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Nuclear-magnetic-resonance spectroscopy has been used to probe the electronic structure of the
M cationic sites in M&MosSes, M =(Li,Rb, Cs, ln), a family of low-dimensional electronic conductors.
Measured values of the quadrupole coupling parameter constant are compared to calculated values
of the contribution from an ionic lattice. The measured values deviate signi6cantly from calculation
only for M=In, where the observed value substantially exceeds the calculated value. This deviation
is attributed to an In p-orbital contribution to the conduction band. Such a contribution would

provide a mechanism for the interchain electronic coupling observed in MqMo6Se6 chain systems
when M=In or Tl.

I. INTRODUCTION

Potel and co-workers have described a series of
pseudo-one-dimensional M2Mo6Se6 compounds where M
is a monovalent cation chosen from among the group IA
or group IIIA metals. Structurally, the compounds con-
sist of stacked Mo3Se3 triangles displaced by 60' from one
another extending inBnitely along the crystalline hexag-
onal t" axis. The chains are separated by the monovalent
cations. Depending on the size of M, a typical chain-
chain distance is approximately 9 A. (Fig. I), measured
center to center.

Electronic properties of isolated (MosSes)„chains
have been calculated based on an extended Huckel
model. At room temperature the valence electron do-
nated from each M is delocalized along the Mo3Se3 unit
along the crystalline e axis, and the chains are conduc-

tors. At low temperatures, however, a Peierls distortion
is suggested which would localize these electrons and the
ground state is semiconducting (as it must be for a truly
one-dimensional system). Of course, the calculations ad-
mit the metal ions only as electron donors and explic-
itly ignore their possible contribution, and that of nearby
chains, to the electronic structure, and hence cannot be
expected to predict possible coupling between chains.

Resistivity measurements of Tarascon et al. have
shown that where M is an alkali metal a transition from
metallic to semiconducting behavior is found at low tem-
perature, which is consistent with predictions based on
the one-dimensional band-structure calculations. 2 Where
M is In or Tl, however, no semiconducting transition is

observed; in fact, T12Mo6Se6 undergoes a superconduct-
ing transition at 5.1 K. These observations are inconsis-
tent with electrons localized in one dimension, and sug-

gest the importance of a detailed consideration of the role
of the cations in the electronic structure of the M2Mo6Se6
lattices. Our goal in this paper is to explore the electronic
structure of the cations between the conducting chains.
Our primary tool will be solid state nuclear magnetic
resonance (NMR).

Our procedure in this paper is as follows. First, we de-

scribe our samples. The theoretical basis for understand-

ing the electric Beld gradient is then presented. We con-

tinue by presenting our approach to measuring these gra-
dients. The correlation between measured gradients and
lattice and electronic structure is then made. We close by
mentioning some related experiments using magic angle
spinning (MAS) which further clarify our conclusions.

II. EXPEKIMENTAI

A. Sample preparation

FIG. 1. Structure of M2Mo&Se6. (a) Projection onto the

(001) plane. (b) Projection onto the (1120) plane.

Samples were prepared as described in detail in earlier
work by Tarascon et al. In2Mo6Se6 was initially pre-
pared &om the elements at 1000 C. The alkali metal
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phases are subsequently prepared by ion exchange, where
the In2Mo6Se6 is mixed with alkali iodide and heated to
approximately 500 C. Indium iodide sublimes away, and
the alkali metal cation substitutes for the lattice In+.
The progress of the reaction can be monitored by x-
ray powder diffraction and scanning electron microprobe
analysis until the indium-based phase is no longer ob-
served.

Each of the M2Mo6Se6 phases crystallizes in a hexago-
nal unit cell belonging to space group P6s/m. The c-axis
dimension varies little from phase to phase, as it is pri-
marily determined by the bonding in the Mo6Se6 re-
peat unit. In contrast, the chain-to-chain spacing (which
is reflected in the a lattice parameter) varies nearly lin-
early with alkali metal ionic radius, except where M=Li.
In Li2Mo6Se6, it appears that the lithium cations are so
small that electrostatic repulsion between pairs of chains
dominates the interchain spacing.

Even after the InI is removed, we have frequently found
that sample crystallinity of the lithium samples (as mea-
sured by NMR linewidths) can be improved by subse-
quent annealing at relatively low ( 200'C) temperatures
for several hours.

B. Electric field gradients

The dominant nuclear spin interaction (excluding that
of the nuclear dipole moment with the applied magnetic
field) for most nuclei where I & 1 is that of the spin nu-

clear quadrupole moment with any local electric 6eld gra-
dient (EFG). Local field gradients can be an exquisitely
sensitive probe of local structure, providing a marker sen-
sitive to the extent of local order/disorder. For example,
in NaC1 the symmetry of the perfect cubic lattice allows
for no electric field gradient, and any splitting or broaden-
ing necessarily reQects defects and lattice imperfections.

This work, however, focuses instead on a different
property of the EFG—its ability to reveal local electronic
structure. Cohen and Reif have provided a framework
for this approach. More recently, Taylor, Baugher, and
Kriz, Kaufmann and Vianden, and Carter, Bennett,
and Kahans have provided comprehensive reviews of the
subject, and we present a quick summary of these results
here.

In a perfect crystal, the net field gradient at the nucleus
is composed of two separable contributions, one associ-
ated with the Beld arising from a distribution of charged
ions (q;) and a second associated with the local distribu-
tion of valence electrons (q„). In cases of high symmetry
(e.g. , a cubic lattice, or all electrons found in closed spher-
ically symmetric shells) either contribution may vanish,
but in general the observed gradient is given by

The parameters p and R, are the Sternheimer factors
which account for the polarization of the closed-shell elec-
trons as they interact with local field gradients. The
closed-shell electrons may either screen or amplify the
effect of external gradients on the nucleus buried within.
Different screening factors are appropriate depending

upon whether the 6eld gradient is associated with in-
ternal (R, ) or external (p ) sources.

