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Nonrelativistic multiple-scattering theory of a spin-polarized electron
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We present a nonrelativistic multiple-scattering theory of a spin-polarized electron including the
spin-orbit interaction. It is generalized to the ¹catterer case and the scattering by an ordered
layer. A proper design of the potential form and the radius of a quantum dot may enhance the
electron spin polarization very efFectively utilizing the spin-orbit interaction.

I. INTRODUCTION

It is known that an unpolarized electron beam can be
polarized through a scattering process. Two kinds of in-
teractions are responsible for it. One is the exchange
interaction; the other is the spin-orbit interaction. The
exchange interaction is essentially a many-body effect be-
tween electrons. For example, it plays a key role in the
scattering by magnetic impurities in metals, and it is well
known as the Kondo problem. But the exchange effect
may become smaller as the energy of the incident elec-
tron increases. In this paper, we study only the cases
where the energy of the incident electron is suKciently
high to justify the neglect of the exchange interaction,
namely, we study the potential scattering problem includ-

ing the spin-orbit interaction. The theoretical basis for
low-energy unpolarized electron diffraction (LEED) has
been developed and many surface structures have been
determined with it. 4 Feder and his co-researchers have
also developed a relativistic version of the LEED theory
including the spin polarization of an electron. s Prom
their numerical analysis, it is obvious that the spin-orbit
interaction is not so effective in producing significant spin
polarization; the functional form of the spin-orbit inter-
action is responsible for this. On the other hand, the re-
cent rapid advance of microelectronics technology makes
it possible to fabricate various kinds of artificial atoms
known as quantum dots. Then, the freedom to change
the potential form and the radius of a quantum dot may
provide a great opportunity to achieve high efBciency of
spin polarization. Ru thermore, a proper spatial distribu-
tion of quantum dots may lead to further enhancement.
In order to proceed with the investigation of such sys-
tems, we need a nonrelativistic multiple-scattering the-
ory of the spin-polarized electron for many scatterers,
including the spin-orbit interaction. It is the main pur-
pose of this paper to provide such a theoretical tool to
investigate various scattering properties of the artificial
atoms. It is a natural extension of our previous work for
the spinless system to the spin system. We hope that
the present work helps further active use of the electron
spin freedom in future microelectronic device design.

The outline of the present paper is as follows. First, we
derive in Sec. II the T matrix of a spin-polarized electron
for the individual scatterers. It is extended to the N-

scatterer case, including scattering by an ordered layer,
in Sec. III. Discussions are given in Sec. IV.

II. T MATRIX INCLUDING SPIN-ORBIT
INTERACTION

We assume here that an electron is scattered by the
following potential:

V(r) = V'(r) + V'(r)l s, (2 1)

using the spin wave function of an incident electron

, m = kz. Substituting the following expansions

of the wave functions4'~2

(r) -=) 4ni" F,,l,„,l„(r)
j j.Lg,j2L2

x Y,,I, i (r)Y. *, (k), (2.3)

e'"' = ) 4+i'jt(kr)Y&i (r)Y. ,'(k),
jL

(2.4)

and the free Green's function expanded in terms of
Y, , = C(l —j;m, m )YI, or Yl, i = P Y&, Z|

2
2 2 2 ™~gL2

) j)(kr() hI l (kr) )
jL

x Y,L .(r)Y.'q, (r"'), (2.5)

into Eq. (2.2), we can obtain an integral equation

where V (r)l s is the spin-orbit interaction potential.
Then the Lippmann-Schwinger equation becomes

(r) = y. e'"'+ f d r'Ge(r —r')V(r')|) (r'),

(2.2)
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(2 6)

(2.7)

constant, YL,(r) is spherical harmonics, j~(kr), hI (kr)
are spherical Bessel and Hankel functions of the first
kind, respectively, and r) ——max(r, r'), r( ——min(r, r'),
L = (l, m). Furthermore,

V'(r) = ) Vl*(r)YI, (r), i = 1, 2,
L

l sY&i(r)= 2 j(j +1)—l(l+1) —
4 YjL, i(r)

—= (!( ), —;()

Aj L, j L, = ) C(li2ji, mi, m ) C(lq-sos, ms, m ),

(2.8)

YL(pl)YL, (p2) = ) Yjr, i(pi)Y r, i (p2))

dO„YL, r YL, r YL, r" (2 9)

Ll(pi) Ls(p2) = jlLi-'(pi) l, -'(p2)~
$1 1/2

is the Gaunt number, C(l2j;m, m ) is the Clebsch-
Gordan coefficient, is the energy of an incident electron is

5 kE =
2
",k = ~ki, m, is the electron mass, h is Planck's

and j = l + 2
= j~ are used. Since Eq. (2.6) is a one-

dimensional integral equation of the Fredholm type, it
can be easily solved numerically. It is also transformed
to the Vorrtela type as

T'

fj,L„j,L„(r) = j~, (kr)bj,j,bl„r„+ ) dr' j~, (kr')hI (kr) —j~, (kr)hI (kr') Uj, l„j,L„(r )fj,r„j,z„(r ),
~ 0jsLs

(2.iO)

and Fj,l„jsl,s(r) = (F)j,r„jsr,s can be obtained from

F= fC,
OO

C = I — dr'H(kr') U(r )f(r )
0

(2.11)

where we have used the matrix representation; a tilde signifies a matrix, rows and columns of which are labeled (j,L),
H(kr) = hI (kr)bj,jsbr„l,„and I is a unit matrix. In general, a T matrix is defined by

