
PHYSICAL REVIEW B VOLUME 50, NUMBER 11

Adsorption on a stepped substrate
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The effect of substrate steps on the adsorption of particles is considered. The problem is for-
mulated as a lattice-gas model with nearest neighbor interactions and it is studied by a numerical
transfer-matrix method. In particular, the in8uence of the substrate-induced row potential on ad-
sorbed monolayers is discussed. It is found that strong row-transition-like features appear in the
presence of a row potential and it is suggested that these may be seen in adsorption on vicinal faces.

I. INTRODUCTION II. THE MODEL

Adsorbed layers on solid surfaces have attracted con-
siderable experimental, theoretical, and practical interest
during recent years. ~~ It is well known that substrate
heterogeneities can have a major effect on the structure of
adsorption layers and on adsorption kinetics. ~ Recently,
the influence of substrate steps on phase transitions in ad-
sorbed monolayers was studied theoretically by Albano et
al. , and a wetting transition in the limit of low step den-
sity was predicted. Experimentally deduced roughening
transitions in adsorption systems have been reported by
Larher and Angerand for adsorption on Hat substrates,
and by Miranda et als for xenon on stepped palladium.

In this work we discuss the effect of the potential dif-
ference between adjacent adatom rows on adsorption on
a stepped substrate. Experimental evidence of differ-
ent types of adsorption sites has previously been found
by measuring work function changes as a function of
coverage in adsorption of hydrogen on stepped plat-
inI~m substrates, ~ and in adsorption of xenon on stepped
palladium. s In Ref. 9 these findings have been related to
the existence of a substrate-induced row potential.

We shall be mainly concerned with the behavior of the
adsorption layer on a terrace of a stepped substrate for
temperatures well below T„ the two-dimensional critical
temperature of an adsorption layer on the corresponding
Hat substrate. At these temperatures the shape and the
width of the interface between high-coverage and low-
coverage phases are determined by the row potential.
The results are obtained by numerically diagonalizing
the transfer matrix of the two-dimensional Ising model
with boundary conditions corresponding to adsorption
of a monolayer on a single terrace of a stepped substrate.
In addition, equilibri»~ Monte Carlo simulations have
been used to check the results given by the transfer-
matrix method, and to produce typical con6gurations of
the model.

At low temperatures the adsorption of particles on each
terrace of a stepped substrate is essentially independent
of what is happening to the other terraces. Further-
more, below the roughening temperature of a Sat face ad-
sorption proceeds via a layer-by-layer mechanism so that
practically no bulk excitations exist. We are thus led to
study a strictly two-dimensional system with boundary
conditions such that they correspond to a single step.

In order to describe adsorption on a terrace we
use a two-dimensional lattice-gas model with L x M
geometry. s A schematic view of the substrate structure
and the model is shown in Fig. 1. The Hamiltonian using
the Ising formulation is given as follows:
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FIG. 1. Schematic view of a stepped substrate. In the

transfer-matrix method we keep L Sxed and let M —+ oo.
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where 0- is the occupation of the lattice site j in the

kth row parallel to the steps, with cr. = —1, +1 for{k)

empty and occupied lattice sites, respectively. For V = 0
Eq. (2.1) yields the Hamiltonian used in Ref. 3, and with
our choice for the boundary fields, Hq ———HL, ——J=l, the
step is wet at any finite temperature. ' ' In our model
an adatom in the kth row experiences an additional po-
tential or row field proportional to v(k), for which we
have for simplicity chosen a linear dependence on the
distance &om the step edge,

v (k + 1) = v(k) —1 and v (1) = v(L—) (2.2)

With the latter condition the layering "transition" point
is H = 0, i.e., the coverage 8(H = 0) = 1/2. For V & 0
the adsorption layer begins to grow from the step edge
(row k = 1) as the value of the external field H is in-
creased. The in8uence of the form of the row potential
and the relevance of our model to experimental systems
will be discussed at the end of Sec. IV below.