Magnetic resonance measurements provide an experi-
mental measure of ezqt q iQ/Ii, where eQ is the nuclear
quadrupole moment and measures the asymmetry of the
charge distribution in the nucleus. Thus our experiments
should provide a direct probe of the magnitude of eqq q j.
Our goal in this paper is to analyze the extent to which
these measurements of local EFG's at the various metal
sites can be interpreted in terms of differences in elec-
tronic structure in the metal molybdenum selenides.

Even in similar lattices with similar eq s, e qt~«iQ/h
at different cations may range over four or five orders of
magnitude due to variations in eQ and p . As a result,
no single technique of extracting the quadrupole cou-
plings is universally applicable. In this work, three spec-
troscopic methods have been exploited for the extraction
and/or estimation of quadrupolar parameters in our sam-
ples. Energy splittings in these systems depend upon not
only ezqQ/h but also the spin quantum number I, and
the spectroscopic splittings may be more appropriately
characterized by a parameter vq = Be qQ/2I(2I —1)h.

Depending upon the relative sizes of vq, the rf excita-
tion strength v,g, and the size of other sources of broaden-
ing, differing experiments may be appropriate. For very
large quadrupole coupling constants, it may be easiest
to measure their size via techniques associated with pure
nuclear quadrupole resonance, or NQR, where the only
strongly allowed transitions appear at frequencies

v = 2vq(1 —2m), (2)

v ~'1 =
4 vq (1 —2m) (B cos 0 —1), (B)

centered at the nuclear Larmor frequency, where m is
the expectation value of I, (referenced, now, to the z
axis defined by the applied field) in the initial state, and
0 is the angle between the locally de6ned axis system of
the 6eld gradient and the macroscopically de6ned axis
system. de6ned by the applied Geld. Again, for any given
orientation this corresponds to a series of equally spaced
lines, and if 0 is known, knowledge of v is equivalent to
knowledge of vg. Figure 2(a) shows a calculated single
crystal spectrum for an I = 5/2 nucleus with vg = 9 kHz
and 8 = 90'.

In polycrystalline samples, the distribution of orienta-
tions yields a spectrum consisting of a distribution of fre-

where m is the spin moment of the initial state. The spec-
trum consists of a series of equally spaced lines associated
with transitions originating from the various possible ini-
tial states signified by m. Traditional NQR methods are
most appropriate where the transition frequencies appear
at sufficiently high frequencies (preferably above 10 MHz)
that sensitivity is good. This is rarely the case for the
alkali metals.

For relatively small values of vq, quadrupole-perturbed
NMR experiments are most common. In the presence of
a large applied field, first-order perturbation theory leads
us to modify Eq. (2) so that the quadrupolar interaction
is observed as an additional splitting of magnitude
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culated spectra provides a reasonable estimate of vg even
where only the central transition is observed. The accu-
racy of these measurements, at least in our hands, ap-
pears limited (by rf inhomogeneity, the finite step size
associated with the simulations, or our neglect in the
analysis of large chemical shift anisotropies).

For sufficiently large quadrupole couplings (vq
500 kHz), the central transition becomes structured and
shows well-defined. singularities. This can be explained
by second-order perturbation theory. For axially sym-
metric field gradients the orientation-dependent second-
order quadrupolar shift from the Larmor frequency VL,

for the central transition is

FIG. 2. Simulations of axially symmetric quadrupolar pow-
der patterns, as a function of vg. Each simulation assumes a
Larmor frequency of 100 MHz. (a) Single crystal spectrum of
an I = 5/2 nucleus with vq = 9 kHz and 8 = 90'. Lines cor-
respond to the )5/2) ~ )3/2), )3/2) —+ )1/2), )1/2) -+

[
—1/2),

(

—1/2) m
[
—3/2), and

[
—3/2) -+

(

—5/2) transitions. (b) Pow-
der spectrum of an I = 5/2 nucleus with vq = 9 kHz. Note
that the sharp singularities correspond to the 8 = 90' posi-
tion of the EFG as seen in (a). (c) Powder spectrum of the
central transition (~1/2) -+

~

—1/2)) of an I = 3/2 nucleus
with vq ——2100 kHz.

quencies, intensity weighted according to the probability
of Gnding a particular orientation. For example, 0 = 0',
where the EFG tensor is aligned along the applied ffeld, is
less likely than 0 = 90', where the EFG tensor is aligned
perpendicular to the applied Geld. Figure 2b shows the
calculated typical powder pattern intensity distributions
associated with randomly oriented Geld gradient tensors
for an I = 5/2 system with vq ——9 kHz. Each of the
individual transitions ~m) ~ ~m —1) is associated with
a powder pattern distribution including a singularity in
the intensity distribution corresponding to the 0 = 90'
orientation. If the singularities are clearly observed, si-
multaneous knowledge of their frequency and orientation
again makes it possible to extract vg.

As vq increases, the powder pattern increases in

breadth proportionately, unless m = 1/2, since vi/z
——0.

As NMR probes and receivers are narrow banded, often
the singularities associated with the outer transitions are
unobserved. In such cases there may be no directly ac-
cessible experimental probe of vg.

Under conditions where only the central transition can
be observed, an indirect technique can still provide an
estimate of v~. The quadrupole nutation experiment re-
quires that we vary the applied rf field used to excite mag-
netization. Where the applied rf field v,~ is large com-
pared to vg, the signal intensity after a pulse of length 7p

(observed in the central transition only) is proportional
to sin v f7p Where v, p is small compared to vg, the ob-
served signal intensity is proportional to sin(I+1/2) v,&v„.
Where v,~ and v~ are comparable, the signal intensity is
a complex function of the ratio of the two. Calculated
nutation spectra as a function of vg/v, g and I have been
published by Samoson and Lippmaa and by Kentgens
et al. , and a comparison between the observed and cal-

v ) = tI(I+ 1) —4](cos 6 —l)(9cos 0 —1). (4)
16VL,

Figure 2(c) shows a calculated second-order quadrupole-
perturbed powder pattern corresponding to the central
transition of an I = 3/2 nucleus with vq = 2.1 MHz and
axial symmetry. The frequency separation 6 of the two

sharp singularities is

(5)

and vq is readily derived once 6 is measured.
All three of these methods have been used to obtain

the quadrupolar coupling constants for the cation sites
of the various samples. The experimentally determined
vq's are presented below.

