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Multipole edge plasmons of two-dimensional electron-gas systems
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For a two-dimensional electron gas (2DEG) with a nonabrupt edge electron-density profile, edge
modes, analogous to the higher-multipole surface modes of a 3DEG, are found in addition to the regular
edge plasmon. Several simple model edge density profiles are investigated. For a linear edge profile the
integral equation for the scalar potential is solved by expanding in a complete orthonormal set of func-
tions. The resulting secular equation is truncated and solved numerically. For a simple double-step edge
profile, which can be solved analytically, the multipole edge modes can be understood in a simple intui-
tive way.

In addition to the regular surface plasmons, ' an elec-
tron gas with a diffuse surface-density profile can support
higher-multipole surface-plasmon modes. These modes
can be thought of as bulk plasmons of the surface layer
whose spatially varying density is everywhere lower than
the bulk electron density. The name higher multipole is
appropriate for these modes because, in contrast to the
regular surface plasmon, the integral (along the normal to
the surface) of their charge density vanishes for every
point on the surface. A number of theoretical approxi-
mations including hydrodynamic models, the random-
phase approximation, and the time-dependent local-
density approximations were used to study higher-
multipole modes before they were observed experimental-
ly by Tsuei et al. on K and Na surfaces.

Necessary conditions for the existence of higher-
multipole modes include both a spatially varying electron
density and dispersion of the bulk plasmon. For a
three-dimensional electron gas (3DEG) a nonlocal con-
ductivity is required for dispersion of the bulk plasmon.
Whether higher-multipole modes were an artifact of
oversimplified treatment of nonlocal e8'ects was a subject
of some controversy. For a 2DEG the bulk-plasmon fre-
quency is proportional to the square root of the wave vec-
tor q even in a simple local theory of conduction. The
reason for this is that the electric Geld of a charged Quc-
tuation on a 2D plane spreads into the third dimension,
resulting in a restoring force (the in-plane component of
E), which decreases with the increasing wavelength.
Regular edge plasmons were first studied by Mast, Dahm,
and Fetter and by Glattli et a/. In the long-wavelength
limit these modes occur at a frequency approximately
10%% smaller than the frequency of a bulk plasmon of the
same wavelength. There have been a number of stud-
ies ' of regular magnetoplasma edge modes of a 2DEG
and of a layered electron gas. However, unti1 now' there
has been no investigation of possible higher-multipole
edge modes of a 2DEG with a nonabrupt edge profile.

Let us consider a self-sustaining density fluctuation
5n(r, t) of the form 5n(x)exp(iqy i cot ) of a 2DE—G from
its equilibrium density n (x). In a simple local approxi-

mation, the physics of the problem is contained in three
basic equations which must be solved self-consistently.
These equations are the Poisson's equation

V [eE(r)]=4tr5n(r),

the equation of continuity

V j(r)=ico5n(r), (2)

and the local equation relating the current density j to
the electric field E,

j(r)=&(r) E(r) . (3)

In these equations e and & are the background dielectric
constant and the conductivity tensor. To simplify the
treatment we assume a uniform dielectric constant e.

In the absence of a magnetic field the conductivity ten-
sor is diagonal and given by a(x)=ie n (x)/mto in the
absence of collisions. In the electrostatic limit the elec-
tric field can be expressed as the gradient of scalar poten-
tial P(r). By combining Eqs. (I)—(3), we can arrive at a
self-consistent integral equation for the potential P(x),

P(x) = dx'I. (x —x') n(x') q-4me . . . d

m E'N d(x')

dn (x') d
y( J)

dx dx

where the integration kernel L is given by

L (x)= Jdp4m. p2+q2

The nontrivial solutions of this equation correspond to
the collective modes of the electron system. For an arbi-
trary electron density n(x), Eq. (4) cannot be solved
analytically. To facilitate numerical calculations, we
transform the integral equation into a matrix equation by
expanding the potential P(x) in Laguerre polynomials,
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0 ifx &0

„(x)—. no—x/a if 0&x & —a

nz if —a&x .

The plasmon dispersion is calculated by truncating the
matrix at a finite order N. We find that the numerical re-
sults converge quickly with increasing N, and that choos-
ing N = 18 gives the desired numerical accuracy.

In Fig. 1, we plot the plasmon dispersion for the
electron-density profile in the form of Eq. (7). It is impor-
tant to point out that the figure remains the same for any
value of a, the width of the edge layer, when the unit of
the frequency is taken as A=(4am, e /ema)' . There-
fore we can choose a & Sac, where ao is the effective Bohr
radius, so that the nonlocal effect can be neglected when
qa -1.For small values of q, the system can support only
one mode. This is the monopole edge plasmon mode first
discussed in Refs. 8 and 9. At a value of q of the order of
0.8a ' another mode appears, and at q =1.5a ' a third
mode appears below the bulk-plasma frequency. These
are the dipole and quadrupole modes, respectively. As
the value of q is increased additional modes appear below
the bulk-plasma frequency, but nonlocal e8'ects in the
conductivity become important for qa0 —1. It is a
universal feature of 2D systems that these multipole
modes exist as stable edge excitations only at a finite
value of q. In contrast, in 3D systems higher-multipole
surface modes occur even in the limit of infinite wave-
length. As the edge density profile becomes more diffuse,
the values of q at which higher multipoles first appear be-
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FIG. 1. Dispersion of edge plasmon modes for an electron-
density profile decreasing linearly near the edge [see Eq. (7)].
Here a is the width of the edge layer and O.=(4mn, e /@ma)'
The 2D bulk-plasmon dispersion with an electron density no is
shown as a dashed line.