In this work the unit of temperature is the critical tem-
perature T, of the two-dimensional square-lattice Ising
model, i k~T, /J = 2.2692. The correspondence between
the Ising and lattice-gas variables is described in detail
elsewhere. With our sign conventions the chemical po-
tential becomes p = 2H —8J and the coverage is given by
8 =

2 (M + 1), where the magnetization JH is as follows:

1 OI"

N ctH
(2.3)

The row coverages Hg for each row k are defined analo-
gously. The susceptibility or the slope of the adsorption
isotherms is

BM 88
aH 'ap (2.4)

In Fig. 2 snapshots of typical configurations of
the model with L = 4 generated by Monte Carlo
simulations are shown. Even for a weak row poten-
tial (V = 0.01), the width of the interface between the
high-coverage (+) and the low-coverage (

—) phases will
be substantially reduced by this potential, and the ef-
fect can be seen in a considerable temperature range,
i.e., from zero temperature up to T —0.2T . For in-

creasing temperature, the meandering of the interface in-
creases so that eventually the interface will extend over
the whole terrace, and near T isolated adatoms inside
the (—) phase and vacancies inside the (+) phase will be
generated. We choose the number of the adatom rows,
L, to be an even number, and have, for the row potential
defined by Eq. (2.2) with V & 0, a nondegenerate ground
state (straight interface in the middle of the terrace) at
H = 0. For odd L the same results are found but for
values of H which are shifted by U/2.

Notice that the "row transitions" as discussed in this
work are not real phase transitions, in contrast with the
Layering transitions in adsorption on Bat substrates.
Therefore we use the term "row-by-row pseudotransi-
tions" to describe the mechanism of the growth of a

7jT =0.1 0.2 0.5 1.0

FIG. 2. Snapshots of lattice-gas condgurations at H = 0
as generated by Monte Carlo simulations for I = 4 and
V = 0.01. In each snapshot only a part of the simulation
cell with M = 200 is shown.

monolayer. At low temperatures the filling of a single
adatom row happens essentially one dimensionally, but
sharp transitions (for each row) occur only at zero tem-
perature, which is the critical temperature of the one-
dimensional Ising model. Furthermore, there is a po-
tential difFerence between every pair of adjacent adatom
rows, and no true "delocalization transition" in the sense
of Ref. 14 exists.

III. THE TRANSPER-MATRIX METHOD

At low temperatures the sampling of thermal fIuctua-
tions by the Monte Carlo method becomes exceedingly
slow. Therefore we use the numerical diagonalization of
the transfer matrix instead. The method of calculating
exact thermodynamic averages by using transfer matrices
is described in Ref. 12. Because our model consists of an
infinite (M -+ oo) strip with a finite width (L fixed), our
system can be regarded as quasi-one-dimensional. The
definition of the transfer matrix resembles in our case
that of the one-dimensional Ising model, with the ex-
ception that the state of the "site" j is now described by

a vector of Ising variables g~. = (a, , o. ), and the{~3 {L3

dimension of the transfer matrix is 2+. In this work the
eigenvalues of the transfer matrix are computed numeri-
cally for step widths up to L = 10.

The partition function is obtained using the standard
way with Z~ ——TrVM A& for M ~ oo, where A&

is the largest eigenvalue of the transfer matrix V. The
coverage 0, the row coverages Og, and the susceptibility y
can be determined by difFerentiating the &ee energy F =
—k~T ln Z with respect to the appropriate fields. As for
the one-dimensional Ising model, the correlation length
in the direction of the steps is given by ( = 1/ln(Ai/&2),
where A2 is the second largest eigenvalue of V.
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In order to calculate the structure factor S(k) parallel
to the step edges we use the result derived in the Ap-

pendix of Ref. 16,

1 —(A, /Ai)2
1 —2(A, /Ai) cos k+ (A, /Ai)2

+2z h(k)m~„, (3.1)

where, for a symmetric transfer matrix,

meg = miai&gi. (3.2)

S — = —,'S(0) + 0

Notice that this result is exact for the Gaussian model.
As will be seen below, it holds well also for our model with
L rows defined by the complete Hamiltonian Eq. (2.1).
We have also derived the average domain size (I) for the
one-dimensional Ising model in an external field. For
B & 0 it is the average size of (—) domains inside the
(+) phase and, as shown in the Appendix, the result is

(l) = (1 —e ~), where p = lnAi + (B —J)/k~T,

(3.4)

where Aq is again the largest eigenvalue of the transfer

Here x„ is the ith component of the the eigenvector as-
sociated with the eigenvalue A, of the transfer matrix,
and m; is the sum of L spins in a site with configura-
tion i. Notice that here a "site" means a row across
a terrace, i.e., perpendicular to the step edges. Within
our model no additional symmetries (cf. Ref. 16) can
be used to further reduce the problem of calculating the
structure factor. We are particularly interested in the
half width at half maximum (HWHM), Wi~z, defined by
S(0) = 2S(Wqyq), in which the 8 peak, the second term
on the right side of Eq. (3.1), is omitted.