C. Isotropic shifts

The average resonance frequency deviates from the
Larmor frequency by a small amount

v b, = pBo(l —b,b, ),

where p is the gyromagnetic ratio, Bo is the magnetic
field strength, and b b, is the observed isotropic shift of
the nucleus. There are three contributions to the total
observed isotropic shift,

~(CS} + ~(KS} + ~(2Q)
iso iso iso

where the first term is the isotropic chemical shift, the
second is the isotropic Knight shift, and the last is the
isotropic second-order quadrupolar shift. The chemical
shift is due to the localized electronic distribution. The
presence of conducting electrons gives rise to a Knight
shift. In addition to broadening the features of the cen-
tral transition, second-order quadrupole eKects also shift
the center of mass of the entire pattern. The isotropic
second-order quadrupolar shift is given (in ppm) bye 'i

8,.'..~) = ——— I I S —3 4 10'.
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The isotropic shift can be used to characterize the elec-
tronic environment surrounding the nucleus.

D. Measured quadrupolar couplings

All experiments were performed on a home-built spec-
trometer, based on a 7.05 T wide-bore magnet, oper-
ating at Larmor frequencies of 39.3640 MHz for issCs,
65.7029 MHz for In, 98.1800 MHz for Rb, and
116.5920 MHz for Li. Variable temperature studies were
performed in a CF1200 continuous flow cryostat from Ox-
ford Instruments and home-built probes. Where magic
angle spinning was required, commercial probes capa-
ble of spinning 7 mm rotors (Doty Scientific, Inc. ) and
7.5 mm rotors (Chemagnetics) were used.

In this work we have studied MzMosSes systems for
M=Li, Rb, Cs, and In. For each of the alkali metals,
the highest abundance naturally occurring nuclear iso-
topes have quadrupole moments. For several of them,
there are multiple quadrupolar nuclear spin species —e.g. ,
Li (I = 1) and Li (I = 3/2), or Rb (I = 5/2) and

srRb (I = 3/2). Spectra of any of the available isotopes
should similarly reQect the electronic field gradient at
that site. In this work we will focus, therefore, on only
our results &om the single nuclear spin species where the
Larmor frequency was highest and the signal was easiest
to observe —i.e., Li, Rb, and In for the multiple-
isotope nuclei and Cs for the nucleus with only a sin-
gle spin-active isotope. There are additional NMR-active
nuclei associated with K (but of unfortunately low fre-
quency) and Tl (but as both isotopes have I = 1/2 there
is no quadrupole moment and therefore neither is sensi-
tive to electric field gradients).

As the lattice structures are similar independent of
cation, we assumed that the field gradients eq; would
dier relatively little from sample to sample. Most of the
variability in vg for the alkali metals (where the electron
contribution eq„should vanish) was expected to derive
from the difFering magnitudes of eQ and p . As such we
expected vg to increase in the progression Li-+Cs~Rb.

With its small quadrupole moment, we expected to
easily observe the full spectrum (central transition and
singularities associated with the ~3/2) -+ ~1/2) and
]
—1/2) ~

~

—3/2) transitions) for the lithium sites in
Li2Mo6Se6. It was somewhat of a disappointment when
the spectrum of Li2Mos See when first received [Fig. 3(a)]
showed a rather featureless line shape with no appar-
ent structure. As no change was observed upon cooling
[Fig. 4(a)], it was concluded that there was no dynamic
disorder and little evidence of I i+ mobility at room tern-
perature. However, upon heating to 480 K we observed
substantial spectral narrowing, indicating fast motion of
the Li+ cations [Fig. 4(c)]. When cooled slowly back
to room temperature (ca. 1 /min), the structured spec-
trum of Fig. 3(b) was observed. In the low-temperature
annealed sample, the singularities expected to indicate
the quadrupole-perturbed transitions are clearly shown,

50
Frequency (kHzJ

FIG. 3. Li (I = 3/2) spectrum of Li2MosSes at room
temperature vL, .= 116.592 MHz. (a) As received. (b) After
heating at 480 K for approximately 3 h. The singularities
of the outer transitions are clearly shown. From the posi-
tion of the 8 = 90' portion of the ~3/2) ~ ~1/2) transition,
vg ——19.6 kHz.

(cJ

Frequency (kHz)

FIG. 4. Li (I = 3/2) spectrum of Li2Mo6Se6.
= 116.592 MHz. (a) 77 K. No change in the linewidth

from (b) 298 K. (c) 480 K shows substantial narrowing of the
spectrum, indicating fast motion of the lithium cations.

and the powder pattern is readily analyzed and suggests
vg 19.5 kHz.

Room temperature spectra of the Cs in CszMosSes
showed some suggestion of the singularities expected to
correspond to the outer transitions in this multilevel sys-
tem (I = 7/2). However, we could not unequivocally
correlate between a singularity and a specific nuclear spin
transition, as the spectrum was substantially broadened
with respect to the ideal quadrupolar powder pattern,
and there also appeared to be a substantial chemical shift
anisotropy. Nutation spectra were observed as a function
of the applied rf field strength for relatively weak fields
(typically 3—15 kHz). One concern was that the rf field
was sufficiently weak that other interactions (e.g. , chemi-
cal shift anisotropies and/or dipolar couplings) might be
of comparable size. A second concern was that an analy-
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sis of the nutation experiment proceeds &om the expec-
tation that only the central transition is observed. It was
not obvious that this condition holds in our experiment.
Under these conditions, a series of six experiments with
varying rf strengths v, p yielded measured values of vq of
28 + 2 kHz.

