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The structural, electronic, and magnetic properties of small Rh~ clusters (N = 2—8,10,12,13, and

19) are studied using the discrete-variational local-spin-density-functional method. The ground-
state structures of Rhz, Rhs, and Rh4 are obtained and found to exhibit a tendency toward higher-
dimensional geometries with longer bond lengths and more nearest-neighbor bonds. The equilibrium
bond lengths in the chosen geometry for the Rhs —Rhs, Rhip, Rhip, and Rhis clusters are determined
and show 4—

6%%up bond length contractions compared with the bulk interatomic spacing. A complex
size dependence of the magnetic properties of the RhN clusters is found to be consistent with a
recent experiment. The average magnetic moment per atom of the Rh~ clusters varies from Op~
to 2p, ~. The clusters with magnetic ground states have ferromagnetic interactions, while the local
moments of the 5s and 5p often align antiferromagnetically with that of the 4d. The calculated
magnetic moments of the Rhqo, Rhqq, Rhq3, and Rhqe clusters are compared and discussed with
the experimental ones. Icosahedral growth is suggested for Rh clusters. The reactivity of the Rh~
clusters toward Hq, N2, and CO molecules is predicted. The densities of states, exchange splittings,
valence band widths, and ground-state electronic configurations are presented for all the clusters.
FinaQy an energy difference is identified which may be used as the criterion for the existence of
multiple magnetic solutions in local-spin-density-functional calculations.

I. INTRODUCTION

Small clusters have been a subject of intense inves-
tigation in recent years. With quite large surface-to-
volnme ratio, a cluster may have electronic, optical, mag-
netic, and structural properties different from those of its
bulk phase. Exploring these uncommon properties is of
great importance in developing new cluster-based mate-
rials for technological applications. In addition, clusters
may serve as models for understanding localized effects
in solids.

Transition-metal (TM) clusters are of significant in-
terest, due to their promising practical applications in
developing new magnetic xnaterials with large moments
and new catalysts with high reactivity. ' Many theoreti-
cal calculations and experimental measurements
have been done for 3d TM clusters. Both theoretical and
experimental studies ' ' 2 of small Fe, Co, and Ni
clusters have indicated that cluster atoms have larger av-
erage magnetic moment per atom than atoms in the bulk
phase, and found that the average xnoment per atom in
these clusters is almost independent of the cluster size.

Theoretical calculations ' also predicted nonzero mag-
netic moments for other 3d TM clusters, though their
corresponding bulk phases have no moments. Such an
expectation is reasonable because of the reduced coor-
dination and of the high symmetry of clusters. These
attributes narrow the d-band widths and offer the possi-
bility of large spin multiplicities in the electronic ground
states. Unfortunately, experimental measurements
have so far given nonmagnetic results in the experimen-
tal resolution limits.

For 4d TM clusters, there are only a few studies from
theory and experiment. Using the local-spin-density-
functional (LSD) theory, Reddy et al.2s proposed that
13-atom clusters of Pd, Rh, and Ru will be xnagnetic.
Indeed, Cox et al. observed experixnentally giant mag-
netic moments in sxnall RhN clusters with N = 9—34,
while their observed value of the average moment per
atom for Rh$3 is 0.48@~, only about one-third of the
1.62@~ predicted by Reddy et al. They also observed
that the average moment per atom of the Rh clusters
depends significantly on cluster size. There are several
special sizes, Rhqs, Rhq6, and Rhq9, that are unusually
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magnetic relative to adjacent clusters. There are also a
few clusters that appear to be relatively nonmagnetic.
Recently, we have performed a first-principles study on
the electronic structures of Rhq3 clusters with three pos-
sible high-symmetry geometries. We found an anoma-
lous relationship between the cluster symmetry and the
magnetism of Rhq3 clusters, i.e., the total moment of
the icosahedral Rhq3 cluster is smaller than that of the
lower-symmetry clusters in a wide range of interatomic
spacings.

In this paper, we perform a comprehensive first-
principles study of Rh~ clusters with 1V = 2—8, 10, 12,
13, and 1S in the hope of understanding the size depen-
dence of the structural, electronic, and magnetic proper-
ties of small rhodium clusters. The ground-state struc-
tures of Rh2, Rhs, and Rh4 clusters are determined by
maximizing the calculated binding energies for the possi-
ble geometries. Since the number of possible geometries
increases quite rapidly with cluster size, it becomes im-
possible to determine the ground-state structures of the
larger clusters with this method. We assume one proba-
ble geometry for each of the larger clusters and optimize
its bond lengths. The geometries we chose for the clusters
are shown in Fig. 1. We describe our theoretical method
in Sec. II and present our results and discussions in Sec.
III. Finally a summary is given in Sec. IV.