At low temperatures and for H = 0 and L even,
many of our numerical results for quantities describing
the fiuctuations of the system (e.g. , the susceptibility)
are well approximated by the exactly known behav-
ior of the one-dimensional Ising model in an external
field B = V/2 & 0. The reason for this can be eas-

ily understood by studying the lowest excitations that
give the major contribution to the free energy. In this
case the ground state is a straight interface, and at low
T a notable (but low) kink density is observed only in
the two adatom rows in the middle of the terrace (rows
k = 2, 3 for L = 4 in Fig. 2). Therefore these rows are
well described by the one-dimensional Ising model with
B = +V/2 for the row at k = L/2 and with B = —V/2
for the row at k = 1 + I/2, and they are nearly inde-
pendent of each other because of the low kink density.
Note that for these two rows the net effect from the
couplings with the neighboring rows vanishes. For the
one-dimensional Ising model it is easy to show, by using
(ooo„) exp( —r /(), that

matrix. At low temperatures this quantity shows a be-
havior qualitatively similar to the correlation length (
and to the susceptibility y. Therefore the behavior of
our model at low temperatures for H = 0 (L even) is de-
termined by the breaking of the la.nk-antikink symmetry,
which results &om an applied external Geld, i.e., B for
the one-dimensional model, and the row potential in our
complete model. On the other hand, for II = V/2, e.g. ,
the ground state is degenerate in the complete model:
the row at k = 1+ L/2 has the same energy indepen-
dent of whether it is empty or completely filled. At low
temperatures this row can therefore be described by the
one-dimensional Ising model in zero field.

IV. RESULTS AND DISCUSSION
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FIG. 3. Filling of the first adsorption layer on a stepped
substrate with L = 4. Adsorption isotherms are shown for
(a) v = 0 and (b) v = 0.01.

An example of the effects of the row potential on ad-
sorption is provided by the adsorption isotherms of Fig. 3.
These and all the other data presented in the Ggures of
this section are computed for the complete Hamiltonian
(2.1) by using the m~~erical transfer-matrix method as
described above. Without the row potential, the adsorp-
tion layer seems to display sharp layeringlike features at
low temperatures, as shown in Fig. 3(a). From such fig-
ures one may erroneously determine a "critical temper-
ature" of the layering transition to be near T = 0.1T,.
This is a matter of scale and resolution, however, and the
isotherms have in fact a finite slope at any finite tempera-
ture. The corresponding isotherms for a nonzero row po-
tential are shown in Fig. 3(b). At low temperatures the
behavior differs even more from that of a Hat substrate:
indeed, there is now a sequence of row-by-row pseudo-
transitions. As is evident from Fig. 3(b), for V = 0.01
the steps in the isotherms, caused by the row potential,
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smear out near T = 0.2T . Even at this temperature
however, the slope of the isotherm near H = 0 is still
much smaller than that in the case V = 0, Fig. 3(a).
For rougher temperatures the slopes in these two cases are
very similar. The magnitude of the change in the slope of
the 8 vs 0 curve is best seen by considering the behavior
of the susceptibility as shown in Fig. 4, where the curves
correspond to the coverage data shown in Fig. 3. By
adding a row potential with strength V = 0.01, only one-
hundredth of the nearest neighbor interaction between
adsorbed atoms, the slope of the adsorption isotherms
can be changed by several orders of magnitude. Notice
how sharp the peaks may appear in the susceptibility
although the true transition temperature is that of the
one-dimensional Ising model, i.e., TiD = 0.C