The relatively large values of eQ and p for Rb led
us to expect much larger quadrupolar interactions. This
was confirmed by our observation of a structured central
transition spectrum &om the Rb nuclei in RbqMo6Se6
at room temperature [Fig. 5(a)]. The clearly defined sin-
gularities located at the edges of the second-order pow-
der pattern are characteristic of an axially symmetric
quadrupolar coupling, and the width is given by Eq. (5)
above. We find an experimental value of vq ——3624 kHz.

The room temperature In spectrum of In2Mo6Se6
in Fig. 6 is most reminiscent of the analogous Rb spec-
trum. Again we see a central transition line shape char-
acteristic of an axially symmetric quadrupolar coupling
tensor. Based on our analysis of the second-order pat-
tern's width we measured vg ——1310 kHz. So as to con-
firm this observation, we subsequently performed a se-
ries of experiments where the exciting rf irradiation pulse
was swept to lower and higher frequencies, with the hope
that we might observe some of the low-intensity first-
order quadrupolar-split transitions associated with this
I = 9/2 nucleus.

The full spectrum is shown in Fig. 7. The figure corre-
sponds to 30 separate experiments, displayed simultane-
ously on the same spectrum. The exciting rf frequency
was incremented between experiments by 200 kHz steps.
At each stage the probe was retuned and the pulse widths
adjusted to account for the diKering excitation efficiencies
associated with each quadrupolar transition, although
it is diKcult to be certain that intensities are reliable
across the entire spectrum. Nonetheless, it was gratify-
ing to observe so clearly the signal intensity peaks corre-
sponding to the 0 = 90' portion of the powder pattern

250

I C~

Frequency (kHz)

FIG. 6. ' In (I = 9/2) spectrum of inzMosSe6 (room tem-
perature), central transition (ll/2) -+

I

—1/2)), showing a sec-
ond-order quadrupolar splitting. vL,

——65.7029 MHz. Prom
the splitting between the two sharp singularities, vg is mea-
sured to be 1310 kHz. The line shape also indicates that the
EFG is axially symmetric (q = 0).

[associated with the transitions (c) I

—3/2) ~
I

—5/2),
(~) I-I/2) ~ I-3/2) (e) II/2) + I-I/» (f) IS/2) -+
Il/2), and (g) I5/2) -+ I3/2)] at precisely the &equen-
cies predicted by our analysis of the second-order powder
pattern. The unobserved singularities (associated with
transitions (a) I

—7/2) ~
I

—9/2), (b) I

—5/2) m
I

—7/2),
(h) I7/2) ~ I5/2), and (i) I9/2) -+ I7/2)] are spread over
5 MHz, and we saw little reason to pursue them further.

In the case of the In, where we have analyzed a
second-order spectrum, the pattern is noticeably dis-

1 0 -1 -2
Frequency (8Hz)

-200

FIG. 5. (a) Rb (I = 8/2) spectrum of RbqMosSe6 (room
temperature), central transition ( I 1/2) —+

I

—1/2) ), showing
a second-order quadrupolar splitting. The splitting between
the two sharp singularities gives a vg of 3624 kHz. The line
shape indicates that the EFG is axially symmetric (g = 0).
vL, = 98.18 MHz. (b) Simulated spectrum using the calculated
value of vg —— 3618 kHz.

FIG. 7. Full ' In (I = 9/2) spectrum of In2Mo6Se6
(room temperature). 30 individual spectra were taken
with the excitation frequency incremented in 200 kHz

steps and the pulse widths accordingly adjusted as dis-

cussed in the text. The center of the spectrum cor-
responds to vl. = 65.7029 MHz. The singularities of
the (c) I

—3/2) ~
I

—5/2), (&) I

—1/2) -+
I

—8/2)
(c) I1/2) ~

I

—1/» (f) I3/» -+ I1/» and (g) I5/2} ~ I8/2))
transitions are clearly observed. The outer transi-

(a) I

—7/2) ~
I

—9/2) (5) I

—5/» ~
I

—7/»
(h) I7/2) -+ I5/2), and (i) I9/2) m I7/2)) are spread over

5 MHz, and are diKcult to discern.
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E. Predicting the lattice centributien eq;

X. Lattice stcmmation: backgrotcnd

Given the lattice constants and symmetries derived
&om x-ray diffraction data, it should be a simple matter
to calculate the ionic contribution to local field gradients.
The nPth component (for n, P = x, y, or z) of the field

gradient tensor V due to a distribution of surrounding
charges ss

T2p r nP 3—bye
)4vrep E r5 (9)

for the charge density p of the distribution and
r = (z, y, z) the internuclear vector. Each of the tensor
elements may be generated from this expression. In our
problem, each cation occupies a site of threefold sym-
metry with respect to rotations about the crystalline c
axis. This high lattice symmetry guarantees that the
field gradient is identical along any axis in the a bplane, -
i.e. , is axially symmetric. Laplace's equation (V'2V = 0,
or the field gradients in the three canonical directions
siam to 0) and this axial symmetry ensure that only one
parameter —V, —is suKcient to describe completely the
lattice contribution to the field gradient tensor (where
the field gradient z axis coincides with the crystalline c
axis), and Eq. (9) reduces, for the V„th component, to

f,:, ('"'„..'.=') '
Despite the apparent simplicity of Eq. (10), attempts

to calculate lattice contributions to nuclear quadrupole
couplings are relatively infrequent. Early efforts have
suggested that the convergence of the implied lattice
summation was poor. The argument against conver-
gence of the sum goes roughly as follows. The contribu-
tion of a particular ionic site to the Geld gradient at some
other site in the lattice varies with 1/r, where r is the
internuclear distance. As any sum over all lattice points
must necessarily sum over spheres of increasing radius,
and (on average) the number of lattice points increases
as r, the contribution &om successive radial shells varies
as 1/r. But it is well known that infinite sums over 1/r

torted from that of the ideal second-order pattern. In
particular, the up-field (low frequency) singularity is of
lower intensity (and perhaps more broadened). It has
been suggested that this reQects some lattice disorder;
it may also be an artifact of the particular excitation se-
quences used to obtain the time-domain spectra. The
observation of first-order satellites consistent with the
analysis of the second-order pattern ignoring this distor-
tion leads us to believe that no fundamental features are
ignored in the process.

