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We investigate growth on vicinal surfaces by molecular-beam epitaxy making use of a generalized
Burton-Cabrera-Frank model. Our primary aim is to propose and implement an analytical program
based on a perturbative solution of the nonlinear equations describing the coupled adatom and dimer
kinetics. These equations are considered as originating from a fully microscopic description that
allows the step boundary conditions to be directly formulated in terms of the sticking coefBcients at
each step. As an example, we study the importance of diffusion barriers for adatoms hopping down
descending steps (Schwoebel effect) during growth and post-growth equilibration of the surface.

I. INTRODUCTION

Growth on vicinal surfaces, with a misorientation an-
gle of a few degrees, is of profound importance as a
method of preparing high-quality epitaxial layers and
heterostructures. This is also frequently used to obtain
insight into the fundamental kinetics of molecular-beam-
epitaxy (MBE) growth. 2's The renewed interest in the
analytical model of Burton, Cabrera, and Frank4 (BCF)
describing epitaxial growth on vicinal surfaces is thus not
surprising. In the BCF model, a crystal grows by step
propagation due to incorporation of atoms deposited onto
the terraces. No interactions between the atoms are con-
sidered, and it is also supposed that adatom concentra-
tions at the step edges are at equilibrium and the effect
of the step movement can be neglected. This model has
been recently generalized for applications pertaining to
growth by MBE. The far-&om-equilibrium character
of MBE has led to lifting all of the above restrictions and
taking into account the ixdiuence of the step movement,
deviations from local equilibrium at the step edges, and,
6nally and most importantly, effects related to lateral in-
teractions of adatoms on the terraces, in particular, for-
mation of adatom islands.

Our primary concern in this paper is to propose and
carry out an analytical program for solving the gener-
alized BCF equations including nonlinear terms due to
adatom interactions. The nonlinear structure of these
equations has been the major obstacle to obtaining an-
alytical solutions and for this reason only numerical
solutions have been reported so far. The steady-state
solution of these equations was previously considered
through the use of a microscopic formulation based on
adatom and dimer position-velocity distribution func-
tions, f(x, v), X(x, v), instead of the macroscopic den-
sities m(x), M(x) more commonly used, 4 s and we will

implicitly use this formulation here as well. However,
as discussed below, here this distinction is only oper-
ationally signi6cant in the treatment of the boundary
conditions which we are able to describe in terms of the
step sticking coeffic!ents.

We will assume that the growth conditions (substrate
temperature, growth rate, etc.) are such that step How

dominates so that only small islands (dimers) have to be
considered, but the step movement is still su+ciently slow
so that the steps can be considered stationary in solv-

ing the boundary value problem. These restrictions are
imposed only as simplifications and their removal would
increase the complexity and decrease the clarity of our
results. All other assumptions introduced in this paper
will be clearly noted and assessed in the following sec-
tions. While it is our belief that some of these could be
eliminated, our main goal here is to obtain a closed-form
analytical solution that is based on sound physical and
mathematical reasoning.

The outline of this paper is as follows. The necessary
equations and notation are presented in Sec. II A where
the distinction between the microscopic and macroscopic
formulations is made explicit. Our procedure for the so-
lution of these equations then follows in Sec. II B and this
is implemented in Sec. III. As a demonstration of our re-
sults, we study the effects of barriers to hopping down
descending step edges (Schwoebel efFect) in Sec. IV. Sec-
tion V is a brief surrunary of the results of the paper.

II. THEORETICAL CONSIDERATIONS

A. Basic equations

We consider a stepped crystal substrate on which
adatorns are uniformly deposited at a rate I"a where
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F is the flux (m 2s ) and a the lattice constant (see
Fig. 1). As indicated in the introductory section, the
temperature and the Bux are supposed to be such that
only dimer formation has to be considered but the steps
are still suKciently slow and can be taken as station-
ary in solving the boundary value problem. Equations
describing the evolution of the adatom and dimer densi-
ties have been presented and used by several authors.
These saxne equations can also be obtained froxn the mi-
croscopic description used by us earlier in treating the
steady-state problexn if we also assuxne that the dimers
are immobile and that the adatom current is given by
Fick's law. The last assumption, which is an integral
part of the macroscopic description, is equivalent to ne-
glecting an initial stage in which the current changes over
the time scale 7p (see below) &om zero at the time t =0
to the Fick's law value. This should not have a signifi-
cant qualitative or quantitative impact on our results and
therefore seems justified at this juncture of the theoreti-
cal development.

