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This paper addresses the problem of how sound propagates in a granular medium composed of non-

cohesive particles. This propagation has many unusual aspects which are due to the fragile nature of the

contacts between grains. Sound propagation in a granular material is very sensitive to the exact position
0

of each of the grains. The thermal expansion of a single bead of about 3000 A can produce a change as

large as 25% in the total transmission of the sound even though this expansion is 4 to 5 orders of magni-

tude smaller than the wavelength of the sound or the size of a bead (5 mm). I interpret this as being due

to sound propagating predominantly along force chains within the medium. By replacing some of the

beads with local heaters, I have used this effect to investigate the spatial properties of the low-amplitude

vibrations. The disturbance of a single heater can be characterized by a time scale ~h which reveals the

elapsed time of the signal traveling along a path via the heater. Two heaters placed symmetrically with

respect to the source and detector can produce very different disturbances. Finally, I show that the spa-

tial pattern caused by heaters placed at different positions within the medium is very irregular in that

two adjacent heaters can give very different responses. These experiments all indicate the presence of
strong inhomogeneities and the existence of force chains within the medium along which the sound

predominantly travels.

I. INTRODUCTION

Unconsolidated granular materials have very distinct
properties that make them diff'erent from the other
classes of conventional materials: gases, liquids, and
solids. ' For example, a pile of sand can have a nonzero
slope showing that it can withstand external stresses as in
a solid. However, if the slope becomes too large, the sand
will start to Qow similar to the behavior of a Quid. In sal-
tation, quickly fiowing sand can have mean free paths be-
tween collisions that are large compared to its diameter
so that the material is reminiscent of a gas.

Sound propagation has been studied recently in an un-
consolidated granular medium and was also shown to be
very different from propagation in other media. In
sand, vibrations can propagate from one grain to its
neighbors only through their mutual contacts if one
neglects the interstitial Quid or gas. One can consider
these contacts to be the building elements of the effective
medium through which the sound travels. These con-
tacts deform under pressure P with a very nonlinear form
5 ~P, where 5 is the deformation of the bead at the
contact. Several rather interesting phenomena were ob-
served due to these disordered and nonlinear contacts. It
was found that the frequency response characterizing the
transmission spectrum is an interference pattern which is
very irregular and con6guration speci6c. As the ampli-
tude was increased, nonlinearity appeared near the onset
of hysteretic behavior. In the high-amplitude region,
not only were fluctuations of the detected signal ob-
served, but also frequency shifts in all of the structural
features in the response were found. '

The apparent disorder in the packing of sand makes
sound propagation reminiscent of wave phenomena in

other disordered condensed-matter systems. ' ' This
analogy is made plausible since the frequency response of
sound propagation in a sandpile has some features similar
to conductance Quctuations seen in a mesoscopic metal.
With the assumption that this medium is homogeneous,
difFusion wave theory or even localization theory may be
relevant to the vibrational excitations in sand as was sug-
gested by Feng and Sornette.

This direct analogy may be Aawed due to the unique
properties of this unconsolidated material: the very fra-
gile contacts between its constituent grains. For grains
made of a hard material, the deformation 5 at a contact
is extremely small compared to its grain size. Thus, one
expects that a minute movement of a grain of sand com-
parable to 6 can effectively switch a sound propagation
channel on or off, producing an extreme sensitivity of the
vibration transmission to the exact spatial locations of
the constituent particles. Such a sensitivity would be far
greater than that found in other condensed-matter sys-
tems.

In the linear regime, the validity of the analogy to
diffusive wave theory may be questionable due to another
property unique to unconsolidated granular material
which is related to the contacts: arching. Very slight dis-
order in the packing of the grains or a small spread in the
distribution of the grain sizes could result in the forma-
tion of some very strong contacts as we11 as some very
weak ones. Due to the equilibrium force balance within
the pile, a strong contact is also likely to be followed by
another strong one, thus leading to a chain of very strong
contacts within the pile. Experiments in two dimensions
clearly support this picture: a few strong force chains
support most of the external load. In three dimensions as
we11, there is experimental evidence for the existence of
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such force chains. If the strong contacts do exist and
cluster into a dilute set of force chains, then the system
will be inhomogeneous over a length scale considerably
greater than the size of an individual bead. Consequent-
ly, the number of force chains along which sound prefer-
entially travels would be so few that a diffusion descrip-
tion would not be justified. The past work on sound
propagation in sand' has been primarily associated
with only temporal aspects of this phenomena. However,
spatial studies can be useful since they not only can re-
veal more information about sound which is not within
the temporal description, but they can also provide some
experimental evidence for the legitimacy of the analogy
to diffusion.

In Sec. II, I will first briefly review and expand upon
some of the previously studied temporal aspects of the
low-amplitude vibration. Then in Sec. III, I discuss an
effect in sand, namely that the thermal expansion of a sin-

gle bead due to tiny changes in its temperature can
significantly alter the transmission of sound. In the fol-
lowing section, I show how this effect can be used to in-

vestigate the spatial properties of the sound propagation.
These measurements of the spatial properties are inter-

preted in terms of ballistic propagation along force chains
and are thus in accord with the interpretation of the tem-

poral behavior.