do not converge.
The fallacy in this argument is clear. Ions must "per-

form" the very same calculation we have described above
in order to know what 6eld gradient they experience. As
quadrupole couplings in well-ordered crystals are 6nite
and measurable, the associated 6eld gradients must be
similarly finite in size and, therefore, the sum must be
convergent. Our problem, then, is to discover a pro-
cedure which emphasizes the convergent aspects of the
problem so as to efBciently calculate quadrupole coupling
constants.

A basic outline of the solution follows; a more detailed
description is provided below. A si.mple prescription for
calculating field gradients seems to require attention to
the following details.

(1) The second derivative of the potential V„varies
as P2(cos8), i.e., the field gradient tensor is highly di-
rectional. Positive contributions &om the angular de-
pendence are found in cones with angle 54.74 above
and below any given point charge, whereas negative con-
tributions are found everywhere else. Any numerical
summation which works by calculating sets of lattice
points in (z, y, z) coordinate space is likely to cover all
of the positive contributions quite readily; but in any x-y
plane, many of the negative contributions are at long dis-
tances. A simple solution is available —as P2(cos &) van-
ishes when integrated over a sphere, an opportune basis
set for any nuinerical integration is to operate in shells
of increasing r integrating in (r, 8, Pj space.

(2) The lattice sum should exploit the syinmetry of
the lattice —i.e., the lattice summation should be con-
sidered not over lattice points, but over unit cells in the
lattice. At suKciently large distance, the electric 6eld
due to charges located in an electrically neutral cell must
fall off more rapidly with distance than does a dipolar
6eld. Problems of convergence appear to be often asso-
ciated with summations which sum over all ions within
a speci6ed sphere, rather than over complete cells which
fall within that sphere. This may appear to be a fine
distinction; nonetheless, a simple argument suggests the
difference. At the surface of the sphere, where partial
cells which need not be electrically neutral are included,
the field due to these isolated charges does not necessarily
converge.

2. A mtcltipole expansion

Our model for the lattice summation is as follows. We
take for the lattice constants the extensive x-ray compila-
tions of Tarascon et al. which describe a lattice belong-
ing to space group P6s/m. Each cation is assumed to
be singly ionized and its electron donated to the molyb-
denum selenide chains. We further assuxne that the elec-
tron density is uniform along the conducting chains so
that V„, the field gradient along the crystalline c axis,
is 0. Under these conditions and for our lattice sym-
metry, there is no contribution to the Geld gradient at
the cation lattice sites from electrons in the conducting
chains. Thus the lattice sum over the charge distribution

p in Eqs. (9) and (10) can be restricted to a summation
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over the cation distribution.
Simmons and Slichter provide a procedure for run-

ning the calculation using a multipole expansion to sum
over electrically neutral Wigner-Seitz cells. Their mul-
tipole expansion gives the potential V„ for a lattice of
point charges as a discrete sum,

/r;+ R/„

Radius of summation

(A)
25
50
75
100

Direct sum
(10' Hz/e A')

1.012 619
1.015 336
1.023 083
1.027 883

eq,
Multipole expansion

(10 Hz/e A )
1.020 244
1.019984
1.020 007
1.020 006

TABLE II. Calculated eq, . Comparison of direct lattice
sum and multipole expansion (n = 6) for RbqMogSe6.

TABLE I. Multipole expansion calculation in a sphere
of radius 100 A. for RbqMo6Ses. A direct lattice sum is
taken over the first 25 A, being careful to include complete
signer-Seitz cells. The multipole expansion is performed in
the annulus between 25 A. and 100 A.

25 A. direct sum
n=2
n=3
n=4
n=5
n=6

eq,.

(10"Hz/e A')
1.020 244
1.021 474
1.020 862
1.020 411
1.020 135
1.020 006

Change
(%)

+0.1205
—0.0599
—0.0442
—0.0270
—0.0126

where r; = (z, , y;, z, ) is the vector from the origin to the
center of the Wigner-Seitz cell, R = (z, y, z) is the vector
from the center of the cell to the lattice points, and I7; =
( ss, s, s, ). The monopole (n= 0) and dipole (n= 1)
terms of the expansion vanish due to the neutrality and
the symmetry of the cell, and so the first term of the
expansion is the quadrupole term (n= 2). These terms
have an (R" 2/r,") dependence. Since R is limited by
the size of the Wigner-Seitz cell, the terms converge quite
rapidly with the distance r, .

The multipole expansion only holds for large r;. There-
fore a direct lattice sum is performed on the cations
within the first 25 L radius, being careful to include only
complete cells. The multipole expansion is then used on
the cations in the annulus from 25 A. to the final radius
of the summation.

Calculations were performed on a SPARCStation IPC
from SUN Microsystems. Table I shows the contribu-
tion of the expansion terms up to n = 6 for Rb2MosSes.
The direct lattice sum over the first 25 A. yields V„=
eq, = 1.020244 x 10 4 Hz/e A2. The quadrupole term
(n = 2) changes the calculated field gradient by 0.12%.
The higher-order corrections fall oft quite rapidly. Ta-
ble II compares the direct lattice sum and the multi-
pole expansion as the radius of the summation sphere
increases. The di8'erence at 25 A is due to the inclusion
of partial cells at the surface of the sphere in the direct
lattice sum. Clearly, the multipole expansion converges
much more quickly than does the direct lattice sum. As
seen in Table II, increasing the summation radius &om
75 A to 100 A. only changed the value of eq, in the seventh
significant digit, while the calculation time on the work-
station doubled. The smallness of the multipole correc-
tions suggests that the straightforward sum over the lat-

tice is reasonably adequate, and similar conclusions have
been recently reached by others as well. However,
the multipole expansion was still used out to 100 A. and
n = 6 for our samples.