Denoting the adatom and dimer densities by m(z, t),
M(z, C) to indicate that they are the result from averag-
ing the distribution functions f, X over velocity, we then
have"' '1

Bm B2m

BC Bz2
= D + F + 2pM —(8/r)m —2I'm,

M 2= (4/~)m+ Fm —pM,

0&x&L, 4) 0,

(2)

where D is the diffusion coefBcient, 7 = 1/Fa,
exp( —E~/k~T) with the characteristic Cime

for adatom surface diffusion I/vp —— 2D/a
vp exp( —E~/kgyT), vp being the attempt &equency, E~
the dimer binding energy and ED the surface diffusion
barrier for a free adatom, and T is the texnperature and
k~ is the Boltzmann's constant. Also, we have taken the
number of dimer-forming sites around a free adatom as
four 9,12

The terms on the right-hand side of Eq. (1) represent
(&om left to right): diffusion of &ee adatoms, deposition
of an atom on a surface site with all nearest-neighbor

(l)F
'
(3) (2) D (4)

x=0
So

x=La
SL

FIG. 1. Schematic picture of the processes considered in
our model. Atoms are deposited (1) at a rate P onto the
substrate with a lattice constant a held at a temperature T.
They migrate (2) with the difFusion coefncient D and attach
either to the preexisting steps (with probabilities given by
the sticking coeKcients So and SI.) or form dimers (3), (4),
which can subsequently disassociate (5). Two ways of a dimer
creation, by a deposition of an incoming atom onto a near-
est-neighbor site of a surface adatom (3) or by an encounter
of two migrating adatoms (4), are shown.

positions unoccupied, dimer breakup, dimer formation
due to direct collision of an atom &om the beam with
a surface adatom, and dimer formation when two diffus-
ing adatoms meet each other (cf. Fig. 1). The prefactor
F=oa /T„with 0 the capture eKciency which we subse-
quently set to unity, 7 combines a geometrical factor oa
and a relaxation tixne that we have denoted as v„. In
previous nuxnerical studies 7 =7p has been used; here
we will use w„=(FD) ~~, which is a considerably larger
quantity. It can be shown Chat 7„=(FD) ~ is in
quantitative agreement with Eqs. (1), (2) while T„=rpis
not. Separate justifications based on kinetic arguments
have also been given in the literature.

The initial conditions for Eqs. (1), (2) are m(z, 0) =
M(z, 0) = 0, i.e., the beam is initiated at t =0 at which
tixne the terraces are unoccupied. So far there is no differ-
ence between our description, Eqs. (1), (2) with the above
initial conditions, and the macroscopic descriptions cited
earlier. ~ s However, in specifying the boundary condi-
tions the advantages of the microscopic theory become
clear and a major difference between the two approaches
emerges. At the level of approximation in the microscopic
theory ' leading to the above kinetic equations, the
distribution function f describing the adatoms is given
as

m
m = (mq+ m2)/2, j = D—

z
= (a/2n)'~ (mg —mz).

(4)
It follows &om Eqs. (3) and (4) that mq is the density
of adatoms moving with positive velocity on the terrace
and mz the density of those moving with negative veloc-
ity. This level of detail is particular to the microscopic
description and allows us to prescribe natural boundary
conditions. The most general of these, which we use here,
is given in terms of the step sticking coeKcient S,, i =0, L
for z =O, L, respectively (Fig. 1). For asymmetric step
conditions at x=O, L

So = [m2(0) —m (0)] /m (0),

SL, = [mg(L) —m2(L)] /m~(L)

with 0 & S; & 1. The finite parameters S; describe the
full range of step conditions &om blocking (S; = 0) to
total absorption (S;= 1). In addition to the conceptual
advantage in using the microscopic boundary condition
Chere is also an operational advantage. From Eq. (4) we
find

Bm
X

Bx
Bm

horn =, x=0,
Bx

—hL, m = (6a)

(6b)

f(z, v, t) = (mq(z, t) O(v)

+m2(z, &)[1 —e(v)]j (2na) ~~ e ~'i2~
(3)

where e(v) is the standard Heaviside function and a =
k~T (the adatom mass is expressed in units in which it
is unity). This leads to
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with h, = [S;/D(2 —S;)](2a/n')i~2. Thus, for the full
range of step kinetics the boundary condition is of the
Neumann (or radiation) type and a single solution de-
pending on the S; describes all possible sticking condi-
tions. Equations (1), (2), and (6) together with the initial
conditions define the problem to be considered in mathe-
matical terms. Note that there is no boundary condition
for M required for the case considered of slow steps and
fixed dimers. In the steady state an exact solution for
these equations was obtainedi despite their nonlinearity;
here we cannot expect to be so fortunate and therefore
we have to look for an approximate means of solution.