The most interesting behavior for V ) 0 is related
to the plateaus between the row-by-row steps of the ad-
sorption isotherms. Here we shall consider only the lay-
ering point at H = 0. In contrast with the case V = G,

he susceptibility is no longer a monotonic function of
temperature at H = 0, as is evident &om Fig. 5 which
shows the susceptibility for two different strengths of the
row potential and for a few step widths L The s.uscep-
tibility vanishes both at zero and infinite temperature
y(T ~ 0) = y(T -+ oo) = 0, and a maximum occurs
near a temperature T = T„. Above T„ the behavior of the
system is not dominated by the row potential. The max-
imum value of the susceptibility, y „(H = 0) = 2/LV,
can be directly determined from Fig. 3 by noting that the
interval between the row-by-row pseudotransitions in the
H scale is V. For strengthening row potential the row-
by-row mechanism prevails at higher temperatures. For
increasing L the determination of T„ from the suscepti-
bility curves becomes more difficult: for V = 0.01 and
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FIG. 5. The susceptibility y for (a) V = 0.01 and (b)
V = 0.05 at the layering transition point H = 0.

I = 10, e.g., the susceptibility is practically constant for
0.25 & 7'~( T/T, ( 0.45. The plateau in the susceptibility is
in fact an evidence of the row potential.

More detailed information is gained by studying the
row coverages, some of which are shown in Fig. 6. At
T = 0.2T, the adatom layer grows by the row-by-row
mechanism, which can also be seen as a slight modulation
f the susceptibility in Fig. 4(b). At T = 0.5T, these

pseudotransitions are no longer visible. The form f thorm o e
= Hq(H) curves for the rows in the middle of the

terrace is practically independent of L, and at T = 0.2T
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FIG. 4. The slope of the adsorption isotherm, or the sus-
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ceptibxhty y, as a function of H for three difFerent temper-
atures for (a) V = 0 and (b) V = 0.01 with L = 4. The
plotting symbols are the same as in Fig. 3.
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FIG. 6. Row coverages Hg of adatom rows k for a system
with L = 4 and V = 0.01 for (a) T = 0.2T, and (b) T = 0.5T, .
The curves from top to bottom show the data for k=1 2 3) ) 7

and 4, respectively.
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we find Hz, /2(H = 0) = 1 —81+1,/s(H = 0) 0.9. Thus
we can conclude that for I & 4 the basic mechanism
of filling of the adsorption layer is independent of the
step width I, and, therefore, the temperature T„should
be determined &om that part of the susceptibility curve
which is independent of I. Then at H = 0 for T (T„ the
behavior of a single row can be in excellent approximation
described by that of the corresponding one-dimensional
Ising model (see Sec. III).

The HWHM Wi/q (solid curves) and the correlation
length g (plotting symbols) as a function of temperature
for H = 0 are shown in Fig. 7. The result (3.3), which
has been derived for the one-dimensional Ising model, is
found to be valid for our model with several rows. Note
that ( is the correlation length for fiuctuations and not
a measure of order in the system. Only for V = 0 (or
B = 0 in the one di-mensional Ising model) is it directly
connected with the kink density. Drawing on the analogy
with the one-dimensional Ising model, we also show in
Fig. 7 (dotted line, V = 0.1) the quantity p' = —1/ln(1—
2p), where p is the kink density. The kink density p
is a monotonic function of temperature and for V «
J depends only weakly on the strength V of the row
potential. In the scale of Fig. 7, p' for V = 0.01 (and V =
0) is indistinguishable from the 1/Wi/s curve for V =
0. The kink density p measures short-range order, and,
therefore, for V & 0, p' provides a good approximation
for f only at high temperatures. At low temperatures
order is induced by the row potential.

In Fig. 8 we show the inverse of the HWHM as a func-
tion of H. Notice that the form of the row potential v

can be directly deduced from Fig. 8. For a linear row po-
tential like the one in Eq. (2.2), at low temperatures the
maxima in 1/Wi/2 are equally spaced as a function of H.
The temperature T„, below which the width of the inter-
face between the high-coverage and low-coverage phases
is noticeably reduced, obviously depends only on the po-
tential digemnce between two adjacent adatom rows on
the terrace. Therefore, for a more complicated form of
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FIG. 7. The inverse HWHM of the structure factor, 1/Wqgq
(solid curves), and the correlation length g (plotting symbols)
as a function of T for L = 4 and at H = 0.
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FIG. 8. The inverse HWHM of the structure factor,
1/Wiyq, as a function of H for three temperatures and for
L, = 4, V = 0.01.

the row potential, the definition of T„iwll not be unique,
and it should be defined separately for each pair of rows.
Moreover, difFerent quantities, e.g. , y, g, (l), etc. , would
give slightly different temperatures for the disappearance
of the effects induced by the row potential. This of course
refiects the fact that no real phase transition is involved.
The infiuence of the nonlinearity of the row potential
in real physical systems is thus twofold: the row-by-row
pseudotransitions will not be equally spaced on the chem-
ical potential axis, and the effects induced by the row
potential will disappear at a temperature that depends
on the coverage.