II. RESPONSE FUNCTION IN TIME
AND FREQUENCY DOMAINS

In the experiments reported previously ' and which I
expand upon in this section, the granular material was
composed of spherical glass beads with diameter d =0.5

cm. The beads were contained in a box with a 28 cm X 28
cm cross section and a depth ranging from 8 to 15 cm as
shown in Fig. 1(a). The box was lined with Styrofoam
sheets to reduce the reflection of the sound waves. Other
layers of Styrofoam sheets and a plastic container enclos-
ing the box protect the system from external vibrations
and temperature fluctuations. The air surrounding the
granular material was frequently refreshed with dry ni-

trogen to minimize the influence of humidity on the ex-
periments. The source of the vibration was an aluminum
disk 7 cm in diameter driven by a speaker via a horizon-
tal rigid rod. An accelerometer attached to the back of
the disk monitors the vibration and enabled control with
good precision of the source amplitude through an elec-
tronic feedback loop. The detection accelerometers, 0.7
cm in diameter and 1.2 cm in length, are not sensitive to
the acceleration in the transverse direction. They were
placed 0.2-18 cm from the center of the source with
their axes aligned along the direction of the source vibra-
tion. They were chosen to have a size comparable to that
of a single glass bead so as to characterize the motion of
the granular material down to the length scale of its con-
stituent grains. Since both the glass beads and the detec-
tors have very high density compared to air, their motion
is affected little by the surrounding atmosphere. '

I first investigate the nature of sound propagation in
the time domain. A pulse generated at the source arrives
at the detector with a certain time delay and the clearest

and most robust feature of this propagation process is the
well-defined rising edge when the first effect of the source
pulse is felt at the detector. The elapsed time for this ris-
ing edge to reach the detector yields a time-of-flight
sound speed: ctof 280+30 m/sec. Measurements in vac-
uum and in helium gas (c =970 m/sec) have excluded
any possible contribution from the interstitial air (c =330
m/s). The response function R(r) of the system has also
been measured. A short pulse at the source was generat-
ed and the vibration of the detector D(r) was detected.
Because this pulse could not be made arbitrarily short
due to ringing in the speaker, the actual wave form of the
source pulse was also recorded. The suitably filtered
Fourier transform of the signal from the detector D(~)
was divided by that from the source. The ratio is the fre-
quency response function Ii(v), from which one can
reconstruct the response in the time domain R(r) by an
inverse Fourier transform. In Figs. 1(b)-1(d) I show data
for R(r) for a detector at three distances Lz= 1, 6, and
12 cm away from the source, respectively. Common
features of these response functions are a sharp rising
edge followed by a few strong spikes and a decaying tail.

(a)

~ r ~

ss 4 ~ sl %% rs hs %I %l Is ssI%& ss\ Is Is sl \I

I . I 'ssrss . ~ ~ss' s"ssrssss' s'wssss"s'. rs&Ss'.s'. I I .

40 (b)

-40 d= 1 Gill

10

4
~ (msec)

FIG. 1. (a) A schematic diagram of the side view of the exper-
imental configuration. S and D correspond to the two ac-
celerometers used to monitor the source acceleration and the
detected signal, respectively. The walls are padded with 3-cm-
thick sheets of Styrofoam. The response at the detector R as a
function of elapsed time v for three different source-detector
distances as labeled in the Sgure. (b) Ld = 1. cm; (c) Ld =6 cm;
(d) Ld =12 cm. Data shown in (b), (c), and (d) have been cali-
brated with the same unit.
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However, the structure of the response changes systemat-
ically with distance: At short distances, R (i) is dominat-
ed by a sharp first peak with a small time delay between
subsequent spikes. As Ld increases, the sharp features
disappear and the contributions from longer times be-
come more important.

The response function in the frequency domain F(v)
can be measured with higher precision by monitoring the
detected signal as a function of frequency rather than a
direct Fourier transform of R(r) Th.e source was driven
with a single frequency v: A, sin(2mvt). The steady-state
response of the detector also has the same frequency v
with the general form: A&sin(2nvt+P), in which both
Ad and P are frequency dependent. Both the phase P and
the transmission ran=A&/A, of the complex frequency
response F(v)=rIe'~ are shown versus the driving fre-
quency v in Figs. 2(a) and 2(b), respectively. Within ex-
perimental error, the phase is a linear function of fre-
quency, implying that another velocity can be obtained:
cs=2nL&(dv/dP) This. second velocity, measured by
the phase delay, is the classical analogy of the group ve-
locity. The value of cs can vary within a range of 50-90
m/sec depending on the detailed packing of the grains.
The transmission i) has a rich and reproducible irregular
pattern. If the pile is slightly disturbed, this fine struc-
ture can change and signify a new configuration. In Fig.

2(c), I show the response function R(i) reconstructed
from the frequency response data shown in Figs. 2(a) and
2(b). It is completely consistent with the R(r) shown in
Fig. 1(c) which has the same source-detector distance.
The difference in the fine structure between these two
curves demonstrates the slight diff'erence in their packing
configurations. The large difference between the group
velocity cg and the time-of-Sight velocity c„fis due to the
wide range of time delays of the signals in R(r). The in-
terference between the signals at different time scales
gives rise to the structure in the transmission function
ri(v).

Besides the detailed structure in i)(v), the averaged
overall transmission is of general interest since one can
expect it to decay with both distance and frequency for
several difFerent reasons: the geometric factor due to the
energy conservation; the attenuation due to inelasticity
and the localization of the sound wave. ' Figure 3(a)
shows how the averaged transmission ( ri ), varies against
source frequency v for the values of Ld labeled. The sub-
script c in the expression (g), denotes an average over
diff'erent configurations. Figure 3(b) shows the variation
of the transmission (ri ), versus the source-detector sepa-
ration for different frequency bins. For all frequencies,
the average transmission (i) ), decays exponentially with
distance Ld. However, it was not possible to sort out the
contributions to the signal decay from each of the three
different physical processes just described.
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FIG. 2. The response function is presented in both frequency
and time domain for a detector at a distance Lz =6 cm from the
source. In (a) the phase P and in (b) the transmission g are
shown as a function of the source frequency v. The slope of
(()(v) determines cg. In (c) the response R as a function of
elapsed time w is calculated from the data shown in parts {a)and
(b).
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FIG. 3. (a) The averaged transmission response (i)), is
shown as a function of source frequency v for five different
source-detector distances as labeled in the figure. (b) The aver-
aged transmission response (g), is shown as a function of
source to detector distance Ld for five different source frequen-
cies v as labeled in the figure.
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FIG. 4. (a) The absolute value of the response function ~R (r}~
at Lz =6 cm is smoothed and then fit with a form appropriate
for diffusion: R(~)=a~ '~~exp( b/r) —(b} The. elapsed time of
the maximum response ~,„asa function of source detector sep-
aration L&. The fit which is of the form ~ =Lq/c yields a
speed of sound c= 117+5m/s.