The first term on the right-hand side is the contribu-
tion due to dimer breakup, indicated by the p prefactor,
while the second is the contribution due to dimer for-
mation. Since Ri(m~P~) = 0 by virtue of Eq. (7) and

BR2(m ~)/Ot $0 we see that the mathematical descrip-
tion given by Eqs. (7), (8) refiects our conjectured phys-
ical picture in which dimer breakup effects are of higher
order than dimer formation effects. In lowest order the
right-hand side of Eq. (11),which contains only dimer ef-

fects, is set equal to zero and the left-hand side is used to
determine m~P~, which identically recovers Eq. (7) since

DF/Bt = 0, 8m~Pl (z, 0)/Bt = F, 8 m~ l (z, 0)/Bz = 0 so
that

B. Plan of solution

We propose to solve the problem defined above by tai-
loring a procedure of solution to our intuitive expecta-
tion of how the physical process evolves. Initially the
terraces are unoccupied, adatoms are deposited and be-
gin to difFuse to the steps and, as their density increases,
dimers begin to be formed and, finally, the latter may
begin to disassociate. Thus, three separate evolutionary
stages, most likely not sharply defined, are suggested.
One mathematical interpretation of this is to consider
the terms in Eq. (1) representing dimer effects to be of
higher order in an approximation scheme; M also will be
of higher order. Writing m = m~Pl+m~i~+, M =
M~'~+M~2l+ and rewriting Eq. (1) we have

Bm 8'm=D, +F —R(m, M),t z2
M
t

(2')

[R(m, M) represents all the terms on the right-hand side

of Eq. (1) which are not given explicitly] so that our
procedure for solution is implemented by considering the
following equations:

with, e.g. ,

(0)

Ot

Bm('~

Ot
aM('~

Ot

O2m(0~

= D —R(m, 0),

2

(7)

(8)

0 Om Om Om Om
Bt Bt Ox2 Bt Ox 2

——[8m/w+ 2I'm ]
0 2

Ot

BR,(m)—:—Ri(m)— 0t

hpm =, hpm =,. . . , z=0. (10)
m{0)

{z~
Om( ~

Ox Bx

The connection between the preceding physical and
mathematical descriptions becomes clearer if we operate
on Eq. (1) with 8/Bt and use Eq. (2) to obtain

()
D

Ot Bt Ox 2

gm(~ 8 m(~-D
Ot Ot Oz2

0 (12a)

and

~ "'(* t) ~' "'( t)
Ot 0

(12b)

III. SOLUTIONS

A. Lowest order; m~ ~

As discussed above, we write m =m{ ~+m{ ~+. . . and
determine m~ ~, m~ ~ &om Eqs. (7), (8) together with

the boundary conditions specified by Eq. (10). These
equations can be solved by standard methods; we first
consider the equation for m~P~, Eq. (7) for the general

case where the beam F is turned off at t = t*. The exact
solution for t(t* is

In what follows we will directly use Eqs. (7) and (8) to
determine m( ~, m{ ~

The preceding discussion contains a rationale, based
on physical reasoning, together with a supporting math-
ematical argument, for implementing a perturbative ap-
proximation of Eqs. (1'), (2'). Our reasoning here is ad-

mittedly heuristic, however given the intractable nature
of reaction-diffusion equations in general (a bounded do-

main is the most difficult case), we believe that the ap-

proach outlined above is a reasonable first step in obtain-

ing a useful analytical solution for the generalized BCF
equations in the regime near step How where dimer ef-

fects begin to play a role. It has been shown that in this

regime the moving boundary effect can still be neglected
so that this omission here is not an issue. It is possible
that the procedure outlined above could be formalized

through the use of a scaling argument leading to the in-

troduction of one or more parameters of smallness; we

have not attempted to do this here since the underlying

physical rationale is so intuitively appealing and trans-

parent. In the next section we obtain explicit results for
m( ~, m{ ~, and M( ~ by implementing the program de-

scribed above.
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m( )(x t) = ) (F/Db )(1 —e " )
n=1

