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Resonant tunneling through quantum-dot arrays
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We apply the Hubbard Hamiltonian to describe quantum-dot arrays weakly coupled to two
contacts. Exact diagonalization is used to calculate the eigenstates of the arrays containing up to
six dots and the linear-response conductance is then calculated as a function of the Fermi energy. In
the atomic limit the conductance peaks form two distinct groups separated by the intradot Coulomb
repulsion, while in the band limit the peaks occur in pairs. The crossover is studied. A finite interdot
repulsion is found to cause interesting rearrangements in the conductance spectrum.

Transport through a single quantum dot weakly cou-
pled to two contacts has been the subject of much experi-
mental and theoretical work, i 4 and a fairly clear picture
has emerged. Relatively little work has been done on ar-
rays of quantum dots, though it now seems feasible to
fabricate such structures. 5 Most theoretical work on ar-
rays has been based on the RC model which neglects
coherence between individual dots in the array. How-
ever, it is expected that in semiconductor quantum-dot
arrays such interdot coherence will play an important role
in determining the transport properties. The purpose of
this paper is to present theoretical results for the con-
ductance of coherent arrays as a function of the Fermi
energy, G(E~).

A single quantum dot behaves as an artificial atom
in its charge and energy quantizations and is often de-
scribed by the Anderson Hamiltonian, 4 in which there is
a finite Coulomb repulsion between any two electrons on
the dot. For an array of quantum dots with phase coher-
ence, each dot can be viewed as an artificial atom with
intradot Coulomb repulsion (as in Anderson model), and
electrons hop between nearest neighbor dots. It seems
reasonable then to model an array of quantum dots using
the Hubbard Hamiltonian~ characterized mainly by two
parameters: the intradot charging energy (U) and the
interdot coupling matrix element (t). Our approach is
to calculate the many-body eigenstates of the array (iso-
lated from the contacts) by exact diagonalizations and
then to incorporate the effect of the contacts through a
rate equation as done by Beenakker for single dots. This
treatment of the contacts should be accurate as long as
the temperature is higher than the Kondo temperature.
We have studied arrays containing N = 2, 3, ... up to six
dots, and find that (1) in the atomic limit (t ( U) the
peaks in the conductance G(E~) form two distinct sym-
metric groups separated by U and (2) in the band limit
(t ) U) the peaks occur in pairs separated by order of U.
Thus even such short arrays exhibit properties reminis-
cent of the infinite Hubbard chain. Interstingly, we find
that the inclusion of inelastic processes within the array
does not significantly affect the results. It might thus be
possible to study various aspects of the Hubbard model

using such artificial quantum-dot arrays.
Real arrays can be expected to have two main devia-

tions from the ideal Hubbard model. First, in addition to
the intradot Coulomb repulsion there will exist a certain
degree of interdot repulsion. Second, individual dots will
be invariably "detuned" kom each other to some extent.
Both these aspects are readily incorporated in our model,
and we find that they have a noticeable effect on the
conductance spectrum. Interdot repulsion destroys the
symmetry between the two groups of peaks which we
identified as the upper and the lower Hubbard bands.
Detuning tends to localize the electron states, thus sup-
presses the conduction peaks. The effects of detuning
have been presented in a separate publication.

Consider a one-dimensional (1D) array of N coupled
dots, indexed &om left to right as 1—N, described by the
Hamiltonian H,
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In Eq. (1), es and e; are energy levels in leads and the
ith dot of the array, respectively, with o. being the spin
index. U; is the intradot repulsion of the ith dot, while
W; and ti are the interdot repulsion and the interdot
coupling between the ith dot and its right neighbor [the
(i+ 1)th dot]. The tunneling matrix element V&L (VP)
connects dot 1 (dot N) to the left (right) lead. We assume
two spin-degenerate levels on each dot.

We treat the whole array as a 8ingle quantum system
and calculate its many-body eigenstates by exact diago-
nalization. The demand on computing power grows fac-
torially with the number of states. Arrays containing up
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(dashed lines), the multiple-peak features are smeared
out by thermal broadening and only the two "bands" sep-
arated by U remain visible. The amplitudes of the peaks
are determined by how well the initial and 6nal states
of the particle transition couple to each other through
the leads. It is hard to give simple physical arguments
explaining the relative amplitudes of the peaks. Never-
theless, the upper and lower groups are syxnmetric, due
to the electron-hole symmetry, i.e., for every state below
the half filling, there exists an electron-hole complement
state above the half filling, and vice versa.