Table III gives the calculated values for the field gra-
dients as a function of cation. In accordance with our
expectation, the ionic contribution eq; (based on our as-
sumption of complete ionization) varies only modestly as
a function of cation. Most of the positive contributions to
the field gradient are associated with positively charged
ions above and below the origin of our problem, which

depend on the lattice parameter c and which vary little
with cation size. Most of the negative contributions to
the field gradient are associated with positively charged
ions displaced along the a or b lattice directions, and are
smaller for larger unit cells (larger cations).

F. The spectroscopic splittings

Calculation of spectroscopic splittings requires a
knowledge of both the nuclear quadrupole moments (eQ)
and the scaling factor (1 —p ). The former are gener-

ally measured to a reasonably high degree of accuracy.
However, there appears to be some disparity in the lit-
erature values of the quadrupole moment of 3 Cs. The
quadrupole moment is very small, and so the accuracy
of the measurement is inherently smaller than for larger
moments. The reported value of Q for issCs varies from
—0.002 b to —0.004 b

The atomic polarizabilities represented by p are gen-

erally known only theoretically and are available in stan-
dard references as well as scattered throughout the lit-
erature. For the ionized alkali metals, the Sternheimer
factors are available. No comparable theoretical value

for In+ exists. Therefore, we must proceed with a best
estimate.

Mohapatra has recently reported p for In (neutral)
as —21.7, and further suggests that the polarizability
should decrease in magnitude as electrons are removed.
In that spirit, his calculations show p = —12.40 for
Zn and p = —11.54 for Zn +. Furthermore, all cal-
culations suggest that in isoelectronic systems the mag-
nitude of Sternheimer factors decreases rapidly with in-
creasing nuclear charge when the numbers of protons and
electrons are comparable, and so p for In+ is almost
certainly smaller in magnitude than for the isoelectronic
species Cd (p ——30.85). We will subsequently assume
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TABLE III. Calculated vg = 3e q, &,Q(1 —p )/2I(2I —1)h vs measured vg = 3e qQ/2I(2I 1—)h
for various MqMo6Se6's.

'I i+
133C +
"Rb+
115' +

0.255
—110.81
—52.781
—20

(10-' A')
—0.0366

—0.002 to —0.004
0.132
0.861

eq, &,

(10' Hz/e Az)

9.294 863
11.878 87
10.200 06
9.915 574

(kHz)

12.7
18—36
3618
750

~vq ~expt

(kHz)

19.6
28+2
3624
1310

& —21.7 for In+, and a value of approximately —20
appears reasonable. Small errors in determining p will
have little impact on our ultimate conclusions.

III. DISCUSSION

A. Comparison of experimental and theoretical
values

Based on the calculated values of eq, and the available
values of eQ and p taken from literature sources, we ar-
rived at the theoretical values of the spectroscopic split-
ting provided in Table III. We first focus on the three
alkali metals. For Li in Li2Mo6Se6, where the Stern-
heimer factors are small, the calculated value of vq is
significantly smaller than is observed. This is somewhat
puzzling. For a well-ordered lattice, most of the possi-
ble discrepancies would lead to overestimates of vq, not
underestimates. In particular, if the Li site is only par-
tially ionized then the calculated quadrupolar coupling
constant eq, should be scaled by the percentage of ion-
ization. Were there residual electronic charge remaining
on the cation, the only available orbitals in Li are spher-
ically symmetric and do not contribute to eq„.

For Cs in Cs2Mo6Se6, it is somewhat diKcult to
compare the experimentally observed value with the cal-
culated value. Our confidence in the spectroscopic mea-
surements is limited (as explained above). Furthermore,
it appears that for Cs eQ is known with only limited
accuracy as discussed above. Therefore we do not find
small discrepancies significant, and the measured value
is within the range given by the accuracy of eQ.

For Rb in Rb2Mo6Se6, we have, perhaps fortuitously,
an excellent match between calculated and observed val-
ues of vg, where the two values difFer by less than
1.0%%uo. This is particularly important, as the technique
of measurement —based on an analysis of the width of
the second-order quadrupolar powder pattern —is iden-
tical to that used in the analysis of the In spectrum in
In2Mo6Se6. A simulated spectrum based on the calcu-
lated value of vg is shown in Fig. 5. The close agree-
ment between calculation and experiment suggests that,
at least for Rb, our lattice model for the ionic contribu-
tion to the field gradient is reasonable and provides a full
explanation for the observed spectroscopic splittings.

The In and Rb species have values of vg of comparable
magnitude, and both are measured by an analysis of the
second-order quadrupole splitting of the central transi-
tion. Nonetheless, our calculated value for eq; in the In-

based compound (which is essentially the same for the
two cations of similar size) substantially underestimates
the observed spectroscopic splitting for any reasonable
values of the Sternheimer factors. Given that similar
spectroscopic techniques were used, this deviation of al-
most a factor of 2 between calculation and measurement
for In is certainly significant.

B. Explaining the deviations

As noted above, the significant deviations between the-
ory and experiment are found for the cases of Li in
Li2Mo6Se6 and In in In2Mo6Se6. This was particu-
larly puzzling for the former, since the only accessible
electronic states in Li are the ls and 2s orbitals. As each
has spherical symmetry, neither should contribute to the
field gradient eq and so the entire contribution to vq
should be attributable to eq;.