We have seen above that even a weak potential differ-
ence, AV(k) = IV(k) —V(k —1)I, between two adjacent
rows at k and at k —1 can have a considerable effect on
such physical quantities as are related to thermal fiuc-
tuations. In the case which we have considered here,
b,V(k)—:V, this effect has been shown to be noticeable
for V as small as V = 0.01, at least for temperatures up to
T = 0.2T, . In Ref. 9 a row potential V(k) = V(l)/ks was
used. In that case AV(k) & 0.01 for rows up to k = 4 if
V(l) = 1, and up to k = 7 if V(l) = 5; the latter value for
V(l) being the parametrization useds to reproduce the
experimentally observed work function changes for the
systems Xe/Ru(0001) and Xe/Pd[8(100) x (110)].We can
conclude that the behavior described in this work can be
observed in experimental systems with more complicated
row potentials, provided that our model de6ned by the
Hamiltonian (2.1) otherwise contains the physical inter-
actions relevant to the structure of the adsorption layer.
The most obvious candidates for such experimental sys-
tems are given by adsorption of rare gas atoms on stepped
metal substrates, such as Xe on Pd[8(100) x (110)]stud-
ied in Refs. 5 and 8. The observed binding energies
of adatoms at step sites (row 1) and terrace sites sug-
gest that, for this system, our choice of strong bound-
ary fields is justified (see also Ref. 3). In fact a sim-
ple bond-counting argument shows that the condition
Hq & J is essential for the row-by-row mechanism to ex-
ist, and that this condition must be appropriately modi-
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fied for adsorption layers with a structure difFerent from
the square lattice used in this work. We do not expect
the parameters of our nearest neighbor lattice-gas model
with pairwise interactions to have a simple correspon-
dence with the measured heats of adsorption for rare
gases, but we do think that the qualitative picture given
by the model of the inHuence of the row potential on the
structure of the adsorption layer is correct. Obviously, a
well-characterized substrate with equally spaced steps is
needed for detecting sharp row-by-row pseudotransitions
in experiments. For the adsorption of rare gas atoms on
a metal substrate, the characteristic excitation energies
for the substrate are much larger than those for the ad-
sorbate and, therefore, the kink density in the substrate
steps is very small at low (in the energy scale of the ad-
sorbate) temperatures. For a substrate with regularly
kinked steps, such as the ruthenium surfaces of Ref. 18,
the adatom rows cannot be reasonably defined, and a
more complicated behavior is expected.

Our model was defined to describe an adsorbed mono-
/ager on a stepped substrate, but it has some relevance to
the growth of multilayers at low temperatures, for which
adsorption proceeds via a layer-by-layer mechanism. For
the second layer, there also exists a boundary field Hi
with a magnitude of the order of the nearest neighbor
interaction J, but now this boundary field is not induced
by the substrate step alone: there are in addition inter-
actions with the adatoms in row L of the first complete
adsorption layer. The strength of this boundary field
for the second and further layers is highly dependent on
the geometry of the system, and on the relation between
the lattice constants of the substrate and the adsorbate.
Also the substrate potential for these layers is expected to
be row dependent, due to the orientation of the terraces
with respect to the high-indexed face. In fact, the linear
approximation of Eq. (2.2) for the form of the row po-
tential gets better when the distance &om the substrate
increases. In the experiments of Ref. 5, unexpectedly
low estimates for the critical temperatures of the layer-
ing transitions on a stepped substrate were reported. We
think that this observation may be (through the limited
accuracy of the vapor pressure axis) a consequence of
the rounding of the adsorption isotherms, a phenomenon
we explained while discussing Figs. 3 and 4. Note that
the existence of steps alone (with zero row potential) is
sufficient for this rounding to occur and, strictly speak-
ing, no sharp layering transitions exist on vicinal sub-
strates. However, at temperatures well below the T of
the adsorption layer on a corresponding Hat substrate,
the substrate-induced row potential should have a pro-
found eEect on the formation of each layer in a multilayer
system. It would be of interest to seek for an experimen-
tal veri6cation of this hypothesis for this or a similar
adsorption system.