L
xK(b„,x) K(b„,x') dx',

0
(13)

where the eigenfunctions K(b, x) areib

K(b„,x) = ~2[b„cosh„x+ho sinb„x]
x [(b„'+ h,') (L + hL, (b„'+h~) '+ hp)] '~',

(14)

and the eigenvalues b„are given by the positive roots
of b(hp + hr, ) = (b —hphL, ) tan bl Th.e terms without
the exponential factor can be directly summed but the
tedious algebraic manipulation required can be avoided
by noting that these terms are the nondecaying part of
the solution, i.e., the steady-state solution of Eq. (7).
In order to simplify the remaining sum and obtain a re-
sult that is both easier to use and also makes the next
level of approximation tractable we will replace b„,in
the exponential term only, by a lumped eigenvalue, b.
In Sec. IIID we indicate a procedure for determining b in
terms of the system parameters through the imposition
of a consistency constraint.

Making the above simplification we then have

(11) 4F I All 4 hpB11 3 Bll

+llhp +11 ~ (t)
A11 A 11

where

A11 = Ap, B11 = Bp) (20a)

AphL, 4 (Ap hphL, Bp l
12 3 6

M

(20b)

%11(t) = [(1 —e ) —b Dt e ][1—O(t')]. (20c)

We denote the contribution &om that part of R2 linear
in m( ~ as m( ~ so that m( ~ =m( ~+m( ~ further we

note that m( ~ will be identically zero when the beam is
turned off. Using Eq. (15) for m( ) and again replacing
b„byb in the exponential terms after the t' integration
is carried out, we find

m (z, t) = (F/2DAp)( Apz + hp—Bpx+ Bp)P()(t),

(»)
where

The contribution &om that part of R2 nonlinear in m( ~,

denoted previously as m(12), is obtained from Eq. (18).
Making use again of the simplification introduced earlier
we obtain

Ap ——hp+ hL, + hphl. L,
Bp = 2hpL + hphL, L

—6 Dt t~te
e bD(t t" ) —e bt D—t—t &t*.

(16a)
(16b)

(16c)
(16d)

The above results can be nondimensionalized (see the
Appendix) but for now it is most convenient to retain
the dimensional form shown above.

(12)
( )

l A12 s hp A12B12
2 2

2DA12 30 10

(hpB12) —2A12B12 4 hpB12 3

12 3

B12 2 hp C12 C12

2 12 12

where

(21)

B. First order: Adatom density m&~&

A12 ——Ap ) B12 ——Bp (22a)

The equation for m(1) is given from Eq. (8) as

(1) g2 (1)

Bt OZ2
—D = —(8/v) m —2I'(m )

= R, (m(')). (17)

This equation is a more general version of Eq. (7), i.e.,
a diffusion equation with a source term that here is not
constant but depends on both space and time. The for-
mal solution is

A12Ls (A12B12hp A12 il I3

30 10 5hL,

1 2 6A12B12hp 4
(hpB12) —2A12B12- L

12 hL,

1 2 (hpBi2) 3hpB + —2A12B12 L12

hpB12 + B12 L2 B12
h

(22b)

OO

m() =) e " K(b, x) dt'e"
~1 p 0

x dx'K(b„,x') R2 (m( ) (x', t')).

&»(t) = t

[].—e b
]
—2b2Dte b t ( t' (22c)

2~
—6 D(t —t ) —262Dt* e S'Dt

[e
—2b'D(t —t ) + 2b'Dt-

+2(e—b Dt e bD(2t —t')—
)] t ) te (22d)
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C. First order: Dimer density M & ~

In a 6rst approximation the dimer density is found
&om Eq. (9); although this equation includes disassoci-
ation effects these do not contribute directly to the so-
lution which is consistent with the logic underlying the
approximation procedure we are using. The initial con-
dition for Eq. (9) is M( ) (z, 0) = M (z, 0) = 0, so that
the direct contribution of the disassociation term pM( )

vanishes and we obtain

1M( ) = — dt'e ~(' ')[4m( )(z, t')/7
2 0

so that M(1) is given directly &om Eq. (15) following a
simple integration. If we write m(P) =m( ) (z)Pp(t) then,
in a notation identical to that used for indicating the
separate contributions to m( ),

M(") = 2(m( )(z)/7)%2 (t), (24)

—1(1 Pt) —
( 52D) —1(e bD—t e &t) —t ~ te

—1( —p(t —t") —pt) ( l,2D) —l(e —b Dte —P(t —t") e
—Pt) t ) t*

(25a)

(25b)

M(") = r(m( )(z))'%22(t) (26)