In this section I show that the contacts between grains
are very fragile and show how this can be observed using
either large-amplitude vibrations or using very small vari-
ations of temperature. In what I reported above, extreme
care was taken to ensure the reproducibility of the
response function within the experimental time scale.

In order to understand the nature of these phenomena,
one can first try to judge whether these vibrations are lo-
calized or extended. I estimate that the wavelength
A. =5.6 cm for c„&=280m/s and a typical frequency
v=5 kHz. With the assumption that the normalized
mean free path l» is of the order of the size of a bead, the
Ioffe-Regel parameter'c kl'-0. 5, which for a conven-
tional system would have indicated that the system is
close to the localization transition. DifFusion-wave
theory" may well apply to sound in sand in this regime.
Figure 4(a} shows the smoothed root-mean-square
response at Ld =6 cm as well as a fit (the dotted line) to a
function with a form which is ap~propriate for three-
dimensional diffusion R (r) =as ' exp( b/r) where-
a and b are fitting parameters. Figure 4(b} shows em~
versus Lz, where r,

„

is the time for the root-mean-
square response to reach its maximum. These data ex-
tend to larger values of Lz than had been reported previ-
ously. 3 The data clearly favor a linear dependence and
give rise to another speed dLd/dr, „=115+5m/s.
Without absorption, the diffusion-wave theory is incom-
patible with our data. However, in the presence of ab-
sorption, the diffusion-wave model may account for this
linear relation as pointed out by Sornette.

III. m,Vc=i.CWTIONS WND DISX'URSWNCZS
DUE TO MINUTE MOVEMENTS
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FIG. 5. (a) The time trace of the acceleration amplitude Az,
of a detector subjected to a source vibration A, =0.71g (g =9.8
m/s ) at frequency v=4 kHz. (b) The power spectrum S of the
fluctuations in Ad shown in (a).

However, if one raises the amplitude of the source, the vi-
brations can become sufllciently intense that the contacts
between beads may vary in time. With a source moving
at constant frequency and amplitude, the vibration ampli-
tude of the detector is very noisy. In Fig. 5(a), I show a
time trace of the amplitude of the detector. As was seen
in Ref. 2, over long times, the variation of the vibration
amplitude is comparable to its mean value: 53&—( Az ).
Fluctuations are also present at shorter time scales. The
power spectrum of these fluctuations shown in Fig. 5(b)
indicates a power-law behavior: S (f)—f with
a=2.0. ' ' The power-law behavior persists over five
decades in frequency and continues beyond the experi-
mental time scale at the low-frequency end of the data. I
have also noted that for the data in the figure, the ampli-
tude is approximately 100 A (for v=4 kHz and
A, =0.71g) for the displacement at the source. The
essential length scale in this class of physical systems is
most likely the deformation b, of a bead at its contact
which is estimated to be on the order of several hundred
A. ' Therefore, even apparently small vibration ampli-
tudes are likely to induce motion of the particles and
therefore fluctuations in the transmitted signal.

As the source amplitude was lowered, small tempera-
ture changes within the container could dramatically
change the response and dominate the observed fluctua-
tions. For example, a temperature change of only 0.04 K
in the pile caused by the ambient temperature drift in the
room could cause a factor of 3 reversible change in the
transmission, ri. The temperature dependence of the
transmission is likely to be due to the thermal expansion
of the glass beads since the beads have a thermal-
expansion coeScient of about -400 A/K.

To further test this hypothesis and to check the limits
of the sensitivity of the sound propagation to this pertur-
bation, the response to a single local heater was mea-
sured. '6 This new setup differs from the previous one
only by the addition of the heater (labeled H) embedded
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FIG. 6. The response of the amplitude of detector D to heat
pulses sent to a heater. The two successive heat pulses at t =0
sec and t =88 sec each creates a thermal expansion
bl-3000 A. The source was run at a frequency v=6.4 kHz
with an amplitude A, =0.14g. This is the same set of data used
in Ref. 16. Inset: a schematic diagram of the top view of the ex-
perimental apparatus. The heater is labeled H in the Sgure.

IV. SPATIAL PATTERNS OF SOUND PROPAGATION

A. Experimental setup

I will now show how one can use the extreme sensitivi-
ty of the sound propagation to local thermal expansions

in the pile as shown in the inset of Fig. 6. The heater is a
carbon resistor of approximately the same size as one of
the glass beads with its surface smoothed. Figure 6
shows the time trace of the vibration amplitude of the
detector, Ad(t), during the course of which a brief
current pulse was run through the resistor. As reported
in Ref. 16, the amplitude of the detector drops suddenly
during the application of the heat pulse. As the heat
di8'uses away, the signal returns to its original value with
a time constant -20 sec. I have shown that this is con-
sistent with the time it takes for the temperature of the
heater to recover as confirmed by a measurement of the
temperature of the heater itself. The second pulse shown
in Fig. 6 demonstrates the reproducibility of this effect.