V(rr}d(rr) = f (r rr r) r(rd) rr d, r

then, expanding it in angular momentum space as

(2.12)

we can arrive at

t(ri, r2) = ) tj, L„j,l,„(rir2)Yj,z,, ~(ri)Yj I i(r2),
j1L1jgLg

(2.i3)

(k)= i ' ' ridri r2dr2j I, (kri)tj, I,„~;1,„(rir2)j &, (kr2)
0 0

and the T matrix in k space is

n' i-("-")
dr~~. (kr) ) U'. ~.'.~.(T)F'.~:.~*(r)2m k 0 jsLs

(2.14)

(kjmj ~t~ k;m' )—:(4n) ) tj, l„j,l., (k)Y. , (kj)Y. , (k,).
j1L1jmL~

(2.15)
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Therefore, using solutions of one-dimensional integral
equations of the Predholm type or the Vorrtela type for

or f, we can determine the scattering process of a
spin-polarized electron exactly. In the next section let us
extend it further to the N-scatterer problem.

III. N-SCATTERER PROBLEM

where R; are the positions of the scatterers. Using

Go(pg + R, —p2 —R, )

). G;,'L„,,L„i" "ii, (kp~)&i, (kp2)
j1L1j2L2

x Y, l. ~ (pi)Y'I. ~ (p2) (3 2)

Similar to the spin-independent potential scattering
case, the total T matrix for N scatterers can be ex-
panded as

T =).tR;+ ) tR;GotR,
R, R;gR~

and

Gst
j1L1j2L2

8am, ik 1 z' —1 'C
21 122 2 3

xh, (k iR, —R~i)YI"„(R,—Ri), (3 3)

+ ) ) tRiGotRi GotRq + ' ' '

R;gR~ R~ QRg

(3.1)
we can obtain the following total T matrix in k space:

T(kfmI, k;m' )= (kymI IT~ k;m' )
= (4x) ) Kgb�(Z —GTi)K+ . . Y. , (k )Y. , (k;),21 12 g2L2 2j1L1j2L2

(3 4)

where I = (t, —m),

0
0 t 0

0 0
0 0

If we introduce the two-dimensional translational invari-
ance and assume that all the scatterers are identical, the
T matrix in k space becomes

G21

0 0
p p ~ ~ ~

~ p

0 gN

0

0 0 ' 0

G1N

G2N

(3 5)

(3.6)

T(kgmI, k;m') = (4m) ) e '"'
Ct

x ) ((II —B(!c;)il ')
j1L1j2L2j 1 L1g2L2

x Y -, (kg) Y. , (k, ), (3.10)

and then the following scattered wave function can be
obtained:

GN1 GN2 GNN —1

GN —1N

0

~ikg x

@„ti(r) = — ) (kgms ~T~ k;m' ), (3.11)52 - k, g

( e iky. Ry I —
e

—iky RN I ) (3 7) where

and

( e'k R~I )

4

eikf R~I )

(3.8)

B(k;) —= B,, I,„,L„(k;)
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I 0 e ~ ~ ~ ~ o 0
~ ~I 1 \ 4

- 1/2
k, (g) = sgn(z) k' —(k,

, ~

+ g)'

0 o ~ ~ ~ ~ o 0
0

(3.S) I is the two-dimensional reciprocal-lattice vector,
sgn(z) = 1 for z & 0 and —1 for z ( 0, and k;~~ is the
parallel component of the incident wave (see Appendix
A of Ref. 12 for the details). The electron wave function
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given by Eq. (3.11) corresponds to that of the dynamical
theory for nonrelativistic polarized low-energy electron
diffraction (PLEED) analysis. If we choose forward scat-
tering, it can be applied to transport problems, too.

IV. DISCUSSIONS

Although a relativistic version of the LEED theory has
been developed by Feder et al. befores using a differ-
ent approach from ours, the scope of the application of
spin-polarized electron scattering looks relatively limited
until now. We may find several reasons for this. For
example, for a surface structure analysis we need highly
spin-polarized electron beams, but it is a relatively dif-
ficult task to get them since the eKciency of the spin
polarization is not so great in general. Besides, an ex-
tra process of the separation of spin up and down elec-
trons is required in order to utilize the spin polarization.
The functional form of the spin-orbit interaction is re-
sponsible for the low efficiency of the spin polarization.

However, in the case of artificial atoms such as quantum
dots we can obtain the freedom to change the potential
form and the radius by choosing the constituent mate-
rials properly. Thus it may be natural to expect more
active use of the spin polarization in future quant»m de-
vices. In this paper, we have generalized the nonrelativis-
tic elastic electron multiple scattering theory further,
including the spin-orbit interaction, hoping that it helps
to design such a new type of quantum device and to find
the proper spatial distribution of quantum dots for high
spin polarization. We have, however, neglected many-

body effects during the scattering process in this paper.
Consideration of the confined electrons in the quantum
dot in the scattering process makes this problem quite
analogous to that of electron-atom scattering, but with
a different balance of the electron correlation and the
spin-orbit interaction. Such a study is also in progress.
Unlike in the atomic cases, the balance is variable in the
case of quantum dots; thus we can expect many more in-
teresting physical phenomena which originate in the spin
polarization than in the electron-atom scattering.
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