II. METHOD

The binding energy and electronic structure of clusters
are calculated using the discrete-variational (DV) LSD
method. It is a kind of molecular orbital calculation
method, and its theoretical foundation is LSD theory.
Since it has been described in detail elsewhere, here
we only summarize its main points and discuss the choice
of computational parameters.

(a) The one-electron equation underlying the DV-LSD
method is

(h —c; )g; =(—2V' +v+v„, —s; )g; =0, (I)

where the one-electron Hamiltonian includes the
electron-nucleus and electron-electron Coulomb potential
v, and the spin-dependent exchange-correlation potential
v„,. This last is a function of the electron density for each
spin o, g (r), given by

where n; is the occupation of the cluster spin orbital
, chosen according to Fermi-Dirac statistics. In our

calculations, we take v„, to be of the von Barth —Hedin
form, with the parameters taken &om Moruzzi et aL2s

We also used the Perdew-Zunger form for a few cases
and found that the calculated results are independent of
the form of v„,.

(b) The cluster spin orbitals are expanded in a linear
combination of y~ (r):

~' (r) = ) .&'(r)c '

where the g~ (r) are the numerical symmetrized atomic
basis functions that transform as one of the irreducible
representations of the point group of the cluster. The
numerical atomic basis functions are obtained &om
the self-consistent atomic local-density-functional (LDF)
calculation. In our calculations, we choose the Rh
48 4p 4ds58o. 95po. i configuratio fpr the atomic basis
functions to represent the valence electron orbitals. The
rest of the core orbitals are fxozen. Similar choices for
other TM elements have been made, ' where the
calculated results compare well with those of other the-
oretical studies, obtained using higher-quality basis sets,
and with the experimental ones.

(c) The one-electron equation (I) is approximately
solved by the Rayleigh-Ritz variational method, which
is done by using the expansion of g; in Eq. (3) and
minimizing certain error functions 4, . defined as

FIG. 1. Geometries of clusters. (a) N = 5, trigonal dipyra-
mid (Dss), (b) N = 6, octahedron (Oq), (c) N .= 7, pentago-
nal dipyramid (Dss), (d) N = 8, tetrahedral multitwin (Tq),
(e) N = 10, twisted double square pyramid (D4&), (f) N = 12
and 13, icosahedron (lq), and (g) N = 19, double icosahedron

(Dss)

This procedure leads to the secular equation

(H —ES)C = 0.

(d) In the DV scheme, the matrix elements of the
Hamiltonian matrix H and the overlap matrix S are
obtained by a weighted summation over a set of sample
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points rt, (diophantine points), i.e.,

&;; = (x* I
~- I xl) = ) .~(»)x,'(»)~-(»)x2(»)

can be partly canceled out via point-by-point subtraction
of e(ri, ) and e" (rs):

S;, = (x' I x, ) = ) ~(r, )x,'(»)x, (rl ),
k

(6)

III. RESULTS AND DISCUSSIONS

(12)

where the (s)(rs)'s are appropriate integration weights. In
our nTTmerical integrations, about 4000 sampling points
per atom for the clusters with N & 4 and 2000 for the
others are adopted W. ith these points, we found suffi-
cient convergence for both the electronic spectrum and
the binding energy.

(e) To facilitate the computational procedure for build-
ing the cluster potential, a multipolar, multicenter model
density is used to fit the exact cluster charge density with
a least-squares error-minimization procedure:

&(r) = &M(r) = ):&i (r )+~ (r')
i,l,m

(8)

'z zer r+-
y, v pv

(9)

where i denotes multipoles'centered on various nuclear
sites at r;, and g(r) is the total electron density gt +
g~. An equivalent expansion is made for the spin density

gt —gt. We obtained good fitting accuracy for the charge
density of the RhN clusters by including multipoles up
to I = 2 in Eq. (8).