In this measurement, each pulse sent to the heater
raised its temperature by only 0.8 K& and produced a
thermal expansion of only 51=3000 A along its length
and 1500 A along its width. These pulses produced an
abrupt 25% change in the signal as shown in the figure,
even though the expansion of the heaters was many or-
ders of magnitude smaller than either the size of a single
grain (0.5 cm) or the wavelength of the sound (-4.4 cm
for v=6.4 kHz and c„t=280m/s).

to explore the spatial extent of the vibrations. The
heaters used in the experiments are made of 50-0 carbon
resistors, machined to an ellipsoidal shape with length 1

cm and diameter 0.5 cm. I made their shape and surface
smoothness as close to those of the glass beads as possible
so that they would not perturb the structure of the sand-
pile once imbedded within it. Thin wires (0.075 mm)
were used as the electrical leads to further minimize the
perturbation introduced by the heater array. Both the
expansion and the temperature responses of the heater to
an input current pulse can be characterized by a quick
rise within the pulse duration and an exponential decay
after the pulse with a time constant of about 20 sec. A
typical pulse lasts 0.2 sec and the temperature takes
about 2 sec to reach its maximum at the surface of a
heater. Other measurements done in open air and in vac-
uum enabled us to understand the mechanism of this heat
dissipation: roughly 40% of the heat is carried away by
the neighboring beads through their contacts while the
electrical leads and the surrounding air take away the
remainder.

Figure 7 is a schematic diagram with the relative di-
mensions and locations of the heaters, the detectors and
the source. Two detectors, placed in a line that is perpen-
dicular to the center of the source, were at distances
I.d, =4.0 cm and Ld2=8. 0 cm away from the source.
The heaters forming an eight row by six column array are
horizontally place in a plane 1 cm below the level of the
detectors and the center of the source. The precision of
the heater placement is about 0.1 cm, since I could not
accomplish more accurate positioning without forcing
the sandpile to be packed in an unnatural way due to the
discrete nature of the sand grains.

B. Resyonse function to a single heater disturbance

The inhuence of the thermal expansion upon the vibra-
tion transmission does not always behave in the simple
exponential fashion shown in Fig. 6. Figure 8 shows a
rather complicated response to a pulse. The position of
the heater is near the one used to produce Fig. 6, but the
packing configuration has been changed. After the initial
quick jump caused by the expansion of the heater, the
signal varies in an irregular and unpredictable fashion. A
simple exponential decay is clearly inappropriate even
though the system eventually recovers its original value
after a time comparable to that of the thermal diffusion.
I have veri6ed that these irregular structures in the inter-
mediate time scales are also reproducible. I hypothesize

D2

s &~ J

~ pgtOoo o o

Dl

&.ocg,

FIG. 7. A schematic diagram showing the
relative locations of the heaters, the two detec-
tors and the source. The large circle
represents the source and the small shaded el-
liptical objects show the grid formed by the
heaters. The heaters are identi5ed by their
row and column numbers. The two detectors
labeled Dl and 02 are 4.0 and 8.0 cm away
from the center of the source, respectively, and
are 1 cm above the plane of the grid of the
heaters.
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FIG. 8. The time trace of the vibration amplitude of the

detector Dl due to a heat pulse in heater RSC2. The heat pulse
sent in at t =0 creates a thermal expansion hl-3000 A. The
corresponding source vibration is at a frequency v=5. 5 kHz
with an amplitude A, =0.14g.
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FIG. 9. The change in the transmission, hg, of detector Dl,
caused by the thermal expansion Ll =3000 A of a heater, plot-
ted as a function of source frequency. (a) The solid and dotted
line show hg caused by two symmetric heaters R8C2 and R8C4
in a single packing configuration. (b) The solid and dotted lines
show the hg corresponding to two difFerent packing
configurations for the same heater R8C2.

that the time trace in Fig. 6 corresponds to a
configuratian such that the heater happens to be in a ma-

jor force chain, and that the expansion of the heater itself
dominates the response. In the case shown in Fig. 8, I ar-
gue that the heater's expansion has less effect on the
sound transmission than do the expansions of its neigh-
bors. Therefore, when the heat diffuses to its neighbors
during the time of the measurement, a rather complicat-
ed response is produced.

I have demonstrated that the change in the transmis-
sion immediately after a heat pulse is directly related to
the expansian af the heater, since ane can separate this
time scale (0.2 sec) from that of the expansian of its
neighbors (greater than 1 sec) and that of thermal
difFusion (-20 sec). In arder to measure this abrupt
change caused by the expansion of the heater alone with
good signal to noise ratio, I have measured the time trace
of the detector's vibration amplitude 10 sec before and
after the heater pulse and fit both time traces with a
quadratic form. The discontinuity between the two ex-
trapalated values at the instant when the pulse is pro-
duced is taken as the direct effect of the heater's expan-
sion. In all of our measurements, each heat pulse lasting
0.2 sec raises the temperature of a heater by 0.8 K and
produces an expansion of 3000 A in the longitudinal
direction of the heater. I drive the heaters with current
pulses 11 sec apart to speed up the measurements, which
implies that a second pulse is sent in even before the sys-
tem completely recovers (which takes over 20 sec) from
the infiuence of the previous pulse. The justification of
this measurement depends on the fact that the time scale
of the pulse is much shorter than that of the secondary
thermal effect. Measurements done with longer time in-
tervals produce fully consistent results. The source am-
plitudes have been kept small enough to be within the
linear regime such that one can generalize the change of
the detector's vibration hA& in terms of the change in
the response function hg.

To elucidate the implication of these abrupt changes in
the system's response function, I show, in Fig. 9{a), the
transmission change hg for two symmetric heaters RSC2
and R804 in the frequency range 2-10 kHz. Both mea-
surements were carried out in an identical con5guration
of the beads. The disturbances are strong functions of

the source frequency v and they are reproducible. Due to
the oscillating nature of the transmission change with
source frequency v, hg at a single frequency does not
faithfully reveal the strength of the disturbance. Howev-
er, one can still conclude that an average the heater
R8C4 has a much greater effect than its symmetric coun-
terpart R8C2. With a large enough frequency range ane
can measure the average strength of the disturbance
caused by the expansion of any particular heater. Figure
9{b) shows the frequency dependence of the same heater
R8C2 at a different configuration after the system has
been disturbed (dotted line). The dotted line is difFerent
from the solid line not only in its peak (valley) frequencies
but also in its overall magnitude. It is generally true for
the data I have obtained that if a heater yields a strong
(weak) disturbance in one particular configuration, the
strong (weak) disturbances persist over the entire fre-
quency range. This observation suggests that there is a
common underlying mechanism (or path) that carries the
signal for all frequencies from the saurce to the detectar
via the heater.

