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It is demonstrated that the real-space Green’s-function method provides a reliable and efficient frame-
work to treat disorder in alloys. The method has been used to calculate the frequency spectrum of
Sig sGeg 5. The results obtained by this method not only reproduce the three-mode behavior which can-
not be obtained by mean-field approximations such as the coherent potential approximation but also
correctly predicts the intensities of the peaks associated with the three modes which cannot be easily ob-

tained by the supercell approach.

In recent years, the success of growing atomically con-
trolled semiconducting heterostructures has prompted a
concerted effort to study epitaxially grown systems such
as GaAs/AlAs and Si/Ge for their potential technologi-
cal applications.! In theoretical investigations of these
systems, in particular, superlattices (SL’s) with alloy com-
ponents and graded interfaces, it is important to properly
account for the effects of disorder and the internal strain
field due to the misfit of the lattice constants of the com-
ponents. In order to understand the dynamics of these
composite systems, it is essential to understand first the
role of disorder in simple semiconducting alloys. This
has prompted several studies of the semiconducting al-
loys.2~*

The analysis of the dynamics of alloys requires two in-
gredients: (i) a reliable knowledge of the interatomic
force constants, and (ii) a procedure to correctly handle
the disorder. For the former, in addition to the availabil-
ity of semiempirical potentials,” methods based on the
local-density approximation (LDA) have been developed
for both Si/Ge (Ref. 4) and GaAs/AlAs (Ref. 3) systems
with a few hundred atoms. For the treatment of disor-
der, the most commonly used theoretical techniques are
still methods based on the mean-field approximation such
as the coherent-potential approximation (CPA). In the
coherent-potential approximation,® the disordered medi-
um is replaced by an effective medium which reflects the
average of the disorder.” Hence the detailed structure of
the density of states is usually smeared out. Recently,
Gironcoli and Baroni® demonstrated that, for Siy sGe s,
the CPA failed to reproduce a three-mode behavior in the
vibrational density of states (DOS), while the supercell
(SC) calculation using an ab initio force constant yielded
the peaks in the DOS associated with Si-Si, Ge-Ge, and
Si-Ge vibrations which were in good agreement with the
observed Raman spectrum.’ However, there is an intrin-
sic limitation to this approach imposed by the size of the
cell. The implementation of the supercell calculation to
random alloys involves the generation of the random
configuration of atomic species according to their con-
centration in a large cell, which is then periodically re-
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peated.>® The DOS corresponding to that particular
configuration is obtained by a straightforward diagonali-
zation of the dynamical matrix. The average DOS
(ADOS) of the alloy is obtained by averaging over several
random configurations. If the number of atoms N in the
cell is not sufficiently large, the deviation from ?g_given
atomic concentrations, being of the order of 1/V'N, can
introduce a bias in the intensities of the peaks associated
with the impurity configurations. In addition, the im-
posed periodicity will further enhance the bias. On the
other hand, if N is too large, the computing time for the
diagonalization of the ADOS can be excessive. This is an
intrinsic bottleneck of this approach. In fact, the size
effect showed up in the supercell calculation of Gironcoli
and Baroni.! The ratio of the intensities of the peaks as-
sociated with Ge-Ge, Si-Ge, and Si-Si in the DOS of
Sij sGe, s must of the order of 1:2:1. However, the result
of Gironcoli and Baroni (see Fig. 1) gave the ratio as
1:1:0.5, an indication that the supercell containing 512
atoms used by Gironcoli and Baroni is not sufficient to
provide details of the DOS. The computation undertaken
by Gironcoli and Baroni is already very demanding. It is
just not practical to extend the calculation to larger and
larger cells.