(f) The total energy of a cluster in the LSD approxi-
mation is written in standard notation as

Z...=) n;.s;.——1 g(r) &(r') drdr'
2 /r —r'f

tCF

+) f r (r) r (r) —r„„(r) Sr

1 ) ) ZI4Z

2 R„„
gl V

The calculated binding energy for the Rhl dimer is
shown in Fig. 2 as a function of dimer separation for
paramagnetic (PM) and ferromagnetic (FM) states. The
resulting equilibri»m bond length r„vibrational fre-
quency (A„)and dissociation energy D, are listed in Table
I. The ground state is FM, with magnetic moment 2p,~
per atom. The FM state is more stable by 0.93 eV with a
bond length larger by 0.06 A. than the PM state. The ob-
tained dissociation energy for the FM state is 3.04 eV, in
good agreement with the experimental one (2.92 eV).s~

Shims2 had performed a configuration interaction calcu-
lation for the Rh2 dimer. His results are also listed in
Table I. Compared with our results and with the experi-
mental data, his r„„(A)adnD, are undoubtedly far too
long (in fact, longer than the bulk interatomic spacing),
far too Soppy, and far too weak respectively As S.alahub
commented, ss this is mainly due to the lack of an ad-
equate correlation treatment in his calculation. In ad-
dition, we have not found any antiferromagnetic (AFM)
solution for the Rh2 dimer by removing the symmetry
constraints imposed on our calculations.

We have considered both the linear and trigonal ge-
ometries for the Rhs trimer, and the resulting binding
energies are shown in Fig. 3. It is obvious that the
two-dimensional trigonal geometry is more stable than
the one-dimensional linear chain. For both geometries,
the cluster magnetic moments are sensitive to the bond
length r and increase with increase of r. At the equilib-
rium configuration, the total moment of the trigonal Rhs
trimer is 3@~, larger than that of the linear chain, which

where e„, is the exchange-correlation energy density, and
e(r) is an energy density. The binding energy of the clus-
ter is then defined with respect to some reference system,
say the dissociated atoms, as

where

&s = —(&tot —&tot)

ref eref r dr

(10)
-2

I
Qf

I

-2.5

In the DV scheme, the numerical error of Eg is minimized
with the point-by-point error-cancellation technique. In
this technique, the reference system energy is computed
with the same sampling grid as in the self-consistent-Seld
and the cluster energy procedures by &eezing the atoms
at their respective lattice sites, but they are now assumed
to be noninteracting, so that the numerical error of Eg

-3

I t I I I I I

2 2.1 2.2 2.3 2.4 2.5
r (L)

FIG. 2. Binding energy as a function of bond length for the
Rhq dimer.
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TABLE I. Equilibrium bond length r„vibrational fre-

quency u„and dissociation energy D, for the Rhz dimer.

PM
FM
Shim (Ref. 32)
Expt. (Ref. 31)

.. (A)
2.25
2.31
2.86

(u, (cm ')
292
333
118

D, (eV)
2.11
3.04
0.85
2.92

is 1@~. The lowest-energy state of Rh3 is found to corre-
spond to the isosceles triangle, which has slightly lower

energy than the one in the equilateral triangle (Table II).
The equilibriuxn bond lengths are 2.46, 2.46, and 2.34 A,
respectively. The corresponding bond angle is 56.8 .

The binding energy curves versus r for the Rh4
tetramer are plotted in Fig. 4. From this figure, one
can see again that the cluster favors higher-dimensional
geometry with longer bond lengths and more nearest-
neighbor bonds. For the one- and two-dimensional ge-
ometries, we find that the magnetic state (S g 0)
has lower energy than the PM state. For the three-
dimensional geometry, however, the situation is difFer-

ent. There is only one PM solution in a wide range of
r, and the magnetic solution appears when r ) 2.55 A. .
The energy curve for this magnetic solution has no stable
minimal point. As a result, the ground state of Rh4 is
PM. From Table II, it is interesting to note that the pla-
nar rhombus geometry has lower energy than the square
geometry, while the trigonal pyramid has higher energy
than the tetrahedral geometry.