I note that there is a frequency scale hv over which
there is a correlation in the disturbance in Fig. 9. The
Fourier transform of this trace determines a time scale

Roughly speaking, one can distinguish two types of
heater disturbance based on the structure of the Fourier
transfarm: one with a strong dominant peak (or set of
closely spaced peaks) and the other with a noiselike spec-
trum. In Fig. 10, I show one typical data trace for each
type. The corresponding self-correlation function and
the power spectrum are also shown for each example.
About 40% of the time there are clear periodic oscilla-
tions in the self-correlation function with a frequency in-
terval hv and a single strong peak at he= 1/b, v in the
power spectrum. In another 40% of the time there are
only a few (2 or 3) closely spaced peaks in the power spec-
trum. In only 20% of the time do I get situations of the

SPATIAL PA I FERNS OP SOUND PROPAGATION IN SAND
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FIG. 10. (a1) and (a2) show
two typical kinds of patterns of
disturbance hq versus frequency
v. The data shown in (al) and
(a2) correspond to the distur-
bance to detector D1 caused by
heaters R3C2 and R6C1, respec-
tively. (bl} and (b2) show the
corresponding self-correlation
functions. (c1) and (c2) show the
magnitude of the corresponding
power spectra.

type shown in the second column of Fig. 10.
I argue that the oscillation of b,ri(v} is due to the in-

terference between the signal carried by all the paths
from the source to the detector (essentially the unper-
turbed situation) and the one that goes via the heater.
Let us denote R (r) and R (~) as the response function be-
fore and after the heater's expansion so that for each
heater the quantity Rh(~)=R(~) —R(~) is the distur-
bance to the response function caused by the expansion of
the heater. In the frequency domain, F&(v) =F(v) F(v—)—
in which Fz(v) is the Fourier transform of RI, (r) As-.
suming that g& &&g one can derive:

4q =g( v) —ri( v)

=lg(v)e'~'"'+g„(v)e " "I g(&)

=riz (v)cos[/& (v) —P( v) ],
in which F„=ri„e" and I" =rie'~ hg depend. s on both
the amplitude of gi, and the phase difFerence (P —Ph).
This is consistent with the oscillating behavior of the re-
sults I have shown. Based on knowledge about the group
velocity, one can explain the periodic structures seen in
Fig. 10 (a 1). The frequency dependence of the phase P(v)
in Fig. 2 (a) is P(v) =2mvrs, where ~g

.is the time delay of
the main signal corresponding to the "group velocity" c .
If one assumes that there is a dominant time scale vz in
Rz (~), then $1, (v) =2mvrq which implies that

bg=gz(v)cos[2nv(rz ~ )] .

The frequency interval of the oscillation in hg is
1/I~h —

~g I and the peak position in the power spectrum
gives the value of b,v = l~z —

~g I. Since rg can be con-
sidered to be the collective delay of the main signal, ~h

can be interpreted as the delay of the signal as it travels
from the source to the detector via the heater.

I argue that a heater which has the disturbance pattern

of the type shown in Fig. 10 (al) sits on one force chain
which dominates all the other paths that go through the
heater. From this one would expect that b,g(v) has a sin-

gle oscillation frequency. If two paths with comparable
strength are disturbed at the same time by the heat pulse,
then two frequency scales should show up. This would
explain the multiple peaks in the power spectra that were
often observed in the experiments. If the heater is out-
side of any strong force chains, then many time scales
should come in with roughly equal strength as shown in
Fig. 10 (a2).

The above analysis has shown that the disturbance
i/~(vj

caused by the heater expansion Fz(v) =rih(v)e
should really be considered as a vector in the complex
plane. One can obtain both the parallel (in-phase with
the main signal) and perpendicular (out-of-phase) com-
ponents of Fz(v) if one keeps track of the phase change
b,P—:P

—
P as well as the transmission change b,rl. In

Figs. 11(a) and 11(b), I show both hq and hP of the
detected signal respectively for a heater with a response
of the type that gives several closely spaced peaks in the
power spectrum. In Fig. 11(c),I show the in-phase (solid
line) and the out-of-phase (dotted line) components of the
same disturbance. The frequencies at which one of the
two traces reaches a maximum or a minimum are just the
frequencies at which the other trace crosses zero. This
implies that these two responses are indeed 90 out of
phase with each other. A diagram in Fig. 11(d) shows the
relationship of these quantities with hg and b,P. Assum-
ing g& &(g

(9h )(~
—9hcos(ph Q}

=g cos(hP) —g

=(g+ b,g)cos(hP)

(ni )i=nhsin(kh

=(ri+bg)sin(hP}=phd .
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The close agreement between the solid line of Fig. 11(c)
and that shown in Fig. 11(a) demonstrates the validity of
this approximation. In principle, the sign of hP deter-
mines whether the parallel component is leading or trail-
ing the phase of the perpendicular component by 90'.
From this one can derive the sign of ~z —

7g In most of
the experiments, ~I, is clearly larger than ~~, and I was

not able to find a single case in which ~z is significantly
shorter than ~ .

C. Spatial patterns of heater disturbances

I now turn attention to the spatial pattern of distur-
bance caused by the heater array. Figure 12 (a) plots the
change in transmission hg for the array of heaters at fre-
quency v=5 kHz. A spike going up (down) implies that
the pulse sent to that heater raised (lowered) the signal at
detector D2 by an amount proportional to the height of
the spike. The spatial pattern is very inhomogeneous and
irregular in that two adjacent heaters can produce
different effects. This seemingly unpredictable pattern is
nevertheless reproducible. The data plotted in Fig. 12(b)

0.02

0.01

-0.01

-0.02

(b)
10

were taken immediately after that shown in (a) and shows
a strong similarity to it. If I disturbed the sand even
slightly, the pattern is completely changed as shown in
Fig. 12(c). Just as the frequency response pattern shown
in Fig. 2 can be considered a fingerprint" of the precise
configuration in the temporal domain, this disturbance
pattern can be considered the corresponding signature in
space.