In this paper, we use an approach based on the real-
space Green’s function (RSGF) (Refs. 10-13) to treat the
effects of disorder in the dynamics of Siy;Ge,s. The
method involves calculating the local Green’s function
(LGF), which leads directly to the determination of the
local DOS (LDOS). Therefore, the method is tailor-made
for the calculation of the ADOS of disordered systems.
In this method, a convergence procedure is used that pro-
vides a reliable and efficient scheme to calculate the LGF
of an infinite system.!*>!3 This procedure allows one to
determine the LGF as accurately as one desires or one
can afford without introducing any truncation or bound-
ary effects. This is a key feature which distinguishes our
method from the recursion method.!* A detailed com-
parison of the recursion method and our method has been
reported in Ref. 13. The outstanding feature of our
method is that, at a given stage of its development, it in-
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FIG. 1. Average DOS of Si; sGe, ;s obtained by the present
method (full lines) is compared with the results obtained by the
supercell method of Ref. 10 (dashed lines). In our calculation,
DOS is averaged over 32 random configurations that corre-
spond to different possibilities of the five atoms in region 1,
while the surrounding is generated randomly.

cludes all the information concerning all the degrees of
freedom within that step. Thus, if the convergence of a
system property is reached according to a preset cri-
terion, the result will faithfully represent the system
property. The treatment of disorder is exact in our ap-
proach for a given random configuration within the
prescribed tolerance limit.

For a random alloy where the interatomic force con-
stants are of finite range, the dynamical matrix can be
represented in the real-space representation as a block-
tridiagonal matrix.'* For example, one may start with
any locality consisting of a certain number of atoms in
the system. One may label this locality as region 1 and
designate the matrix describing the region as h;. One
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with v, as the matrix describing the interaction between
regions 1 and 2. Region 3 is then defined as the region
composed of atoms which interact directly with the
atoms in region 2 and which are not already included in
region 1. The matrix of region 3 is designated as 45, with
v,3 the matrix of interaction between regions 2 and 3.
This partitioning process can proceed until the entire sys-
tem is included. In this way, the matrix of the system, H,
is expressed as a semi-infinite block-tridiagonal matrix
with the first diagonal block given by A,. It should be
noted that the dimensions of the diagonal block matrices
h;’s are in general different. In fact, the dimension of A;
is usually an increasing function of i.

The solution to the Green’s function of a general
block-tridiagonal matrix was obtained by one of us
(S.Y.W.) and his co-workers previously.!® The salient
feature of the method is that the burden of calculating
the Green’s function of a very large system is shifted to
the computation of the LGF’s corresponding to the diag-
onal blocks, A;’s, and a series of matrix multiplications.
The dimension of A; is usually very small compared to
the system matrix H. This approach then provides a
powerful means to calculate the Green’s function of a
very large or an infinite system.

Let us denote by G, the LGF corresponding to region
1. Because of the semi-infinite nature of the system ma-
trix, as described above, it can be shown that!®

G (D)=Af(2)={z—h; v vy} 7", 1

where the forward (backward) Green’s function A (A])
is given by

AF(D)={z —h;—v,; 5, 0F 4} 70 2)

The calculation of A" (z) can be accomplished by a limit-
ing process such that!?

may next label the region which is composed of atoms in- Af(z)= lim Af™ (3)
teracting directly with the atoms in region 1 as region 2. moe
The matrix describing this region is designated as h,, where
J
AIH'")(Z): {Z —h 1 —Ulz[z _hz—. . .Um —1,m [Z _hm ]_lvm’m —1e - ]_1v21 } -1 . (4)
I

From Eq. (4), it can be seen that A;'™)(z) is simply the A, 1=A, AL W1 (m>2) (7
forward Green’s function of region 1 when the system
matrix H is truncated at the mth step. Equation (3) then and
states that A{" can be calculated as the limit to the se- A=Ay, . (8)

quence {A;™(z)]. It turned out that there exists a re-
cursive relation which links the computation of A;" ™ to
that of A{ ‘™ =1, This relation can be written as'>

A1+("')=Al+('"_”+R , (5)
where

Rm=Am—lA;A$—l ’ (6)
with

From Eq. (2) and the semi-infinite nature of the system
matrix as described previously, one obtains

AT (z)={z—h,}7!. )

The terms in the sequence {A{ ™} can now be computed
efficiently and without redundancy. Initially, the back-
ward Green’s function A is calculated using Eq. (9). It
is then substituted into Eq. (8) to determine 4,. The sub-
sequent A, ’s and A4, _,’s are calculated using Egs. (2)
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and (7), respectively. The successive terms of {A; ™} are
finally obtained using Egs. (5) and (6).