A separate NMR probe is available for the investi-
gation of local electronic environments. The isotropic
resonance frequency (ignoring some small second-order
shifts associated with large quadrupolar couplings) varies
with local chemical and/or electronic environment. In
solids, where the largest interactions are anisotropic, spe-
cial techniques are required to measure the isotropic shift
with high precision. The most common method involves
spinning the sample about an axis tilted 54.74' with re-
spect to the main field (the so-called "magic angle" ).
At slow spinning rates, the spectrum breaks up into
a peak at the isotropic chemical shift Hanked by side-
bands at multiples of the spin rate. The magic angle
spinning (MAS) spectrum of rLi shows two distinct Li
environments in LizMosSes at room temperature [Fig.
8(a)]. Varying the spin rate and identifying the spin-
rate-independent lines provides a simple method of iden-
tifying the isotropic peak(s). In our spectrum we find
two overlapping patterns of Li shifts and sidebands, with
isotropic shifts 1.9 ppm and —1.0 ppm referenced to 1M
aqueous LiC1. In contrast, the i Cs MAS spectrum [Fig.
8(b)] indicates only one distinct site.

NMR studies of lithium intercalated in molybdenum
cluster chalcogenides have been recently presented by
Prigge et al. They have studied a series of compounds
of chemical formula Li Mo6Ses, for 1 & 2: & 4. These
compounds are related to our systems as endcapped
monomers of our polymeric repeating unit. These au-
thors find a dramatic variation in the isotropic value of
the Li shift as x changes. These shifts can be classi-
fied as primarily due to chemical efFects (i.e., as chemical
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FIG. 8. Spinning about the "magic angle" (54.74' with
respect to the main field) breaks up the powder pattern
into a peak at the isotropic chemical shift and sidebands
(denoted by *'s) at multiples of the spin rate, revealing
finer chemical details. (a) Li MAS spectrum of Li2Mo6Se6.
vz, ——116.592 MHz. This clearly shows the existence of two
Li sites. The isotropic shifts are 1.9 ppm and —1.0 ppm ref-
erenced to 1M aqueous LiC1. Spin rate is 1.7 kHz. {b) Cs
MAS spectrum of Cs2Mo6Se6. vL, ——39.364 MHz. In contrast
to the Li spectrum in (a), there is only one distinct site in

this compound. The isotropic shift is at 400 ppm from 0.5M
aqueous CsCl. Spin rate is 5.5 kHz.

shifts due to localized electronic distributions) or elec-
tronic e8'ects (i.e., as Knight shifts due to conduction
electrons) by measuring Ti relaxation rates at various
temperatures. A Knight shift is indicated when the Kor-
ringa relationshipi2 holds, Ti oc 1/KzT, where K is the
Knight shift and T is temperature.

Prigge et al. 2 further report isotropic shifts as large
as 111 ppm for Li3Mo6Se8, and as small as 3 ppm for
Li4MosSes (referenced to aqueous LiCl). Based on Ti
relaxation data, these authors have identified the large
shifts as Knight shifts, and the small shifts as ionized
Li+ cations. Our shifts are similarly small, and the tem-
perature dependence of our Li Tq measurements is in-
consistent with a substantial Knight shift contribution
to the relaxation. This demonstrates that there is neg-
ligible overlap of the Li s orbitals with the conduction
band in Li2Mo6Se6.

Furthermore, we observe what appear to be two dis-
tinct isotropic shifts, indicating at least two distinct Li
sites with slightly different chemical environments. This
is, of course, inconsistent with the x-ray lattice classiGca-
tion which suggests only a single cation site, but this is
not surprising due to the small size of the Li+ cation. Be-
cause the Li+ cation cannot be directly seen by x ray, its
position has been determined by the locations of the sur-
rounding atoms. It has previously been observed that
the lattice constant a shrinks in proportion to the cation
radius, except for when Li+ replaces Na+. As electro-
static repulsive forces work to maintain a distance of
minimum approach between chains, the small Li+ cation
appears not to occupy a single, mell-defined lattice site.

Due to the low electron density at the Li+ cation, this
deviation from the symmetry of the ideal P6s/m space
group may be unobservable using x rays. It is, however,
consistent with a quadrupole coupling constant di8'erent
from that calculated on the assumption of the atomic
coordinates of P6s/m symmetry.

In the alkali-metal-based molybdenum selenides, we
believe our simple model for the Geld gradient is there-
fore predictive. However, there remains a large deviation
in the indium molybdenum selenide. This deviation is
particularly surprising in that the lattice parameters and
spectroscopic measurement techniques are most similar
to those employed in the analysis of the Rb2Mo6Se6,
where our predictions most closely reproduced the ob-
served value of vg. There is, however, one particular
difference between the two cases.

In the alkali metals, there are no low-lying electronic
orbitals which can contribute to eq . This is not neces-
sarily the case in In2Mo6Se6, where the In cation releases
an electron to the chains &om its singly occupied p or-
bital. In an atomic beam experiment, Kusch and Eck
measured the quadrupole splitting for In containing one

p electron. They found (1 —B,)e2q„Q/h = —899 MHz.
Based on Eq. (1) above, which represents the total eq at
the nucleus, we can calculate a partial occupancy for the
In p orbital. An axially symmetric total Geld gradient
is possible only if eq, and eq, have the same principal
axes. As our calculations predict eq, is axially symmet-
ric with respect to the crystalline c axis, the partially
occupied p orbital must be axially symmetric with re-
spect to that same axis. Moreover, eq, and eq are of
opposite sign to one another. %bile we do not know
experimentally the absolute sign of the spectroscopically
determined quadrupole coupling, we do know that its
magnitude exceeds that of t q;; therefore it must be neg-
ative, like eq„. Thus, with (1 —p~)ezq, Q/h = 18 MHz,
and e qt~«iQ/h = —31 MHz, we have

~e'q, , iQ/h(+ ~(1 —p )e'q, Q/h~

](1 —R, )ezq„Q/h
—0.05.