The fact that the spatial correlations of hg disappear
completely at a distance scale of the heater separation is
evident from Fig. 12. This can also be explained by the
force chain model. The expansion of a bead within a
force chain could strengthen the connection and conse-
quently increase the transmission. If a bead next to a
force chain expands, it could exert a transverse stress on
the chain, thereby weakening the connection and giving
rise to a completely difFerent response. The patterns in
Fig. 12 have both amplitude and phase information and
cannot be simply interpreted as the chain pattern. I was
unable to obtain spatial patterns from one single
configuration at many frequencies due to the intrinsic
fiuctuations caused by the source vibration itself and the
ambient temperature drift. However, one can compare
the disturbance strengths of two heaters placed symme-
trically with respect to the source and the detector and
thus understand the inhomogeneity in the system. I ran
current through two symmetric heaters one at a time and
measured the root-mean-square disturbance over the fre-
quency range from 2 to 10 kHz.

After subtracting the background noise from the data,
I calculate a quantity which characterizes the inhomo-
geneity

(4)

-20

0.01

0.00

-0.01

-0.02
2 6 7 8 9 10

v (kHz)

FIG. 11. The changes in the transmission hg and phase hP
of detector D1 caused by the thermal expansion of heater R8C2
are shown in (a) and (b), respectively. In (c) the in-phase com-
ponent (solid line) and the out-of-phase component (dotted line)
of the heater disturbance function are shown as functions of fre-
quency. (d) A schematic diagram shows the geometric relation-
ship between the several measured and calculated quantities.

where (b, ri& 2)„is the root-mean-square average of hei
over the frequency range 2-10 kHz and the subscripts 1

and 2 label each of the two symmetric heaters. I discard
the data points if (hri&)„and (b,F2)„areboth less than
twice the magnitude of the noise so that such data will
not contribute to the correlations. The quantity X can
only vary within the range between 0 (if (hrI, )„and
(b,rI2)„differ by just a small amount) and 1 (if one of
them is much stronger than the other). Figure 13 shows
the probability distribution of X calculated from the data
of 16 pairs of heaters. In the main plot, the center two
columns of heaters were excluded in case there was any
correlation between two neighboring columns. In the in-
set one sees that including all the columns does not
change the qualitative shape of the distribution.

The distributions cover a wide range in X and show a
shoulder in (a) and a peak in (b). Although the heavy sta-
tistical weight at small X is within common expectation,
the wide distribution and the second peak around
x =0.35 is far from conventional. If one assumes a nar-
row peak distribution of the quantity (hrj )„around the
average value (r)) and picks two independent samples
(hril)„and (hr)z)„, the histogram of X should be
peaked around X=O. To illustrate this I also show in
Fig. 13 the distribution of X assuming a Gaussian distri-
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(b) (c)

PIG. 12. (a) The spatial pattern of the disturbance to the transmission hg of detector 02 at a source frequency v=5 kHz. Each
rectangle on the grid corresponds to a heater located at that grid and the height of each pyramid is proportional to hg. (b) The same
measurement as in (a) taken immediately after that of (a). (c) The same measurement as in (a) but with a slightly disturbed arrange-
ment of the beads.

bution (dashed line) of (b,rj), in which the mean ( b,7) )
„

is four times its standard deviation. It is clear that this
distribution does not 6t our data. The dominant contri-
bution to the statistics near X=O is due to a hy-
pothesized narrow distribution of (b,rI)„.One would
have to choose a wide distribution of (b,rj )„in order to
gain more weight at large X. By wide, I mean that the
width of the distribution is comparable to its mean,
which implies that (b,il)„is very likely to be around
zero. I show the distribution of X (dotted line) based on
the two independent samples ( b,rj, )„and ( b,F12), from a
hypothesized Rayleigh distribution of ( hg ),:

~(a~)„
&( ( hrI )„)= exp (5)

Z ~q „'
the width of which (1.05(b,il)„)is comparable to its
mean. This generates a slightly more plausible fit to our
data, but one which is still outside of experimental error.
The shoulder structure in Fig. 13(a), and the peak at
X=0.35 in Fig. 13(b), are still distinctively different from
the fit. I note that a bimodal distribution of ( hrj ), could

have a bimodal distribution of X. This is very suggestive
in that ( b,g), could have two modes, one strong and one
weak, and consequently X would have a peak away fromI=0. According to the peak position X=0.35, a strong
disturbance is twice as effective as a weak one. However,
this is unable to explain why the peak at XAO is higher
than the contribution near X=O. In this model, there
was an implicit assumption that the two values of ( hrI )

„

were sampled independently. This assumption may be
wrong. The force chains inside the pile may be so few
that disturbances of two symmetric heaters cannot be
considered as two independent samples from a common
distribution.

The data plotted in Fig. 13 show the histogram of X
taken from heaters at all positions. One would like to
know whether this distribution still holds for a heater at a
given position over many di8'erent packing con6gurations
of the grains. In order to have enough statistics, one
needs to sample many di8'erent con6gurations. I attempt-
ed to generate new configurations by driving the source
at low frequency and high amplitude, or by intentionally
changing the temperature. Although this process pro-

D1
4

i 4t-

X

D2

4

X

2 iv' 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
X

0
0 0.2 0.4 0.6 0.8 I 0

(b)

0.2 0.4 0.6 0.8
XX

FICx. 13. The probability distribution function of quantity X, P(X), calculated from data of the 16 pairs of symmetric heaters
located at C1,C2, C5 and C6. (a) P(X) for detector 1. (b) P(X) for detector 2. Insets: The corresponding probability distribution
functions P(X) with the data from all 24 pairs of symmetric heaters included. The functions P(X) calculated from independent
sampling of some common distribution functions of (b,i) )„,are also shown in the figure. Dashed line: a Gaussian distribution in
which the mean is four times the standard deviation; Dotted line: P( ( hq )„)= ir( hi) )„l2(b i) )