The local vibrational DOS in region 1 is related to the
LGF by

pilw?)=— Irrl()TrGll(w2+is) , (10)

3”177' E—

where n, is the number of atoms in region 1. Therefore,
only the trace of A, is relevant for the calculation of the
local DOS [see Eq. (1)]. The convergence procedure for
the calculation of the LDOS is then set up as follows.
For a given € at a certain ®?, the terms in the sequence
{AF™} are calculated as outlined above. The sequence
is considered as having reached its limit when all the cor-
responding diagonal elements of A ™ and A"~ are
within a given tolerance. The criterion of convergence is
given by

(Rm )diag. element
+(m
(A

=5 <L, for all diagonal elements ,
)diag. element

(11

where L, is a preset tolerance with R,, given by Eq. (6).
The converged value of the trace of the local Green’s
function is then used to determine p; (w?®) from Eq. (10).
It should be noted that this convergence procedure will
yield a result as accurate as the convergence criterion
without any boundary effect associated with an arbitrary
truncation of the system at the outset. To ensure the reli-
ability of our calculation, the entire process should be re-
peated for a series of decreasing € until no additional
feature appears in the LDOS.

The analysis of dynamics of Si/Ge alloys is done with
the method outlined above using the semiempirical force
constants of Wilke, Masek, and Velicky.5 Although ab
initio force constants have been developed for Si/Ge sys-
tems,* we intentionally chose the semiempirical force
constants. The rationale behind this choice is the follow-
ing. If the mass disorder is the dominant factor in a
Si/Ge system, the simpler force-constant model can yield
reasonable DOS results. On the other hand, if the lattice
mismatch is an important factor, the calculation based on
the semiempirical force constants would not be able to
give correct DOS results. In the case of Si, ;Geg s, the
masses of Si and Ge differ by a factor of 2.6 but the lattice
mismatch of Si and Ge is also appreciable. So, in princi-
ple, questions can be raised as to whether semiempirical
force-constant models can be used at all.

In the calculation of ADOS of Si; sGe, 5 using Eq. (10),
two different schemes were used. In the first scheme (I), a
five-atom cluster is included in region 1. The atomic
species at the sites in the remaining part of the system are
generated randomly according to their atomic concentra-
tions in the alloy. The average DOS was obtained by
averaging over 32 configurations, each corresponding to
one of the possible configurations of the five-atom cluster
plus the randomly generated surrounding. In the second
scheme (II), only one atom (either Si or Ge) is placed in
region 1. The atomic species at the remaining sites of the
system are generated randomly. The average DOS was
obtained by averaging over several random
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configurations.

In Fig. 1, the ADOS of Sij sGe, 5 of the present calcu-
lation using the first scheme is compared with that ob-
tained by Gironcoli and Baroni® using the SC approach.
Except for the intensities associated with the three peaks
(Ge-Ge, Si-Ge, and Si-Si), the agreement between these
two curves is excellent, especially since the interatomic
force constants used in the present calculation were ob-
tained by fitting the experimental data. In the fitting pro-
cedure, Wilke, Masek, and Velicky5 used the Born model
and assumed the same force constants (a,f3) for all Si-Si,
Si-Ge, and Ge-Ge bonds. The excellent agreement in the
general features of the two curves, in particular the loca-
tions of the peaks, indicates that the mass difference is
still the dominant factor contributing to the effect of dis-
order for Si/Ge systems even though the Ilattice
mismatch in this case is substantial. One of the striking
features of the present calculation is that the ratio of the
intensities of the three modes (Ge-Ge, Si-Ge,and Si-Si) is
correctly given by 1:2:1, as it should be for a binary alloy
with 50% of one component and 50% of the other. This
ratio, however, is not predicted by the supercell calcula-
tion. Furthermore, in the SC calculation one finds some
anomalous structures in the low-frequency regime which
is not found in our ADOS calculation. The size effect in
the supercell calculation may be responsible for these
anomalous structures in the low-frequency regime.