The equilibrium properties for the Rh5 —Rhs, Rhzp,
Rhq2, Rh~s, and Rhqg clusters are presented in Table
III. From the table, one may see that all clusters except
Rh6 have magnetic ground states. The ground state of
the Rh6 cluster is PM, the same as what we get for the
Rh4 cluster. In contrast to the Rh4 cluster, however,
the Rh6 cluster always has a higher-energy magnetic so-

lution in addition to the PM solution, as shown in Fig.
5, and the energy curve for the magnetic solution has a
stable minimal point. The Rh8, Rhyp& and Rhq2 clusters
also have both PM and magnetic equilibrium configura-
tions, but now the magnetic states have lower energies

S=5/2~ '

-5.5

Rhq

a Linear

b Trigonal

0
-6

Qf
I

-6.5

/

/

/

S 5/2 /

/

/
/

I i I i I i I i I

2.2 2.3 2.4 2.5 2.6 2.7
r (L)

FIG. 3. Binding energy as a function of bond length for the
Rh3 trimer.

and correspond to the ground states. For clusters with
N & 10, moreover, we find that there is more than one
self-consistent magnetic solution at the magnetic equilib-
rium configuration (Table III). We choose the one which
gives the largest cluster binding energy as the actual mag-
netic solution for a cluster. We will further discuss the
multiple solutions in terms of an energy parameter later.

For all clusters, once there exist both PM and magnetic
equilibrium configurations for one geometry, we always
obtain a longer equilibrium bond length for the xnagnetic
state. This observation can be understood by noticing
that the magnetic interaction leads to a splitting of the
d bands and a filling of the less bonding majority-spin
orbitals at the expense of the more bonding minority-
spin orbitals.

Comparing to the bulk interatoxnic spacing of 2.69 A,
one may find there are bond-length contractions in all
the RhN clusters. The value of the contraction varies
from about 14% for the dimer, to 4—8'%%uo for the larger
clusters. Such bond-length contractions have changed
dramatically the magnetic properties of some clusters.

TABLE II. The equilibrium bond lengths and binding energies for the Rh3 and Rh4 clusters.

Rh3
Geometry
Linear chain
Equilateral triangle
Isosceles triangle

Symmetry
D~h,
C3~
C'2„

Spin
9=ll2
S = 3/2
S = 3/2

.. (A)
2.20
2.42

2.46,2.34

Eg (eV)
5.74
6.76
6.78

Rh4 Linear chain

Square

Rhombus

Tetrahedron
Trigonal pyramid

D4h

Td
C3„

S=0
S=1
S=0
S=2
S=0
S= 2
S=0
S=O

2.19
2.22
2.38
2.41
2.37
2.39
2.48

2.45,2.42

7.98
8.22
10.56
10.91
10.62
10.93
11.80
11.79

With an acute angle of 88.12 .
With an acute angle of 87.28 .
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FIG. 4. Binding energy as a function of bond length for the
Rh4 tetramer.

FIG. 5. Binding energy as a function of bond length for the
Rhe cluster.

Remarkable examples are provided by the tetrahedral
Rh4 cluster and the Rhm cluster. For the tetrahedral
Rh4 cluster, an 8%p contraction causes the total magnetic
moment to change from 6@~ to Oy, ~ (see Fig. 4). For
the Rhm cluster, only a 4% contraction changes the total
moment from 14@~ to 6p~. This shows the strong sensi-
tivity of the magnetic properties of the Rh~ clusters to
cluster bond length.

The size dependence of the binding energy per atom of
the Rh~ clusters is displayed in Fig. 6(a). The cluster

binding energy per atom increases with increase of cluster
size. In the region between the Rhs and Rhqs clusters,
the curve shows an approximately linear dependence. If
we extend this linear dependence to larger clusters, we
can estimate that the value of the binding energy per
atom of the RhN cluster will reach the bulk one (5.75
eV/atom) when N 37.

The average magnetic moment per atom of the Rh~
clusters is plotted in Fig. 6(b) as a function of the num-
ber N of atoms in clusters Her.e we have a complex

TABLE III. The equilibrium bond lengths and binding energies for the Rhs —Rhs, Rhyp, Rhgs,
and Rh~g clusters. Values in parentheses correspond to metastable minima.

Symmetry
D3a

Spin
S = 3/2

.. (A.)
2.52

Eg (eV)
15.31

Rh6 S=0
(S =3

2.54
2.57

20.74
20.34)

Rhp Dsh S = 9/2 2.58 24.03

Rh8 (S =0
S=5

2.56
2.58

28.95)
27.73

Rhgp D4a (S=0
S=3

(S = 7

2.56
2.58
2.58

37.62)
37.72
37.55)

Rhg2 (S = 0
S=4

(S = 7

2.55
2.56
2.56

46.20)
46.41
46.01)

Rhg3 (S = 7/2
S = 15/2

(S = 21/2

2.56
2.56
2.56

51.42)
52.16
51.81)

Rhgg Dsa (S = 5/2
S = 17/2

2.69
2.69

82.97)
84.58

Bond length between the central and surface atoms.
Not optimized, taken from bulk.
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ing. We note that icosahedral growth has been inferred
for many transition-metal clusters. For example, Parks
et al. suggested icosahedral growth for Ni clusters &om
49 to at least 105 atoms on the basis of experimental
adsorbate binding data.