„

Xexp( —
m & bq), /4(hi))„).
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FIG. 14. The root-mean-square average of hg over many
conSgurations (hrI ), is smoothed and plotted versus the source
frequency v for a number of selected heaters as labeled in the
figure. (a) and (b) correspond to detector D1 and D2, respec-
tively.

duces completely different disturbance patterns at indivi-
dual frequencies as seen from Figs. 12(a} and 12(c), the
raot-mean-square strength of the disturbance pretty
much remains unchanged. As I will discuss below, this
suggests that a larger perturbation of the packing is need-
ed in order to disturb the strength correlation.

I hypothesize that this more robust correlation in the
strength of a heater disturbance is also due to the ex-
istence of force chains. In order to generate a different
pattern at an individual frequency, the change in the
phase of the disturbance of the order of n. is enough.
This can be easily achieved by the mation of the glass
beads which do not belong to any strong force chains.
However, the strong chains are more stable against
mechanical disturbances. Other experiments investigat-
ing the nonlinear behavior of the transmission3 lead to
similar conclusions. I observed that loose particles rear-
range at small vibration amplitudes which give rise to
hysteretic behavior, while the particles in a strong chain
are less susceptible to vibrations. Since a large value of
( b, rI ), is closely related to the existence of a nearby farce
chain, the value of (hr)}„willnot change significantly
until the strong chains are disrupted.

I now focus on the frequency-dependent spatial
features. Figure 14 shows the root-mean-square distur-
bance ( br)(v} },vs the source frequency v at a number of
different distances. The subscript in the expression
( b, rI( v) ), stands for the average over many
configurations. Heaters far from the source predom-
inantly perturb the lower frequency vibrations. For
heaters closer to the source, the predominant perturba-
tion is to those vibrations with higher frequencies. Intui-
tively one might argue that the change in the signal
shauld depend on the strength of the vibration that
reaches the heater itself since if no force chain carries the
sound via the heater, its expansion cannot disturb the vi-

brations reaching the detector. As shown in Fig. 3, the
transmitted signal decays strongly with distance and in-
creasing frequency. A low-frequency signal can travel a

—p2(v)logip(LHD)+p3(v) . (6)

Figure 16 shows log, p( ( b,r) ), ) —p 3(v) versus
—p 1(v)logip(LsH )

—p2(v)log, p(LHD ) at three source fre-
quencies v=3.5, 6.5, and 9.5 kHz for detector Dl. The
data collapse onto the solid straight line. In Fig. 17, I
shaw the dependence of these Stting parameters on v.
The parameters for both detector Dl (filled symbols) and
detector D2 (open symbols)'show qualitatively the same
kind of behavior which implies that the dependence an v
is robust and not sensitive to the placement of the detec-
tors. The exponent for the source-heater distance p1, in-
creases monotonically with frequency, while the exponent
for the heater-detector separation p2 appears indepen-
dent of v. Due to the limited precision of the measure-
ments and the limited range of variation of the spatial
coordinates, the data can also be well fit by another com-
mon form in which (hrI), decays with LsH and LHD in
an exponential fashion. The parameters of the exponen-
tial fits show similar variations with frequency and the
parameters for both detectors D1 and D2 are also in
good agreement.

Finally, let us examine the spatial distribution of the
time delays of the heater disturbance responses. As I
have discussed earlier in Sec. IV B about 40% of the time
there is a dominant frequency scale in hg. The corre-
sponding time scale h~ is the difference between the
effective time delay of the path that the heater disturbed,
v&, and the time delay of the main signal, ~g. Even in the
case when there is no single dominant peak in the magni-
tude of the power spectrum of the heater disturbance,
one can still obtain a range of h~,„.I have observed
that h~,

„

for a particular heater can have a wide distri-

long distance without much attenuation and hence can
dominate the response of heaters far away. As the heater
gets closer to the source, high-frequency components
play a more important role.

Figure 15 shows the spatial variations of the root-
mean-square (hr) },disturbances for several source fre-
quencies v. The data for detector D1 have an essentially
monotonic variation with distance from the source, while
the data for detector D2 show a strong peak at the posi-
tions close to the detector. The shorter the distance be-
tween the heater and the detector, the stronger the heater
disturbance will be. I speculate that this is due to the
perturbation of the structure surrounding the detector.
As the heater gets closer to the detector, it can disturb a
larger percentage of the paths that run between the
source and the detector. This suggests another relevant
length scale aside from the distance of the source to the
heater LsH, namely the distance from the heater to the
detector LHD.

When one makes a three-dimensional plot of
log, p((kr) } ) versus log, p(LsH) and log, p(LHD) for each
detector at a single frequency, one finds that all the data
points appear to fall in a plane. This implies that the
data can be fit with a linear function of logip(LsH) and
log ip( HD ):

log, ((hr)), )=—pl(v)log, (L „)



792 CHU-HENG LIU 50

0.03 I I I I

Dl Column ¹2
haJ 3

0.01 5 ! I

D2 Column ¹2

0.02

0.0 I

0.01 0

0.005 '

FIG. 15. The root-mean-
square average of Lg over many
configurations ( b,rl ), is binned
and then plotted versus the
heaters' spatial locations. The
four curves are for four difFerent

frequency bins as labeled in the
Ggure. (a) and (b) correspond to
detector 01 and D2, respective-
ly.
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bution depending on the configuration of the grains.
Over many configurations, the average shows a rather
smooth variation with the spatial coordinates. Figures
18(a) and 18(b} show these time delays vs the spatial posi-
tions of detector D1 and D2, respectively. In general,
this time delay increases as the heater moves farther
away from either the source or the detector since the
path is getting longer. According to the analysis in Sec.
IV 8, one can associate the time scale h~,