In scheme I of our calculation, where there are five
atoms in region 1, the convergence criterion requires that
all 15 diagonal elements of the LGF G, satisfy Eq. (11).
If, on the other hand, only one atom is placed in region 1
as in scheme II, it is expected that fewer steps in the cal-
culation of the terms in the sequence {A; ™} are needed
for the LGF to converge. The tradeoff, however, is that
more configurations might have to be included in the
averaging process to recover the detailed features of the
DOS. In Fig. 2, a series of three curves are shown. They
all correspond to the situation where only one atom (ei-
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FIG. 2. Curves a, b, and ¢ show the ADOS corresponding to
16, 12, and 4 random configurations. In these sets of calcula-
tions only one atom (either Si or Ge) is placed in region 1, and
the rest of the surrounding is generated randomly according to
atomic concentrations. In the above plots, n random
configurations with a Si atom in region 1, and n random
configurations with a Ge atom in region 1 have been considered
with n equal to 8, 6, and 2, respectively.
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ther Si or Ge appearing with equal probability) is in re-
gion 1. They differ in the number of random
configurations that are included in the averaging process.
In the cases presented, there are 2, 6, and 8
configurations associated with a Si atom in region 1, and
an equal number of configurations associated with a Ge
atom in region 1. The series of curves then represent the
ADOS corresponding to averaging over 4, 12, and 16
random configurations. From Fig. 2, it can be seen that
the ADOS begins to settle when 12 configurations are in-
cluded, and the ADOS corresponding to 16
configurations is almost similar to the ADOS shown in
Fig. 1. This observation is very satisfying because
scheme II of our calculation is not a cluster-dependent
calculation. These results therefore establish that the
method of the real-space Green’s function is a reliable
and efficient technique for the study of disordered sys-
tems. For all curves shown in Figs. 1 and 2, the preset
tolerance is L, =0.05 and £€=0.1 in the reduced unit of
K, /Mg with K, being the diagonal element of the
force-constant matrix.

In this paper, we have shown that the real-space
Green’s-function approach correctly predicts every
feature of the frequency spectrum of Siy;Geys. This
demonstrates that the RSGF is a reliable tool to study
disordered systems. The reliability stems from the fact
that the local environment is systematically surveyed un-
til the system property (e.g., DOS) is converged within
the preset tolerance criterion. The effect of the local en-
vironment is faithfully reflected as the calculation of the
successive terms in the sequence {A; ™)} is carried out.
The convergence process is dictated solely by the nature
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of the system. In fact, the size of the system actually
used in the computation of the local Green’s function is
no more than what is required by the convergence of the
LGF. Hence there is an intrinsic optimization of the
computational time. This natural selection of the size
needed for the calculation of the LGF also eliminates any
undesirable effects associated with ad hoc assumptions
about the size of the system or other truncation schemes
that are usually employed in the calculation of the
LGF.%!7 Furthermore, in our scheme for calculation of
the LGF, matrix inversions and multiplications involve
only matrices of dimensions very small compared to the
dimension of that part of the system which is needed to
reach the convergence. This feature further improves the
efficiency of the method in terms of both the computing
time and memory space. Finally, the result of our calcu-
lation suggests that semiempirical force constants give
very good results for the DOS of Si/Ge alloys. This re-
sult may prove to be of crucial importance in the dynam-
ics of more complex systems such as superlattices with al-
loy components where it can considerably simplify the
calculation.
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