We also studied cases in which the interdot coupling
is comparable to or greater than the intradot repulsion.
Figure 2 shows the conductance of three-dot and six-dot
chains with interdot coupling t = 5 meV and intradot
repulsion U = 1 meV or 5 meV. In this band limit, con-
ductance peaks occur in pairs. Here the interdot cou-
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FIG. 2. Linear response conductance vs Fermi energy in the band
limit (t = 5). (a) Three-dot, U = 1; (b) three-dot, U = 5; (c) six-dot,
U = 1; and (d) six-dot, U = 5 with IrrT = 0.05 and 0.3. The solid
and dashed curves refer to the scales of the left and right y axes, re-
spectively. The insets of (b) and (d) show the conductance peak loci
of three-dot and six-dot chains with U = 5 at the variance of interdot
coupling. e = 30, W = 0, F = 0.001. Energy units are in meV.

pling t determines the separation between difFerent pairs
of peaks, while the intradot repulsion U causes the split-
ting between the two peaks within a pair. It can be
shown that each pair corresponds to the tnnneling of
two electrons with opposite spin. In the limit of zero
intradot repulsion (U -+ 0), the two peaks merge into
one as we would expect &om a one-particle picture. For
small U, the pairing feature is washed out by thermal
broadening. Hence, at high texnperatures one sees single
peaks instead, which are similar to that of noninteract-
ing tunneling. The insets of Figs. 2(b) and 2(d) depict
the conductance peak loci of three-dot and six-dot chains
as a function of the interdot coupling at low tempera-
tures, where excited states can be neglected. The insets
demonstrate the evolution from "two-band" structures
into patterns of paired peaks with increasing the inter-
dot coupling. This evolution corresponds to the crossover
of the Hubbard model from the atomic limit (U &) t) to
the band limit (U « t), which is of special interest in the
high-T, superconducting systems.

So far we have neglected interdot repulsion. However,
this could be signi6cant in real quantum-dot arrays. To
illustrate the effect of interdot repulsion, we show the
atomic-limit conductance spectrum of a six-dot chain
in the presence of moderate interdot repulsion (W = 1
meV) in Fig. 3. The interdot repulsion changes the many-
body ground state energies as well as their compositions,
and the change is axnpli6ed as the number of electrons
is increased. Thus the interdot repulsion causes more
signi6cant changes in the upper Hubbard band than the
lower one, and the symmetry is broken between the up-
per and lower bands in the conductance spectrum. In the
following, we take a three-dot chain to show explicitly
why peak amplitudes change in the presence of interdot
repulsion.

In a three-dot system, there are six single-particle
states: (1) dot 1, spin up; (2) dot 1, spin down; (3)
dot 2, spin up; (4) dot 2, spin down; (5) dot 3, spin up;
(6) dot 3, spin down. We index the six states in this or-
der. For example, I010100) simply denotes a many-body
state that has two spin-down electrons, one at dot 1 and
another at dot 2. With no interdot repulsion, the six
states )011111), I101111), I110111), I111011), i111101),
and I111110)are degenerate and have the same probabil-
ity in the 6ve-particle ground state. However, with 6nite
interdot repulsion W, the energies of the four states with
the hole at end dots (I011111),I101111), I111101),and
I111110))increase by 6W, while those of the two states
with the hole in the middle dot (I110111)and I111011))
increase only by 4'. Therefore with interdot repulsion
the new ground state is mainly composed of I110111)
and I111011),which cannot make transitions to the six-
particle state Illllll) through the leads. As a result,
the 5 ~ 6 conductance peak is greatly suppressed. On
the other hand, the one-particle states, which are the
electron-hole coxnplement states of the 6ve-particle states
when there is no interdot repulsion, experience no in-
terdot repulsion and remain unchanged. Therefore the
electron-hole symmetry breaks and the two conductance
groups become distinct.

The nonmonotonic temperature dependence of the
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FIG. 3. Atomic-limit conductance spectrum of a six-dot chain with
interdot repulsion (W = 1). The arrows indicate the nonmonotonic
temperature dependence of the peaks. e = 30, U = 5, I' = 0.001, t = 1,
and kT = 0.01) 0.05, 0.30. Energy units are in meV.

same nonmonotonic temperature dependence is equally
present at zero interdot repulsion cases, which is quite
visible in Fig. 1(b). The nonmonotonic behavior in dot
arrays is similar to that of a single dot with strong energy
dependence of lead coupling.

We have studied 1D arrays of quantum dots, and it is
demonstrated that some features of the Hubbard model
can be probed by the conductance measurements. Sim-
ilar conclusions should apply in higher dimensions. 2D
quantum-dot arrays might be especially interesting be-
cause of relevance to high-T, superconductors. Trans-
port studies of quantum-dot arrays could shed light on
our understanding of correlated transport and the Hub-
bard model. We hope that this paper will motivate both
experimental and further theoretical studies on the in-
terplay between quantum-dot arrays and the Hubbard
model.

conductance peak is noteworthy. It is visible in Fig.
3 that raising temperature not only broadens the peak
widths and reduces the heights, but changes the relative

amplitudes (see arrow 1) and moves peak positions (see
arrow 2) as well. This nonmonotonic behavior is due to
the fact that excited states are populated and participate
in the transport at high temperatures. At the same time,
the coupling of the leads to the excited states could be
very difFerent &om the coupling to the ground state. The
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