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Theoretical model of excitons for type-II quantum-wire systems
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A calculation of the exciton binding energy (E„) and oscillator strength (OS) for quantum wires in

type-II semiconductor systems is presented. These structures consist of a cylindrical wire of one semi-

conductor embedded in a second semiconductor. In the type-II exciton systems in quantum wells the
electron is confined in one semiconductor and the hole in the other is due to band lineups in the two ma-

terials, which make this arrangement energetically favorable. We use an approach which initially decou-

ples the p and z components. We use a variational approach for motion in the p direction which allows

for correlation of the free particle, and solve for the one-dimensional exciton in the z direction using an

effective Coulomb interaction. The solutions are then coupled self-consistently to produce E„, where

E„(p,z) =E(p)+E(z), and a product wave function which is used to calculate the OS. We consider the
idealized situation of infinite confining barriers and the more realistic case of finite barriers for the sys-

tem GaAs/A1As, where the electron is confined in the X state in the A1As while the hole is confined in

the I state in the GaAs wire (for a wire diameter of less than 43 A). For finite barriers E peaks at 33
0

meV for a wire diameter of 16 A, which represents a large enhancement over the infinite-barrier case due

to the strong wave-function correlation possible in two dimensions.

Now that it is possible to fabricate or grow semicon-
ductor quantum wires' it is of increasing relevance to
consider excitons, both type I and type II in these sys-
tems. Excitons in type-I wires have been considered by
Banyai et al. within a variational calculation. They find

that, again assuming infinite confining barriers, the exci-
ton binding energy is vastly increased in these structures
compared with the three-dimensional (3D) and two-
dimensional (2D) cases. The case of excitons in quantum
wires has also been considered by Brown and Spector
and Kodama and Osaka among others with similar re-
sults. More recently, Kayanuma has considered a gen-
eral variational wave function to deal with excitons in

quantum wells, wires, and dots. In addition, Byrant has
dealt with the similar system of a hydrogenic impurity in

a quantum wire with finite barriers. To my knowledge,
no one has considered the type-II exciton in quantum-
wire (QW) systems. Here we present calculations on the
type-II QW systems GaAs/A1As, which is type II for a

0

wire diameter of less than 43 A having considered the
case of type-II quantum dots (QD) in previous studies.

We consider a 1D wire of cylindrical symmetry where

z is parallel to the wire, p = (p cos8,p sin8) are the coor-
dinates in the cylindrical plane and a is the diameter of
the wire. The Hamiltonian for this type-II exciton wire

with cylindrical symmetry is

H (r„rI ) =H(p, )+H(pI )+H (z, )+H(zI )

—V(p, )+ V(pI } 1/[e(r„—rI )], —(1)

where r2=(p~+z2}. The first term is the kinetic energy
of the confined (c) particle in the p direction, the second
is the kinetic energy of the free (f} particle in the p direc-
tion, the third and fourth terms are the kinetic energy of

where V(p, }=const for p, &a and V(p, }=0 for p, )a,
where a is the diameter of the wire and

H'(pI ) = —1/(2m 'I )[1/pg (c}/dp/)pI d/c}p/]+ V(pI },
(2b)

where V(p/)=constant for pI &a and V(pI)=0 for

pI)a and

H (z„zI,pI, p, ) = —1/( 2m,', )(8/Bz, )

—1/(2m ((I )(8/BzI )

(2c)—V(p/, p„z„z/ ),
where V(pI, p„z„zI) = —1/I e[(p/cos8 —p, cosO)
+(pIsinO —pIsin8} +(z, —zI} ]'r ].

If the confinement in Eq. (2a) is large, the Coulomb in-

teraction will be a small perturbation upon this solution

so that to decouple it from the z component is a good ap-

proximation. This will not be the case in Eqs. (2b} and

(2c) where the solutions neglecting the Coulomb term will

be free wave functions, which are very sensitive to pertur-
bation. The motion in the z coordinate will be the most

the corresponding particles in the free z direction, the
fifth and sixth terms are the potentials for the confined
and free particle, respectively, and the seventh is the
Coulomb term which couples all the components.
(Throughout this paper in all equations we use atomic
units taking iri= 1, e =1, and mo= 1.) The Hamiltonian