Figures 7(a) and 7(b) show the densities of states
(DOS) for the majority- and minority-spin electrons in
the Rh~ clusters. The DOS are obtained by a Lorentzian
extension of the discrete energy levels and a summation
over them. The broadening width parameter is chosen
to be 0.4 eV. From Fig. 7, we can see that all the DOS's

o.e—

0—
s I s I s s s I s i s ~ I s i s s

Majori

10
N

15 20

FIG. 6. Size dependence of (a) the binding energy per atom
and (b) the average magnetic moment per atom of the RhN
clusters.

size dependence of the moment, in contrast to the nearly
size-independent relationship for the moment in Fe, Co,
and Ni clusters. '2 ' Cox eg al. measured the mag-
netic moments per atom for Rh~ (N = 9—34), and also
found that they depend significantly on cluster size: our
conclusion is consistent with their finding. As we have
seen above, the average magnetic moments of the Rh4
and Rhs clusters are zero because they have PM ground
states. For the Rheo and Rhq2 clusters, the average mo-
ments per atom are 0.60@~ and 0.67@~, respectively.
They are in good agreement with the experimental onesz4

[(0.8 + 0.2)p~ and (0.59 + 0.12)p~ for Rh~o and Rhq2,
respectively]. Although it is smaller than that of Reddy
et al. ,

2 our calculated average moment per atom for the
Rhqs cluster (1.15p~) is still bigger than the experimen-
tal one [(0.48 6 0.13)p,gy]. For the Rhqs cluster, the cal-
culated average moment per atom is 0.89@~, compared
to (0.61 6 0.08)y,~ of the experiment. We will give some
possible explanations for these quantitative discrepancies
between experiment and theory for Rhqs and Rhqs at the
end of this section.

It is worth mentioning that we have also considered
fcc-like geometries for Rhqs and Rhqs. For the fcc Rh]3
cluster, our calculations give a 1.46@~ average moment
per atom. We obtain two magnetic solutions for the fcc
Rh1g cluster: the average moment of the first is 1.42@~
per atom while in the second it is 0.58p~ per atom. The
cluster binding energy for the former was calculated to
be larger than that for the latter by 0.1 eV. In our calcu-
lations, the fcc-like geometries always have higher ener-
gies than the corresponding icosahedral-like geometries.
At the equilibrium configurations, the icosahedral Rh$3
cluster is more stable than the fcc Rh13 cluster by 1.35
eV. With the bond length at the bulk interatomic spac-
ing, the double-icosahedral Rhyg cluster has bigger clus-
ter binding energy by 4.15 eV than the fcc Rh1g cluster.
Hence we can suggest, &om the energy point of view, that
the growth of Rh clusters is based on icosahedral pack-

N
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N=

4
N=cl

N=M

A

N

N

N

N

N

N
I

I i I i I i I i l i I

-8 -6 -4 -2 0 2 4
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-8 -6 -4 -2 0 2
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FIG. 7. DOS for the Rh~ clusters: (a) majority spin and
(b) minority spin.
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TABLE IV. The data of electronic structure for the Rh~
clusters (eV).