P(x) =exp(qx) g c„L„(—2qx) .
n=0

We find that if the electron-density profile near the edge
takes the form of a polynomial in x, the computation is
simplified considerably. The plasmon-dispersion relations
are obtained by requiring that nontrivial solutions exist
for the matrix equation.

For the purpose of illustration we choose a model in
which the electron density decreases linearly in the edge
region, i.e.,

27Tng e
coi = 't/q +(nm/a)2, .

Em
(10)

where n =1,2, 3,. . . . From Eq. (10) it is clear that the
higher-multipole edge modes are essentially bulk 2D
plasmons of the edge region with an efFective wave num-
ber q,z=')/q +(nn/a) Phy.sicall.y these modes are
standing-wave plasmons with an integer number of half-
wavelengths in the x direction fitting into the low-
electron-density edge region. For co„(q) smaller than aiz
the nth higher multipole cannot propagate into the re-
gion x & —a and is therefore trapped in the low-density
edge region.

It is interesting to note that as' ~0 the solution of Eq.
(9) approaches the limit co=+—', co~, as if the electron-
density profile played no role in determining the frequen-
cy of the regular edge plasmon. The reason for this is that
the electric field associated with the edge monopole
penetrates a distance of the order of q

' into the bulk.
When the distance is very large compared to a, the small
edge region where the electron density varies from its
bulk value does not significantly aS'ect the restoring force
or the regular edge plasmon frequency. The same eff'ect
occurs for the 3D surface monopole plasmon; its frequen-
cy is co=00/&2 in the long-wavelength limit indepen-
dent of the density profile.

In Fig. 2, we show the plasmon dispersion calculated
from Eq. (9) for the double-step density profile with
a & 5ao and n&/n =0.6. Similar to the situation in Fig.
1, for small values of q, only the monopole edge mode ex-

come smaller.
It is clear from Fig. 1 that the edge profile plays an

essential role in determining the frequency of the new
edge modes. To illustrate the physics of these new modes
associated with the edge density profile, we study a sim-
ple situation in which the edge profile takes the form of a
double-step function,

n (x)=na8( —x —a)+ nz8( —x)8(x +a),
where 6 is the single-step function. If we replace I. in
Eq. (3) by an approximate kernel L
=2 exp( —v'2q~x~ ), as was done in Ref. 8, Eq. (4) can
be solved analytically by using the Wiener-Hopf tech-
nique. With the requirement that the potential be con-
tinuous at both the boundaries x =0 and —a, the
plasmon modes are found to be solutions of the equation

(as aa ) cosh(psqu)+(asar —1) sinh(psqu) =0

where y, =2(ai, r0 —)/(2ai„r0'—) with v=8 or S,
~a 1'a(2roa ai )6's(2s ) as 2~ /l's(2s—ro ), and e„=2m.n, e q/em is the bulk-2D-plasmon fre-
quency for a system with density n „.

In the limiting case of nz ~n~ or a ~0, the system be-
comes the single-step model studied in Refs. 8 and 9. In
that case Eq. (9) reduces to the correct approximate re-

sult co=+2/3roa for the regular edge plasmon derived
previously. For n~ &&nz and qa &&1 the dispersion rela-
tion for the higher-multipole edge modes can be ex-
pressed as
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FIG. 2. Dispersion of edge plasmon modes for a double
electron-density profile [see Eq. (8)] obtained with the approxi-
mate kernel. Here a is the width of the edge layer, n&/n& =0.6,
and Q=(4mn, e /trna)' . The 2D bulk plasmons with an elec-
tron density n& and nz are also shown as dashed and dotted
lines, respectively.

ists. Its frequency is given by co=(—', )' tos(q) for very

small values of q, slightly above the bulk-plasma frequen-
cy to+(q) =(0.6)' tos(q) of the edge region whose density
is 0.6 of ntt As the. value of q increases higher multipole
modes appears at q-0. 8a ' and 1.0a '. With larger
values of a, multipole modes appear at smaller values of
q. All the multipole modes approach the bulk plasmon of
the low-density region as q becomes very large.

It appears feasible to prepare samples of semiconduc-

tor quantum-we11 structures, which simulate 2D
electron-gas systems with controllable electron-density
profiles near the edge. ' Such systems provide a realistic
opportunity to experimentally study multipole edge
plasmons.

In summary, we have studied the edge excitations aris-
ing from a nonabrupt electron-density profile near the
edge of a 2DEG system. We find a sequence of higher-
multipole edge modes, which, unlike their 3D counter-
parts, exist as well-defined edge excitations only at finite
values of q, the wave number along the edge.

In the presence of a magnetic field B perpendicular to
the 2D layer, a series of low-frequency edge modes' with
co ~ q is found for a smooth profile and a single localized
interedge' mode is found for a two-step profile, in addi-
tion to the high-frequency higher-multipole modes. In
both cases these low-frequency modes propagate in only
one direction along the edge for a given direction of B.
The effect of an applied magnetic field and of more realis-
tic density profiles will be discussed in a separate publica-
tion.
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