(1 —e ~') —2(p —b2D) 1(e t —e ~)+(p —2b D) (e b ' —e t) t(t*
+

—1(e—P(t —t ) —Pt) 2( l2D) —1( —b Dt'e —P(t —t') —Pt)

(~ 2b2D) —le Pt + (
— 252D) —1

[
2b D(—t —t') e P{t t') —+ e

—2b Dt—
2e—6 D(2t —~ ) + 2e 6'Dt e

—)I'(t —t )1 g ) g*e e
(27b)

D. Determination of the lumped eigenvalue b e(t) = (FL/b'D)ep(t) (so)

The major approximation we have made is replacing
b„byb in Eq. (13) which is the basis for Eqs. (15), (19),
and (21). It would be possible to use a second lumped
eigenvalue in the calculations used in obtaining the lat-
ter two results, but this would appear to overcomplicate
matters at this point. What is important for our present
purposes is the prescription of a rule that Axes 6 in terms
of the system parameters. The basis for such a rule is a
consistency requirement that the value of the coverage as
determined &om Eqs. (1), (2), and (6) be identical with
that found directly &om their solution; we show how this
can be done using the zeroth-order approximation.

If we determine the coverage by directly integrating
the solution, m( ), we 6nd

Ot
= FL + D[—hl, m (L, t) —hpm( (0, t)]

from which it follows that

(29)

O(t) = m("(z, t), dz
0

= (FL /12D) [4L(hp + hL, ) + hphl, L + 12]

x (Itp + hr, + hphl, L) Pp(t). (»)
Using Eqs. (1) and (6), after integrating the former we
6nd

and then

b-' = (L/12) [4L(h, + h, )

+Itphl, L + 12] (hp + &I, + &p~i, L)

E. Discussion

Before considering some numerical consequences of the
above solutions, which we do in the next section, it is best
to add here a few 6nal comments pertaining to the proce-
dure followed in obtaining these. The approximation pro-
cedure is ad hoc and follows from physical reasoning sup-
ported by the consistency of the resulting mathematical
formulation. Although we have only considered the first
approximation beyond the step-Bow solution, in principle
higher-order corrections could be obtained. It appears to
be more useful to consider instead additional effects due
to moving steps and larger islands in the present context.
The former of these appears to be tractable, and we hope
to be able to report on this in a future study. Finally,
we want to emphasize that the procedure used here is
distinct from standard methods based on linearization or
a formal small parameter expansion and in our opinion
captures the essence of physical processes that are taking
place better than either of these methods.
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IV. EXAMPLE APPLICATION:
SCHWOEBEL EFFECT DURING GROWTH

AND POST-GROWTH RECOVERY

A. Surface roughness and its evolution during
growth and post-growth equilibration

of the surface

The roughness of growing surfaces has become one of
the main topics of interest in the study of surface pro-
cesses. One reason for this is the evident importance of
minimizing surface roughness for applications, e.g. , for
the deposition of narrow layered structures (quantum
wells, lateral superlattices, magnetic multilayers, etc.)
required for the fabrication of devices such as quantum
well lasers or modulation-doped field effect transistors.
The performance of such devices depends critically on
the morphological quality of epitaxial layers and inter-
faces.

Another reason for the intense interest in surface
roughness is purely theoretical. The roughness of growing
surfaces has been observed to exhibit asymptotic dynam-
ical scaling behavior which has led to the classification of
growth models into various universality classes. In a ma-
jority of the theoretical studies, the focus has been on the
evolution of the surface morphology due to fluctuations in
the incoming Bux of particles and surface diffusion. How-
ever, recently the inBuence of additional activation bar-
riers to adatom hopping between layers [the Schwoebel
efFect (SE), Refs. 19 and 20] on the developing surface
roughness has been studied by Villain and identified as
a cause of an intrinsic growth instability on nominally
Bat surfaces. On vicinal surfaces, the additional step-
edge barriers to hopping down descending steps stabilize
growth and lead to equalization of terrace widths.

From a practical point of view, the growth interruption
technique has become a useful method for obtaining
atomically abrupt interfaces during growth by MBE. In
this technique, growth is brieBy interrupted by stopping
the cation (but not the anion) flux. After the growth
is stopped, the surface smoothes which causes the re-
covery of the specular-beam intensity of the commonly
used monitoring probe, reBection high-energy electron-
difFraction (RHEED), to its initial pregrowth value. It
has been found experimentally that the recovery of the
intensity I(t) can be fitted by an empirical expression2s

I(t) =A +A e ~ '+A2e ~ ', t) t*,

where Ao, Aq, and A2 are constants, and ~q and T2 are
the time constants for the fast and slow stages of recov-
ery, respectively. The time constant of the initial stage
of recovery, vq, has been shown to have a strong sys-
tematic dependence both on the substrate temperature
and on the point in layer completion at which growth is
interrupted.