„

that I mea-
sured with 1s '7s where rg=Ld/cs is the time delay of
the unperturbed signal and ~& is the time delay along the
disturbed path. Figure 18(c) plots (hr, „+Ld/c )

against the length of the shortest path connecting the
source, heater and detector, LsH+LHD. Data points
from both detectors collapse onto a straight line which
implies a linear relation between ~& and LsH+LHD. A
one-parameter linear fit yields a slope corresponding to a

3
CL
I

8 -4
CI

ch 5

-7 -6 -5 -4 -3 -2 -1

-p1(v) log„(L~„)-pZ(v)log»(L„D)

FIG. 16. The root-mean-square average of (b,q), over many
configurations at a single frequency bin is 6t with a power-law
form (b.g(v)), =Lsd""'L„g'"' X 1(F""', where LsH and Lno
are the distances from the heater to the source and the detector,
respectively, and p 1(v), p2(v), and p3(v) are the 6tting parame-
ters. Data shown are for detector D1 at three source frequen-
cies v=3. 5 kHz (circle), 6.5 kHz (triangle) and 9.5 kHz (cross),
respectively. The fit is the solid diagonal line.

speed of sound c =50 m/s, which is in excellent agree-
ment with the group velocity cg obtained from the phase
part of the frequency response.

V. CONCLUSIONS

In conclusion, I have studied the temporal and spatial
properties of sound propagation in sand. The response
function in time R(r} has contributions with many
difFerent time scales. This wide distribution of times
gives rise to not only the irregular patterns observed in
the frequency response q(v}, but also to the slow sound
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FIG. 17. The fitting parameters pl(v), p2(v), and p3(v) of
the power-law fit described in Fig. 16 are shown as functions of
source frequency v in (a), (b), and (c), respectively. The solid
symbols are the fitting parameters for detector D1 and the open
symbols are for detector D2.
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speed c =60 m/s measured from the phase delay which
is the classical analogy of the group velocity. This group
velocity is five times slower than the time-of-flight speed
of sound c„&=280m/s. An attempt to use a diffusion
wave picture to explain the discrepancy between c and

ct f failed when I studied the distance dependence of the
peak of the response function 8 (r). It also failed when I
analyzed the data from signals passing through heaters
located at various positions. Both time scales show clear
linear dependence on distance and seem to favor a model
based on ballistic transport. It is interesting to note that
difFusing waves in an absorptive medium could also give
rise to a linear relation between time scale and distance
within a limited range of distances.

The fragile contacts between the glass beads have some
important and unique consequences in many measure-
ments which show extreme sensitivity to the detailed
configuration of the packing. The detector vibration am-
plitudes can fluctuate with time at seemingly very low
source vibration amplitudes of about 100 A. Such fluc-
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FIG. 18. The time of the peak response in Fig. 10(c), h, v. ,„,
averaged over symmetric heaters and many configurations is
plotted versus the spatial positions of the heaters. DifFerent
symbols are for heaters located at columns 1-3, respectively, as
labeled in the figure. (a) shows the data for detector Dl and (b)
shows the data for detector D2. (c) h~ „+Lz/c~ is plotted
versus the length of the direct path along source-heater-detector
LsH+L», where Ld/eg is the time delay of the unperturbed
signal. I used cg =60 m/s in these calculations. Open symbols
are for detector D2 and solid ones are for detector Dl. The one
parameter linear fit to both the filled and open symbols yields a
slope which gives rise to a speed of c=50 m/s.

tuations are large and have a power spectrum which
obeys a power law over five decades in frequency:
S(f)-f, with a=2.0. A small thermal expansion of a
single heater can change the transmission by 25% even
though this expansion is many orders of magnitude
smaller than the wavelength of the sound or the diameter
of the beads. Studies on the frequency dependence of the
disturbance pattern reveals that the characteristic fre-
quency interval hv in this pattern is directly related to
the path-length difference between the main signal and
the signal that has to move via the heater.

In conventional wave phenomena, the contribution due
to the scattering by an individual particle is usually writ-
ten as Fe' in which Ii is treated as an intrinsic property
of the particle. Such a formalism leads to the conclusion
that b,x should be comparable to the wavelength A, in or-
der to produce a significant effect on the scattered wave.
However, in granular material, due to the small deforma-
tion at the interparticle contacts, the extremely sensitivi-
ty of Fon x dominates the effect caused by the change in
phase e'" '.

Also as a consequence of the fragile contacts, the medi-
um is very inhomogeneous. Measurements of the distur-
bance due to a heat pulse in many pairs of symmetric
heaters clearly show a wide distribution of the chain
strengths. The data suggest a bimodal structure in the
distribution with two distinctive strengths: a strong one
and a weak one. The heater disturbance measurements
over many frequencies demonstrate that there are strong
correlations in the response as a function of frequency, in
both strength and phase. This suggests a common under-
lying mechanism, namely that the same set of paths are
responsible for vibrations at all frequencies. This strong
inhomogeneity of the medium, as well as the fact that the
inhomogeneity persists despite small perturbations of the
medium, is consistent with the force chain model: a small
number of strong force chains carry most of the stress
and the vibration.

This force chain structure is rather uncommon in other
disordered condensed-matter systems and should be tak-
en into account in studies of sound localization in this
medium. Within the frequency range I have explored,
the phenomenon of sound propagation in sand appears to
be in a different regime than can be described by a
difFusion-wave picture. It is possible that the observed
nondiffusive behavior is due to the detector not being
sufflciently far away from the source. The correlation
length of the chain structure is also of vital importance
since it may dominate the mean free path for the sound
waves. The structure of the force chain network is
currently under investigation. Further studies of sound
transmission in granular media with larger or smaller dis-
tances between the source and detector and at higher fre-
quencies may reveal some features of diffusive waves and
sound localization.
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