separates into

H'(p, ) = —1/(2m, )[1/p, (B/Bp, )p, a/c}p, ]
—V(p, ),

(2a)
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sensitive to the Coulomb interaction since motion in this
direction is totally free for both the electron and hole
(neglecting the Coulomb interaction). We can, therefore,
follow the approach of Ref. 2 and decouple the p depen-
dence from the z dependence in Eq. (2c} (by integrating
over the pf and p, coordinates) and using an averaged
Coulomb interaction, which is defined as V,ir(z} where
z = Iz, —zf I. We propose to take a separable wave func-
tion as the solution to Eq. (1) of the form

qi(r„rf ) =0'(p, )%(pf )@(z), (3)
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FIG. 1. The exciton binding energy E„=E(p)+E(z) in meV
is shown as a full line as a function of the diameter of the quan-

0
turn wire in A for the system GaAs/A1As assuming infinite bar-
riers. The dashed line shows E(p) using an exciton reduced
effective mass of 0.12mo. This curve can be compared to a bulk
exciton binding energy of 13.0 meV and a bulk hydrogenic im-
purity binding energy E, of 20.2 meV. The dotted line shows
E(z) as a function of wire diameter using an exciton reduced
mass of 0.28mo and can be compared with a bulk exciton bind-
ing energy of 29.8 meV. (These values can also be compared
with an averaged isotropic bulk exciton binding energy of 16.3
meV. ) The system becomes type I for a )43 A and so the finite

0
and infinite curves are not valid for a & 43 A, which is indicated
by the lines being crossed.

where %(p, ) is the solution to (2a), %(pf ) is the solution
to (2b}, and 4(z} is the solution to (2c} with

V(pf, p„z„zf) being approximated by V,Ir(z). Since the
solutions to Eqs. (2b) and (2c) (neglecting the Coulomb
interaction) are strongly perturbed by the Coulomb in-
teraction, these two solutions are strongly coupled; once
a solution of the form of Eq. (3) is achieved, it must be
iterated to allow for the coupling of %(pf ) and 4(z).

What we shall focus on is the GaAs/A1As system
where a wire of GaAs is surrounded by AlAs. In Fig. 1

(Ref. 7), we show the band lineup in the GaAs/A1As sys-
tem for a QD system. This is also the energy band lineup
for the QW system. The potentials can be estimated from
the data given in Ref. 8. The m,& and m 'f correspond to

mII (1.56mp) and mi (0.19mp) of the X valley in the
A1As when the direction parallel to the wire is (110).s
The heavy-hole mass is taken as m,'=0.34mp. Other
approximations are as used in Ref. 7.

We shall first examine the approximation of using
infinite confining potentials. For this case, the wave func-

tions are completely confined in their appropriate semi-
conductors. The wave function and corresponding ener-

gy for the ground state of the confined particle are

%(p, )„ I i p m p=Jp(app, /a)/[aJi(ap)I/n]

with corresponding binding energy

E=apl(2a m ', ),

(4a)

(4b)

E =1/(2PaII ), (6)

where ap = (z ) and p is the reduced mass of the system.
We then iterate until convergence is achieved. In Fig. 1,
E (z), E (p), and their sum E,(p, z) are shown for the case
of infinite barriers and the parameters introduced earlier.

If we consider the more realistic case of finite barriers,
which are 0.526 eV for the confined hole and 0.278 eV for
the free electron in the GaAs/A1As system, this leads to
penetration of the confined wave function out of the wire
and of the free particle into the wire. This should greatly
increase the Coulomb energy. This leakage can be
represented as an exponential type of decay into the other
semiconductor similar to the approach followed in Ref. 7.
The calculation is similar to that followed for the infinite
barrier and produces E(p), E(z), E„, 'P(p, }, and 'Il(pf }.
The results for the GaAs/A1As system are shown in Fig.
2.

The radiative recombination rate of both band-to-band
and excitonic transitions is directly related to its oscilla-
tor strength, which for the type-II QW takes the form '

E —
lip, II'lip. II'(+(pf ) Imp, ) )'(C'(z =0

where Jp is the zeroth-order Bessel function, which has
its first zero at p=a and ap=2. 405 is the value of the first
zero. The exact form of the wave function of the
unconfined particle [Eq. 2(b)] has not been evaluated in
detail. It is free-particle-like everywhere except in the re-
gion p &a, where it is forced to zero. The energy of this
state will be zero since it is unconfined.