The recovery process is also of profound theoretical im-
portance. The equilibration of a surface after a period of
growth is a more discriminating test of theoretical models
than growth alone. During growth under typical condi-

tions, the maximu~m time scale is set by the deposition
Bux and processes occurring over longer time scales are
"&ozen out. " However, during recovery, these processes
can come into play even though their effect during growth
can be safely omitted. 24 Indeed, Monte Carlo (MC) sim-
ulation studies which yielded very good results when di-
rectly compared to observed behavior during growth, ap-
peared to be unable to reproduce the recovery curves, in
particular at low temperatures, where no temperature de-
pendence of vq was observed in simulations. Similarly,
the detailed study of the recovery process by Vvedensky
and Clarke24 using the same MC model showed that in
their simulations there was no relevant dependence of v~

on the point where growth was interrupted.
Peng and Whelan2s suggested that interlayer transport

is of key importance for the correct reproduction of the
behavior of vq. However, large values of vq observed in
experiment can be explained only if there is some mecha-
nisro. hindering interlayer transport. The obvious choice
for such a mechanism is the SE, and recent simulations
have shown that it indeed results in slowing down the re-
covery process. However, it has been also found that the
SE alone cannot explain the observed behavior and an
additional process must be introduced in which a f'reshly

arrived atom is incorporated at a site with the highest
number of nearest neighbors in a certain region around
the initial site of incidence. This incorporation scheme
results in smoother edges of both preexisting steps and
adatom islands. An independent proof exists that such
a change in the model leads to a better reproduction of
the post-deposition recovery. In Ref. 8, the authors had
to consider detachment of atoms from steps and breakup
of islands composed of up to ten atoms in order to ob-
tain good qualitative agreement with the experimentally
observed behavior. Significantly, they assumed a shape
for each island that is as close as possible to a square
(i.e., very compact and with smooth edges). Similarly,
the breakup of the most stable configurations has been
found to be a crucial step for the post-growth relaxation
of the surface in Ref. 27.

MC simulations which included both the SE and the
smoothing due to the incorporation have led to quanti-
tative agreement with the experimental data which is
strong circumstantial evidence for the existence of the
Schwoebel barriers on a GaAs(001) surface. Additional
evidence has been provided in a recent paper by John-
son et aL2s who observed (using scanning tunneling and
atomic force microscopics) growth instability and forma-
tion of large mounds on a nominally fiat GaAs(001) sur-
face. Finally, a recent analysis of the RHEED data
of Ref. 3 demonstrated that sticking coefficients at as-
cending and descending steps on GaAs(001) surfaces are
indeed strongly asymmetric providing further support for
the existence of the step-edge barriers on this surface.

In light of the above, it would be interesting to study
the inauence of the SE using the analytical results pre-
sented above and taking advantage of the natural treat-
ment of the boundary conditions. We will use the pa-
rameters used for simulations of GaAs(001) growth and
try to make a comparison to some of the experimental
results of Ref. 3.
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B. Adatom and dimer concentration profiles
and densities, the surface step density,

and their time evolution

In this section, we discuss adatom and dimer concen-
tration pro6les, and the time evolution of the total den-
sities of adatoms and dimers and of the surface step den-
sity, during deposition and after its cessation. We study
both the case with and without the SE (i.e., with different
and equal sticking coefficients at boundaries of the ter-
races, respectively). Note that the nondimensionalized
form of the equations has been used in numerical evalu-
ation of the equations, cf. Sec. III and the Appendix.