Note that this partial occupancy is sufBciently small that
rescaling the ionic contribution to reflect the average pos-
itive charge of only 0.95 would change the above con-
clusions only minimally. This partial occupancy is also
consistent with electronegativity arguments which pre-
dict that the indium would be less likely than the alkali
metals to donate its valence electron.

C. Isotropic shi8ts

A partially ionized orbital may lead to a Knight shift.
We may measure the isotropic indium shift [referenced to
a saturated aqueous solution of Inz(SO4) s] f'rom the sin-
gularities in the central transition, and b b, ———347 ppm.
Calculating the second-order quadrupolar contribution



50 PROBING THE ELECTRONIC STRUCTURE IN M2Mo6Se6. . . .

to this shift from Eq. (8), one obtains b;,q= —288 ppm,
leaving approximately —59 ppm for either a chemical
shift or a Knight shift. Pure indium metal has been ob-
served to have a Knight shift of 0.82% at 300 K. Since
indium metal donates three electrons to the conduction
band and the In2Mo6Se6 donates one electron from each
indiuxn atom, we must also scale the 5% p-orbital oc-
cupancy by a factor of one-third. This indicates that
we should look for a Knight shift at 300 K of 140 ppm,
which should be large enough to see easily. However, be-
cause indium chemical shifts can range from 440 ppm to
—555 ppm, it would be difficult to distinguish between
a chemical shift and a Knight shift in this case.

The measured isotropic shift in the rubidium com-
pound is b b, = 185 ppm from 1M aqueous RbNOs. 8;,
is calculated to be —136 ppm. The Knight shift in pure
rubidium metal is 0.6693% at 300 K and 0.6643% at 4 K.
Again assuming a partial occupancy of the 8 orbital in
the Rb2MosSes of 5%, we should be looking for a Knight
shift on the order of about 330 ppm. The isotropic chem-
ical shift range for rubidium varies from 183 ppm for RbI
to —53 ppm for Rb2Cr04. The Rb2Mo6Se6 sample was
cooled to 6 K. No substantial change in either the size of
the quadrupole coupling or in the isotropic shift was ob-
served between 300 K and 6 K. In addition, Korringa-like
behavior of the Tq's was not observed over this temper-
ature range, which would indicate that the Knight shift
has a small contribution to the total observed shift. How-
ever, the alkali metal molybdenum selenides have the ad-
ditional complication of the conductivity changing at low
temperatures. A change in the resistance of Rb2Mo6Se6
has been reported at about 60 K. Again, it would be
difficult to deGnitely assign a Knight shift or chemical
shift in this case.

The xssCs MAS spectruxn [Fig. 8(b)j indicates a single
site, which is supported by the x-ray powder diffraction
data, with an isotropic shift of 400 ppm &om 0.5M aque-
ous CsC1. Using the Korringa relationship and the TqT
relationship for cesium metal, if this were a Knight shift,
the Tq at room temperature should be about 0.5 sec. The
Tq at room temperature of this compound is about 45 sec,
which is inconsistent with a Knight shift. This shift also
appears to be sample dependent. We have observed a
400 ppm range of isotropic shifts for different samples of
Cs2Mo6Se6. However, the different samples all have ap-
proximately the same size quadrupole coupling constants
(within 10%). Since these shifts do not appear to be due
to Knight shifts, they do not impact on our conclusions.

Isotropic 7~Se shifts (I = 1/2) have been measured by
MAS on these compounds. While we observe differences
in the isotropic shifts over a 50 ppm range, the full range
of Se shifts covers about 1500 ppm. In addition, the
band-structure calculations indicate negligible electron
density at the selenium sites. Because of this, we do not
expect the electronic structure of the chains to have an
impact on our results.

IV. CONCLUSION

A number of studies have demonstrated that there is
a substantial difference between the electronic structure

in alkali molybdenum selenides and group IIIA molybde-
num selenides. This difference is manifested in bulk prop-
erties such as the low-temperature transition to a semi-
conducting phase found in the former compounds, and a
superconducting phase in some of the latter compounds.
These bulk properties are indicative of microscopic dif-
ferences in the electronic structure and are characteristic
of one-dimensional structures (in the alkali molybdenum
selenides) or multidimensional structures (in the indium
or thallium molybdenum selenides). The mechanism by
which chains might couple has not previously been de-
termined.

In this work we have used as our probe of local elec-
tronic structure the interaction of nuclear quadrupole
moments with electric field gradients. Quantitative com-
parisons of theoretical and experimental values are rel-
atively rare, apparently due to the perceived difficulty
in performing the necessary lattice sums. We believe
those difficulties are overestimated, and that, with mod-
ern computers and mell-chosen summation strategies,
good results are readily achievable. In our case, we
find that calculations and experiments yield the same
quadrupole coupling constant for Rb in Rb2Mo6Se6. For
Li in Li2Mo6Se6, we Gnd that a low-temperature an-
nealing process at 200'C transforms a disordered lattice
into a better-ordered array, presumably by Li+ diffusion.
The lattice thereby produced is not that observed in the
x-ray structures (which are relatively insensitive to Li
positions) in that at least two Li environments are ob-
served. Under these conditions, the quadrupole coupling
constant is not expected to be calculable as we no longer
have the appropriate coordinates to enter into the lattice
summation.

The magnitude of the quadrupolar coupling constant
measured for In in In2Mo6Se6 cannot be explained in
the same fashion as for Rb, despite the similarities in
lattice parameters and methods of measurement. By in-
voking a valence electron contribution to the measured
quadrupole coupling we can account for the observed Geld
gradient by assuming partial conduction band overlap
with p orbitals localized on the In site. This overlap
further explains the phenomenon of interchain coupling
observed in In2Mo6Se6, as conduction electrons found in
a cation orbital are equally likely to subsequently return
to any of the three symmetry-equivalent nearest-neighbor
(Mos Ses)„chains.
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