The confined particle will not be altered by the
Coulomb interaction since E(confinement) »E(Coulomb)
for infinite barriers. The unconfined or free particle will
be affected by the Coulomb interaction, and its wave
function will peak near the wire and will be forced to
vanish at p=a for infinite barriers. For infinite barriers,
we propose a variational wave function of the form'P

0'(pf ) =(pf a}exp[ —(pf a)—b /2]/—+2m (6/b 4+ 2a /b i
)

for pf )a,
(5)

%(pf )=0 for pf &a

where b is the variational parameter, which is b =2/ap,
where ap is the efFective orbital size. We use numerical
techniques to solve for E„(z,p) by minimizing E„(p) with
respect to the variational parameter b in Eq. (5) taking
z=0 in the Coulomb term. This produces an initial
E„(p) and %(pf ) from which we can evaluate an effective
Coulomb interaction for the 1D exciton' using Ecl. (3).
We evaluate E„(z) for the 1D hydrogenic system' and
evaluate (z ) according to
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where
f fp f f

is the numerical version of the momentum ma-
trix elements between Bloch functions and 0 is the wire
atomic volume. For the type-II wire system, the overlap
factor (%(pf ) f%'(p, )) will be small since it depends on
the overlap of the exponential tails into and out of the
well while the overlap factor (4(z =0) ) (Ref. 13) will be
close to one since this is a type-I exciton overlap. %ithin
this level of approximation, the exciton recombination in
type-II systems with infinite barriers is zero. For finite
barriers, the exponential tails contribute and as the dot
gets smaller, pushing the ground state upwards, this ex-
ponential contribution increases sharply until the
"confined" particle becomes unbound when the overlap
should increase strongly. The overlap factor squared
& +(pf ) I +(p, ) ) is shown in Fig. 3. As mentioned previ-
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FIG. 3. The wave-function overlap squared (%(pf) f+(p, ))~
~ 0

as a function of the diameter of the quantum mire in A for the
GaAs/A1As system. This factor enters into the definition of the
oscillator strength as given in Eq. (8) and will be the dominating
factor in this equation. The system becomes type I when
a )43 A so the results shown for the type-II system for this re-
gion are shown crossed.
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FIG. 2. The same as Fig. 1 with finite barriers (Ref. 11).
These values of E„should be compared to the binding energy of
a hydrogenic impurity in bulk E„, which is 36.3 meV, and the
bulk exciton binding energy, which is 23.6 meV. Four values of
E„ for the type-I system (Ref. 7) are shown for comparison as
H, while four values of a hydrogenic impurity in a wire (Ref.
10) are shown as 0 for comparison.

ously, the GaAs/AIAs system is indirect in k space as
well as in real space. This complicates the analysis
significantly, but the effect will be to reduce the oscillator
strength (OS) further.

Figures 1 and 2 show E„[and E(p) and E(z)] for
infinite and finite barriers, respectively. In both cases E
is small when a, the diameter of the wire, is large since
the particles are kept apart so that the Coulomb interac-
tion is small. As the diameter of the QW is reduced, the
particles are allowed to approach each other in the p di-
mension and can therefore have a stronger interaction
with the free electron correlating more with the confined
hole, increasing E . For the infinite-barrier case, E in-

creases smoothly to a value of 29.5 meV as a~0. For
the finite-barrier case, as the size of the wire is decreased,
E„ increases greatly above the E„of the infinite barrier
due to wave-function leakage into and out of the wire,
which increases the Coulomb interaction. As a is de-
creased, E reaches a maximum of 33.5 meV at a =16 A
and then decreases. This decrease is due to the confined
hole leaking out into the A1As reducing its effective
confinement and making the wave-function A1As-like.

0
For a =7 A, the confined state moves out of the wire po-
tential and becomes unbound. It is useful to decompose
E„ into its E(p) and E(z) components and to discuss
them separately. The p component contains the essential
type-II behavior while the z component behaves much
more like a 1D exciton with a modified Coulomb interac-
tion.