In our calculations, we proceeded with "deposition"
until the saturation of the total density of adatoms and
dimers on the terraces (i.e., a steady-state situation) has
been achieved, see Fig. 3, and then we interrupted it.
The terrace width L has been chosen to be 20 lattice
constants. The sticking coefficient at the ascending step
(Sp in Fig. 1) has been estimated based on the dimer
binding energy EN (assuming straight steps similar to
Myers-Beaghton and Vvedensky in Ref. 8, Sec. IVB),
as S; = 1 —exp( EN/k~T—), whereas the sticking coef-
ficient at the descending step (SL, in Fig. 1) was esti-
mated using the additional step-edge barrier height E~
as well, S; = exp( —Eg/kgT) —exp( EN/—k~T) Th.e
values of parameters Eri = 1.54 eV [which determines
the difFusion coefficient D, see the paragraph following
Eq. (2) in Sec. IIA], E~ =0.231 eV, and E~ =0.175 eV
were taken from the results of the fitting procedure in
Ref. 26. The attempt frequency vp has been calculated
&om vp ——2kgy T/h, where h is the Planck's constant. The
value of the flux I" was 0.20 Ml, /s, and the values of the
substrate temperature T are given in the 6gures.

Adatom and dimer concentration pro6les shown in
Fig. 2 have been calculated at the time t' when the depo-
sition was stopped (in the saturation region). The upper
two panels (a and b) of Fig. 2 are for the case without
the SE, whereas the lower two (c and d) are for the case
with the SE. The panels a and c show both the total

adatom density m (solid lines) and the adatom density
in the lowest order of approximation, m(oi (dotted lines),
cf. Eqs. (15) and (16).

The profiles for the case with the SE are asymmet-
ric and exhibit a maximum near the reBecting boundary.
Notice that signi6cantly higher adatom and dimer den-
sities build up on the terraces due to the presence of the
Schwoebel barriers. It is also interesting to mention that
whereas the densities with and without the SE are of ap-
proximately the same order of magnitude just after the
growth is stopped (Fig. 2) they difFer by many orders of
magnitude after the equilibration due to a larger time
constant for this process in the case with the SE (see be-
low). Note also that concentration profiles do not vanish

at boundaries, x = 0, 1 (in contrast to those in Refs. 7
and 30) due to the microscopic treatment of the bound-

ary conditions in our approach, cf. Sec. II A.
In Fig. 3, the time evolution of the total densities of

adatoms and dimers on terraces is shown. The strong
temperature dependence of the densities and of the dif-

ference between m and m(Pi can be again observed. How-

ever, the most signi6cant difference is a rather drastic
change of the time for the decay of the adatom and dimer

densities due to the SE. This con6rms that the inclusion
of the barriers to hopping at step edges does lead to a
slower relaxation of the surface after growth is termi-

nated, a conclusion reached previously in the MC study
mentioned above.

Finally, in Fig. 4, the evolution of the surface step
density calculated in a pseudo-two-dimensional approx-
imation (similar to that used in Ref. 8) is shown. For
the calculation of this quantity, we supposed that every

Bee adatom and dimer contributes four and six steps, re-

spectively. The panel a shows the results without the

SE, whereas the panel c those with the SE. The ex-

perimental results at similar temperatures taken &om

Ref. 3 (RHEED specular-beam intensity during the post-
growth recovery on a GaAs(001) vicinal surface misori-

ented by 2' toward the [010] direction) are shown in the

panel b. Notice the order of magnitude di8'erence in the
time scale which is discussed in the following section.
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FIG. 2. Adatom (a, c) and dimer (b,
d) concentration pro61es immediately after
growth is stopped at the steady-state region.
The panels a, b and c, d show the results ob-

tained without and with the Schwoebel efFect,

respectively. See text for more details.
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C. Discussion

The above numerical results are based on evaluation
of the preceding analytical results and agree with earlier
numerical studies. ' The advantage of our approach
(besides the important fact that we were able to obtain
analytic formulas) is the microscopic level of the descrip-
tion of the growth process and resulting natural treat-
ment of boundary conditions. We have demonstrated
than even a relatively small Schwoebel barrier has a pro-
found inHuence on behavior during growth and, in par-
ticular, during the post-growth recovery. Another detail
worth mentioning is that had we used Tp instead 7„for
the time constant in the prefactor I' in Eq. (2) (see the
discussion in Sec. IIA), the contribution m(i ) to the
adatom density would be underestimated by several or-
ders of magnitude. Let us now discuss several problems
related to our results.