Rhg
Rh3
Rh4
Rh5
Rhg
Rhy
Rhs
RhI P

Rhyme

Rhg3
Rhgg

HOMO LUMO
-4.53
-4.23
-3.96
-3.54
-3.92
-3.59
-3.43
-3.84
-4.36
-4.33
-3.60

-4.49
-4.16
-3.23
-3.51
-3.46
-3.56
-3.43
-3.81
-4.33
-4.33
-3.53

AEg
1.18
0.47
0.00
0.36
0.00
0.67
0.69
0.31
0.34
0.65
0.48

AEg
0.69
0.26
0.73
0.04
0.46
0.17
0.11
0.03
0.03
0.05
0.07

VBW
4.18
4.19
4.40
5.02
5.27
5.19
5.40
4.73
4.74
5.60
5.21

show a large peak near the top of the valence band, and
that Ez lies in the minority peak for most clusters. This
is different &om the bulk where the E~ lies in a dip of
the DOS. With these 6gures, we can determine the
exchange splitting (b,Ei) and the valence band width
(VBW) for each of the clusters, as listed in Table IV and
plotted in Figs. 8(a) and 8(b). Comparing Fig. 8(a) with
Fig. 6(b), one can find that EEi correlates in a strik-
ing way with the cluster moment: the larger the cluster
moment, the larger b,Ei. All the VBW's of clusters are
found to be smaller than the bulk value (7.0 eV). How-
ever, the variation of the VBW as a function of cluster
size is somewhat complex [Fig. 8(b)). The Rhrs cluster
has the largest VBW, and the VBW of Rh7 is found to
be smaller than those of adjacent cluster sizes. In 3d FM
clusters, it has been shownrz that a narrow VBW is one
of the favorable conditions for enhancing the energy gain
for ferromagnetism. Here we could not find any explicit
correlation between the VBW and the cluster moment.

The results for the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) of the Rh~ clusters are presented in Tables IV
and V and in Fig. 8(c). The gap between the HOMO
and LUMO is found to be rather small for all clusters
except Rh4 and Rhs. For the Rh4 and Rhs clusters whose
ground states are PM, the gaps are 0.73 eV and 0.46 eV,
respectively. From Fig. 8(c), we notice a comparatively
big change in the position of the LUMO as a function of
cluster size when going from Rhs to Rh4 and from Rh]3
to Rhqg. The HOMO as a function of cluster size has two
local minima, at Rh6 and at Rh~2 and Rhq3, respectively.
Because Rh is known to be an important catalyst, it is
interesting to link the variation of the HOMO with the
cluster size with the reactivity of RhN clusters toward
Hz, Nq, and CO molecules. Following the method of
Rosen and Rantala, we can predict that Rh5, Rhq, and
Rhs clusters have substantial reactivity, while Rhs, Rhi2,
and Rhq3 show high stability toward H2, N2, and CO
molecules.

For a cluster, the number of electrons in the HOMO de-
termines its ground-state electronic configuration. From
Table V, we can see that the HOMO is occupied by
the minority-spin electrons for Rh2, Rh3, Rhy, Rhs, and
Rhiq, and by the majority-spin electrons for Rhq, Rhio,
Rhine, and Rhio. This picture is very different from that

1.2

0.8
(a}

0—
I r r r r I r r r r I

BED

5.6

5.20
4.8

4.4
I I I I I I I I I I I I I I

-3.2

-3.6
0

-4

c)

-44

10
N

15

FIG. 8. Size dependence of (a) b,Eq and b,Eq, (b) the
VBW, and (c) the HOMO and LUMO of the Rh~ clusters

TABLE V. The ground-state electronic configurations for
the Rh~ clusters.

Rhg
Rhg
Rhg

Rhs
Rhg

Rhy
Rhs
Rhgp
Rhg2
RhI 3

Rhge

Symbol
bs„g
bg $

I

~2u
II

ez 4
tr 1,

ty

Ir

HOMO
Electrons

1
1
6
1
6
2
1
1
3
1
2

Electronic
configuration

closed
closed
closed

closed
closed

closed
open

closed
closed
open

closed

obtained for 3d FM clusters, where the HOMO is al-
ways occupied by the minority-spin electrons. ' ' The
HOMO's of all clusters except Rhs and Rhis are fully
occupied, which lead to ground states with closed elec-
tronic shells. Thus these clusters are expected to be re-
markably stable. The Rhs and Rhis clusters have degen-
erate ground states because their HOMO's are partially
occupied. According to the Jahn-Teller theorem, they
tend to distort further toward lower symmetry so as to
lift the degeneracy of their ground states and lower their
energies. It should be emphasized, however, that the dis-
torted cluster may also increase its energy if it changes
its spin. Accordingly, it depends on a compromise be-
tween these two effects whether and to what extent the
Jahn-Teller distortion may take place.
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It is well known that the Kohn-Sham equations in the
LDF scheme have a unique solution for a given system.
In the LSD scheme, however, solving the equations
simultaneously optimizing the spin of the system —can
yield more than one solution. These solutions correspond
to local minima of the cluster energy as a function of the
cluster spin. When using the LSD method, hence, we
should check whether our result is the actual ground state
of the system we studied. That is to say, we should know
whether there are multiple magnetic solutions. When
may multiple magnetic solutions exist in our LSD cal-
culations for a system'? We link the answer to an en-