with M —+ oo and fixed I. We have considered here
the model with strong boundary fields, i.e., the case for
which the step without the row potential would be met

already at zero temperature. For simplicity we assumed
a linear dependence of the row potential on the distance
of the row &om the step edge. Numerical diagonalization
of the transfer matrix was found to be the most efficient
method for analyzing the model at low temperatures.

We have shown that if even a weak row-dependent
potential is included in the model, the behavior of the
adsorption layer can be drastically changed for a tern-
perature range which is an order of magnitude larger
than the strength of the row potential. This effect is
qualitatively understood by introducing the concept of
row-by-row pseudotransitions, and it can be quantita-
tively measured by studying the behavior of the struc-
ture factor in the direction parallel to the step edges.
The HWHM of the structure factor shows behavior simi-

lar to that of the slope of the adsorption isotherms or the
susceptibility, and this behavior can be directly related
to the existence and to the form of the row potential.
At low temperatures, the fluctuations of the system turn
out to be well described by the corresponding quantities
in the one-dimensional Ising model, which refiects the
one-dimensional nature of the formation of each adatom
row. To experimentally observe the oscillations in the
susceptibility as a function of the chemical potential, a
high resolution of the chemical potential is obviously re-
quired. With a row potential proportional to 1/ks, where
k is the row number, these measurements should be fea-
sible at least for a few innermost adatom rows, for which
the potential difference between adjacent adatom rows is
non-negligible.
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APPENDIX

In this Appendix the derivation of Eq. (3.4) for the
average domain size in the one-dimensional Ising model
is outlined. The Hamiltonian is given by

M M

'RiD= —J) o o+, —B) a, ,

V. CONCLUSIONS

The inHuence of a row potential on adsorbed mono-
layers on a stepped substrate has been studied in the
&amework of a lattice-gas model with L x M geometry

where cd are Ising variables with Oz ——+1, B is the ex-
ternal magnetic 6eld, and periodic boundary conditions
ol = uM+l are imposed. First we need to calculate the
probability P+(I) for the length of a (—) domain inside
the (+) phase to be I,
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P+ (l)

P(oM'= +1,crz = cr2 = . ~ ~ —« = —1, a'i+& —+1)
P(oM =+1,o, = —1)

Ai z ——e / cosh(B/T)

y[ 2J/T ~

hz(B/T) 2—J/T]1/2 (A5)

TrSV(TV)'SV
TrSVTV

where V is the transfer matrix

f e(J+B)/T e J/T-
J/T — (J B)/T )—I

with eigenvalues

(A3)

(A4)

where the two probabilities P obey the equilibrium dis-
tribution P((o~)) oc exp[ —'Ri D((o ~))/T] with kB = 1.
Here B & 0 is assumed; for B & 0 the signs are re-
versed. By de6ning two-dimensional matrices 8 and T
by S;~ = h;ibis and Tu ——b;2b2~, Eq. (A2) reads as fol-

lows:

The denominator of the right side of Eq. (A3) simply
gives the unnormalized kink density, and the numera-
tor can easily be evaluated since in the matrix TV the
elements of the top row are zero. ARer extracting the
product (TV)i, the traces are calculated in the usual

way by using the similarity transformation that di-
agonalizes V to Vs;~s ——diag(Ai, A2). For large M the
denominator of the right side of Eq. (A3) behaves as

Ai and the numerator as Ai
' e'(~ B)/T. Thus

P~(l) oc e ~' and the average domain size is the sum

(l) = P&lP+(l) = 1/(1 —e ~), where p is defined in
Eq. (3.4). Note that other quantities, e.g. , magnetiza-
tion for the one-dimensional Ising model and row cover-
ages for the complete Hamiltonian (2.1), can be expressed
in a similar way as a trace of a suitable combination of
operators, instead of differentiating the free energy.
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