As expected, the difFerence between the adatom con-
centration profiles obtained using formulas for m and
m( ) [Figs. 2(a), 2(c)j is not important under condi-
tions near the step-How growth mode (the biggest dif-
ference being observed near the maxima), but increases
as the temperature is decreased (cf. similar results in
Fig. I of Ref. 30). However, this does not mean that the
dimer (and larger islands) formation is not important.
It was shown by Stoyanov and Myers-Beaghton and
Vvedenskyr that adatom interactions lower the adatom
difFusivity by several orders of magnitude and, if not
taken into account properly (as is the case when the Ein-
stein relation for surface dHFusion z2 = 2Dt is used2),
lead to an estimate of the critical temperature T, (at
which growth starts to proceed via step flow) which is
incorrect by up to 200 K.~ In other words, whereas the

T=

4
C48
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FIG. 4. Time evolution of the surface step density (panels
a, c) and the RHEED specular beam intensity (b). The pan-
els a and c show the results obtained without and with the
Schwoebel effect, respectively. The direction of vertical axis
in the plots of the step density is reversed to allow for com-
parison with the RHEED specular-beam intensity (see Refs. 3
and 26), i.e., the step density increases downwards
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concentration profiles can be calculated in the lowest or-
der of approximation. near T, the critical temperature
itself must be determined taking higher-order effects into
account.

The time constants for the post-growth recovery of the
adatom and dimer densities are an order of magnitude
smaller than observed in experiment (cf. Fig. 3 and par-
ticularly Fig. 4). This is not surprising given the fact
that in our model, the effect of breakup of larger islands
is not taken into account. It was convincingly demon-
strated by Myers-Beaghton and Vvedensky and Kenny
et a/. how significant these processes are for the correct
reproduction of the recovery curves, and this process was
also shown to be important in the MC study mentioned
above where it was found that step and island edges
smoothed by the incorporation mechanism of the incom-
ing atoms (see above) act in concert with the step-edge
barriers to slow down the recovery process. Also the fact
that one-dimensional diffusion in our model leads to more
rapid changes of the surface adatom population as corn-
pared to the two-dimensional case adds to the difference
in the speed of surface smoothing.

Finally, in the framework of our simple model, we can-
not observe oscillations of the density of adatoms, dimers,
or the surface step density (or oscillations of related quan-
tities like the specular-beam intensity of some diffrac-
tion probe calculated in the kinematic approximation).
Such oscillations are not experimentally observed near
the step-Bow growth mode where our model is, strictly
speaking, only supposed to be valid. However, it is possi-
ble to obtain oscillations at lower temperatures (or higher
fluxes) even in this class of models provided the step
movement is taken into account. As we already men-
tioned, the inclusion of this effect into our perturbative
scheme seems to be possible (cf. Sec. I).

adatom and dimer populations and of the surface step
density during growth and post-growth equilibration of
the surface and compared them (where it was possible)
to the experimental results. The Schwoebel efFect was
shown to have a significant impact on the behavior during
growth and, in particular, during the post-growth recov-
ery, but it has also become apparent that larger islands
and their decay have to be taken into account if the re-
covery curves obtained experimentally and in simulations
are to be reproduced. In order to obtain a more realistic
description of the growth process at lower temperatures
(including oscillations of step density or kinematic inten-

sity), additional processes must be considered such as the
above-mentioned step movement.
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APPENDIX: DIMENSIONLESS VARIABLES

It is convenient for the purposes of assessing the effects
of various parameters to represent the results obtained in
dimensionless form. Introducing x' = zL and (h;)' = ah;
and using the relationships D =a2/2', a/7p ——/2n which
provide reasonable estimates, we then find, e.g. , for m~ ~

V. SUMMARY
a ml l = (rp/7Ap)[ Ap(L/a) —z

+hpBp(L/a)x + Bp]/p(t), (A1)

In summary, we have investigated epitaxial growth
on vicinal (stepped) surfaces using an analytical pro-
gram based on a perturbative solution of the general-
ized Burton-Cabrera-Frank equations. The nonstandard
scheme followed by us is motivated by physical insight
into the growth process. This approach allowed us to ob-
tain closed-form analytical solutions for the adatom and
dimer densities while using a microscopic description of
the boundary conditions. The scheme is open to further

improvements and inclusion of other efFects such as the
movement of the preexisting steps.

We applied the analytical results to the study of the
influence of the Schwoebel efFect (additional barriers to
interlayer hopping at step edges) on the evolution of

where we have dropped the primes for notational conve-
nience. Now 0 & x & 1 and

h; = [S;/(2 —S;)] (2/v 'ir),

Ap = hp + hi + hphi(L/a),
Bp ——hi(L/a) + 2(L/u),

(A2)

(A3)

(A4)

and

1/Db = (L/o) (7p/6Ap) [4(L/a)(hp + hi)
+h, h, (L/a)'+ 12]. (A5)

Similar results follow for m~ ~ and M~ ~ but because they
are so lengthy we do not include them here.
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