ergy difference AE2, which was originally identified by
us as being useful to explain the anomalous symmetry
dependence of the cluster moment for Rhts clusters.
For a cluster whose HOMO is partially occupied, AE2 is
the energy difFerence between the HOMO and its closest-
in-energy spin-opposite molecular orbital (CSMO) which
can be either occupied or unoccupied. If the HOMO
is fully occupied, then AE2 is either the energy difFer-
ence between the HOMO and its unoccupied CSMO or
between the LUMO and its occupied CSMO, depending
on which one is the smaller. We suggest that when one
finds b, E2 to be small, say, less than 0.1 eV, one should
consider the possibility of multiple solutions in the LSD
calculation.

The values of AE2 for the Rh~ clusters are listed
in Table IV and plotted in Fig. 8(a). Froxn the table
and figure, we can see that the Rh2 —Rh4, and Rhs —Rhs
clusters have comparatively large KE2, while the value
of b,Eg for the Rhs and RhIp —Rhtg clusters is smaller
than 0.1 eV. Actually, one can see &om Table III that,
at their equilibrium configurations, the Rh2 —Rh4, and
Rh6 —Rhs clusters have only one self-consistent magnetic
solution, and the RhIp —Rhqg clusters have two or three
self-consistent magnetic solutions. These results are in
accordance with our AE2 criterion for the existence of
multiple magnetic solutions. For Rhs, the small AE2
suggests it might have multiple solutions, while one can
see only one self-consistent solution with S = 3/2 for it
in Table III. We can explain this discrepancy as follows.
For Rhs, the energy difference between the HOMO and
its unoccupied CSMO is 0.04 eV (i.e., AE2), while the
energy difFerence between the LUMO and its occupied
CSMO is 0.44 eV. Since the HOMO is occupied by a
majority-spin electron (Table V), another self-consistent
magnetic solution one can expect for the cluster in addi-
tion to the solution with S = 3/2 is the one with S = 1/2.
In our calculations, where levels are occupied according
to Fermi-Dirac statistics at 0 K, the cluster spin S is only
permitted to change by an integer number. Hence the en-

ergy, seen as a function of S, is only defIned for values of
its argument differing by integers and thus cannot have
two local minima corresponding to adjacent values of S.

The results for Mulliken orbital and spin populations
evaluated for the RhN clusters are given in Table VI
and Fig. 9. With reference to the atomic configuration
4d 58 5p, one can easily see how the electron of the 5s is
redistributed to the 4d and 5p with the increase of cluster
size. Spin populations show some common features with
the magnetism for Rh clusters. For example, all clus-

