 6. (a) A 2D O-D...0
deuteron exchange spectrum in
DRADA x=0.32 at T=40 K,
shown as a contour plot. The
orientation is the same as that in
Fig. 4 and the mixing time is
T, =5 5. The part of the spec-
trum, enclosed in a dashed box,
corresponds to the X4 bonds
(lines A and B in Fig. 4). (b)
Same spectrum displayed as a
three-dimensional plot.
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FIG. 7. O-D...O deuteron
2D exchange spectrum in
DRADA x=0.32 at T=40 K
for three different mixing times
Tm=1, 10, and 30 s. Only the
part of the spectrum correspond-
ing to the X bonds [dashed box
of Fig. 6(a)] is shown. At long
mixing times cross peaks and di-
agonal peaks have the same in-
tensities. In the lower right
corner the assignation of the
peaks in the 2D spectrum is
shown.