It is interesting to compare E(p) to E„,the binding en-

ergy of a hydrogenic impurity in the bulk system, ' which
has an enhanced binding energy due to the enhanced
correlation of the free particle with the localized impuri-
ty. For infinite-barrier systems, E(p) will always be less
than E„since the wave function of the correlating parti-
cle is excluded from the wire. For the QW, E(p)=14
meV at a =O. Comparison can be made with a type-II
quantum well where the correlation is in only one dimen-
sion and E(p) would be much less (-8 meV) and with a
QD where correlation is possible in three dimensions pro-
ducing E(p)=36.3 meV. A comparison of these values
shows the large effect of the electron mass anisotropy and
a comparison of these values to E(p) show that the added
correlation due to the localization of the hole in the wire
is very significant.

For finite-barrier systems, there will be wave-function
leakage, which will enhance the Coulomb interaction al-
lowing E(p) to increase above that of the infinite-barrier
case for the same diameter of wire. However, the type of
wave-function leakage will also effect E . If the wave-
function leakage arises from tunneling of the free particle
into the wire, this results in wave-function overlap of this
wave function with the strongly peaked wave function of
the confined particle producing a large enhancement of
both E„and OS. A similar effect is observed in the case
of a hydrogenic impurity confined in a quantum well' or
wire' where the wave function of the correlating particle
is forced to be much more peaked about the impurity by
the confinement which increases E„. As the wire size in-
creases in the finite-barrier case, wave-function leakage
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from the confined state and from the free state decreases
and the finite- and infinite-barrier cases approach each
other. (The significant difference between the finite and
infinite cases at large a arises from the strong coupling
between the p and z components. )

We now consider the z component. E (z) is given as a
dotted line for the case of infinite barriers in Fig. 1 and
for the case of finite barriers in Fig. 2. E(z) for the finite
infinite-barrier case has its maximum value of 16.0 meV
at a =0. For the case of finite barriers, E(z) increases in
magnitude due to wave-function leakage, which reduces
the p component in the Coulomb term and therefore in-
creases E(z). It follows the same behavior as E(p)
reflecting their coupliny and has its maximum peak value
of 17 meV at a=16 A. This component can be com-
pared with the calculations on a 1D exciton for both an
infinite and finite barriers. If we consider the case of
infinite barriers, we see that for a 1D type-I exciton the
binding energy goes to infinity for a ~0, while for the
type-II system it remains finite. Whereas the type-I exci-
ton goes to the 3D limit as a ~ 00, for the type-II system
the limit as a ~ ac is E (z)~0. This difference occurs be-
cause of the p=a dependence in the Coulomb integral.
For the finite-barrier type-I exciton, E„does not go to
infinity but has a maximum of 17.5 meV at a -33 A for a
barrier of Al„Ga& As with x=0.4 and a conduction-
band offset of 85%. This is shown for comparison in Fig.
2.

We will now discuss E„which is the sum of E(p) and
E(z) and reflects the trends discussed above. A compar-

ison of the hydrogenic impurity (type I) confined in a
finite-barrier wire and a type-I 1D exciton with finite
barriers are made with the type-II exciton system in Fig.
2. In both of these systems, the barrier material is
Al Ga& As with x=0.4 and type-I parameters are
used. For the 1D exciton system, an 85%%uo conduction-
band offset is taken but this should not affect the results
significantly. We can see that the 1D type-I exciton
peaks at a much lower E„of17.5 meV compared to the
other two systems. This is because of the much lower
effective mass of the electron in this system. The hydro-
genic impurity is very similar in shape and overall magni-
tude to the type-II exciton system. This similarity arises
because of the strong wave-function overlap into and out
of the wire, particularly the latter.

In conclusion, we have calculated the exciton binding
energy and envelope wave-function overlap required for
the calculation of the oscillator strength in a type-II QW
for the GaAs/A1As system. It is found to be substantial-
ly larger than the exciton binding energy of a type-II
quantum-well system or of a type-I 3D or 1D exciton in
these systems for the appropriate wire sizes in which
these systems naturally occur in the type-II con-
figuration. The wave-function leakage in these systems
enhances the exciton binding energy and also gives a
finite value for the oscillator strength of these systems,
which can be tuned by the wave-function leakage.
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