Charge
4d 5s 5p

8.18 0.75 0.06

Net spin
4d 5s 5p Total

1.74 0.23 0.02 2.00

Rhs a(1) 8.16 0.66 0.12
b(2) 8.18 0.72 0.13

1.00 0.00 0.00 1.00
0.99 0.00 0.01 1.00

8.24 0.58 0.18 0.00 0.00 0.00 0.00

Rhs a(2) 8.27 0.56 0.13
b(3) 8.21 0.52 0.28

0.52 -0.04 0.04 0.52
0.67 -0.01 0.01 0.67

Rh6 8.25 0.48 0.27 0.00 0.00 0.00 0.00

Rhr a(2) 8.12 0 50 0 40
b(5) 8.25 0.53 0.23

1.37 -0.02 0.02 1.37
1.29 -0.05 0.02 1.26

Rhs a(4) 8.10 0.53 0.49
b(4) 8.29 0.51 0 08

1.36 -0.03 -0.05 1.28
1.26 -0.07 0.04 1.23

Rhqs a(2) 822 061 0.15
b(8) 8.19 0.51 0.32

0.65 0.08 0.03 0.76
0.54 0.00 0.01 0.55

Rhg2 8.15 0.55 0.30 0.52 0.11 0.04 0.67

Rhls a(1) 7.92 0.40 0.66
b(12) 8.14 0.53 0.33

1.32 0.00 -0.20 1.12
0.99 0.10 0.07 1.16

Rhqs a(2) 7.90 0.46 0.56
b(2) 8.16 0.46 0.28
c(5) 8.10 0.49 0.52

d(10) 8.17 0.52 0.29

0.98 0.00 -0.05
0.81 -0.03 0.03
0.71 0.04 0.00
0.90 0.03 0.05

0.93
0.81
0.75
0.98

ters with magnetic ground states have FM interactions,
the cluster moment mainly comes from the 4d local mo-
ment, and the local moments of the 58 and 5p often align
antiferromagnetically with that of the 4d.
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FIG. 9. Size dependence of (a) Mulliken orbital popula-
tions, where Dn4d, ——+4' —8, 4~5, = n5, —1, and ++5p —~5p,
and (b) Mulliken spin populations of the Rh~ clusters.

TABLE VI. Mulliken orbital and spin populations for the
Rh~ clusters. a, 6, c, and d are the types of inequivalent
atoms within the cluster point group, and the number of
atoms of each inequivalent type is given in parentheses.
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Finally, let us discuss the origins of the quantitative
discrepancies of the magnetic moment between experi-
ment and theory for Rhis and Rh]g. Fol' Rh]s our ex-

planation is that the real cluster geometry is not a perfect
icosahedron, but it is instead a distorted one, and under-

going distortion decreases the total magnetic moment of
the cluster. Such an expectation is reasonable because we

have shown that the perfect icosahedral Rhq3 has a ten-
dency to undergo Jahn-Teller distortion, and that there
is already a low-spin magnetic solution (S = 7/2) for the
perfect icosahedral Rhq3, though it has not the lowest

energy of this geometry. The fact that we have not opti-
mized the bond lengths of the Rh~e cluster could possibly
be reasoned to be the origin of the discrepancy for Rh~9.
Moreover, the fact that the low-spin magnetic solution

(S = 5/2) for Rhig is AFM would make a direct com-
parison between theory and experiment impossible, if this
solution became the ground-state solution after optimiza-
tion. The experiment only measures the time-averaged
magnetic moment of a cluster and not the internal mo-
ment itself. 4 The true internal moment is deduced by
applying the superparamagnetism model. i Whether the
superparamagnetism model without some corrections can
be applied to AFM clusters is still questioned.

IV. SUMMARY

In this paper, we have reported a comprehensive study
of the structural, electronic, and magnetic properties
of small Rh clusters, using the first-principles DV-LSD
method. The results we have obtained can be summa-
rized as follows.

(I) The ground-state structures of Rh2, Rhs, and Rh4
are obtained. The results show that the systems prefer
higher-dimensional geometries with longer bond lengths
and more nearest-neighbor bonds.

(2) The bond lengths in the chosen geometry for the
Rhs —Rhs& Rhip, Rhi2, and Rhis clusters are optimized.
Compared with the bulk interatomic spacing, bond-
length contractions are found in all clusters and have

dramatically changed the magnetic properties of some
clusters.

(3) A complex size dependence of the magnetic proper-
ties of the Rh~ clusters is found, consistent with a recent
experiment. The average magnetic moment per atom of
the Rh~ clusters varies &om Op~ to 2@~. The clus-
ters with magnetic ground states have FM interactions,
while the local moments of the 58 and 5p often align an-
tiferromagnetically with that of the 4d. The calculated
magnetic moments of the Rheo and Rhq2 clusters are in
good agreement with the experimental ones. Possible
origins are proposed to explain the quantitative discrep-
ancies between experiment and theory for the magnetic
moment for Rhj3 and Rheo clusters.

(4) Icosahedral growth is suggested for Rh clus-
ters based on studies of the binding energy for the
icosahedral-like and fcc-like Rhis and Rhig clusters.

(5) The electronic properties of the Rhiv clusters are
calculated. The DOS, AEi, and VBW are presented and
discussed with the cluster size and magnetic moment.

(6) The HOMO and LUMO are extensively analyzed
for the Rh~ clusters. The results obtained reveal that
(a) all clusters except Rh4 and Rhs have small energy
gaps, (b) the Rhs, Rhran, d Rhs clusters have substantial
reactivity, while Rhs, Rhi2, and Rhis show high stability
toward H2, Nz, and CO molecules, and (c) the Rhs and
Rhis clusters have open electronic shells and are expected
to distort further according to the Jahn-Teller theorem.

(7) The energy parameter AEg is introduced and
tested as the criterion for the existence of multiple mag-
netic solutions in LSD calculations.
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