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Second-order nonlinear optical susceptibility of asymmetric quantum wells
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We give a detailed procedure for the calculation of the second-harmonic-generation susceptibility
tensor in single and multiple asymmetric quantum wells (AQW's). The effect of nonhomogene-

ity is explicitly included. Exciton states and continuum states are considered. The contributions
due to the asymmetry of the confining potential and to the inversion asymmetry of the bulk ma-
terial are separately assessed. Numerical calculations are carried out for two typical AQW's of
GaAs/Gai Al As. The results indicate larger values than in the bulk, in agreement with prelimi-

nary experimental data.

I. INTRODUCTION

Nonlinear optical properties of quantum wells (QW's)
are of interest because of their relevance for studying
practical applications and as a probe for the electronic
structure of mesoscopic media. In particular, it has been
shown that asymmetric quantum wells (AQW's) display
very large second-order and third-order suscep-
tibilities.

In the present work, we consider the optical second-
order susceptibility y( ) of asymmetric quantum wells
and examine in detail two contributions: one due to
the absence of inversion symmetry as in the bulk and
the other to the absence of specular symmetry of the
AQW confining potential. In general, the existing theo-
retical and experimental studies can be divided into two
groups, depending on the light &equency: those which
have photon energy in the region of intraband (inter-
subband) transitions (near infrared) and a second group
dealing with energies in the region of interband (valence
to conduction band) transitions (visible light).

In the region of intraband transitions (A = 9 —11pm),
one deals with n-doped AQW's with a concentration of
electrons n, in the conduction band. Due to the symme-
try of the electronic states, the only nonzero element of
the quadratic nonlinear optical susceptibility is y„, or
simply y( ). Depending on the material, the shape of the
AQW, and n„ the modulus of y( ) can reach extremely
large values in comparison with ~g( )(0, 0)

~

of bulk GaAs,
which has been found to be about 1.8x10 i m/V. 2s

In different samples of GaAs/Ga Ali As AQW's, peaks
of y( l reach values of the order of 5xl0 m/V. i 4

In Al Ini As/Gazlnz &As AQW's, Sirtori et al. 's ob-
served a peak y~2l of approximately 5x10 m/V. Sim-
ilar values are obtained in electric-field-biased symmetric
quantrrm wells (SQW's). For example, Fejer et al. ob-
served peak values of yl ) equal to 2.8x10 s m/V in
GaAs SQW's under an electric field of 36 kV/cm. The

theory based on intraband (intersubband) transitions ac-
counts for these findings. ' '

Differently from the case considered above, the second-
order optical susceptibility studied in the interband tran-
sition region has received very little attention. Tsang
et al. io ii have calculated y(,) (u, u) of an electric-
field-biased SQW. They consider exciton and contin-
uum states and conclude that the exciton states con-
tribute only 30%%uo of the total y, and peak values of(2)

the order of 3xl0 ii m/V result. io Asymmetric QW's
have been considered by Kurgin, without inclusion
of exciton states. In the case of an optimized double
GaAs/Gai Al As AQW, he obtains a maximum value

f ~y (u, (u)
~

1.8 x 10 m/V. For a similar sample
with multiple AQW, experiments of Xie et al. i give peak
values of approximately 8x10 s m/V, over three orders
of magnitude larger, and still one order of magnitude
larger than obtained in recent calculations by Harshman
and Wang. Scandolo et al. have proposed a steplike
GaSb/InAsSb AQW for efficient second-harmonic gen-
eration, with an expected second-harmonic coeKcient
about 60 times greater than that of the bulk GaAs.

In the present work, we address the problem of second-
harmonic generation in an AQW in the region of in-
terband transitions including exciton effects (exciton re-
gion). Our purpose is threefold: first, to calculate all
the nonzero components of y( ) making use of the den-
sity matrix approach27, 28 in the electric dipole approx-
imation; second, to calculate y( ), taking into account
the nonlocal nature of the AQW response to the elec-
tric field; and third, to consider the contribution of the
bulklike inversion asymmetry previously neglected. We
perform these calculations in an averaged field approxi-
mation proposed by Agranovich, and applied to the lin-
ear optical properties of superlatticess 's and AQW's. s2

This method is based on the fact that the radiation wave-
length A is large compared with the period L of a multiple
AQW with quantum well length L and barrier length
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L~, i.e. , A )) L = L + L~. In this case we use un-
retarded (c -+ oo) Maxwell equations and perform self-
consistent calculations to obtain the field distribution in-
side the well, as well as the optical response. The internal
electric field distribution is determined by the inhomoge-
neous charge distribution and the dielectric mismatch.

In Sec. II we recast the general density matrix formal-
ism for the second-order nonlinear optical susceptibility,
making use of the exciton states and continuum states
of an AQW. The discussion of the dipole matrix element
calculation is given in Sec. III. In Sec. IV we calculate
the tensor y(2l(u, u) in the electric dipole approxima-
tion and local response approach. In Sec. V we derive
an averaged quadratic susceptibility tensor y( ) includ-
ing nonlocal response elfects and report some numerical
calculations. The main results are discussed in Sec. VI.

the infinite interval (—oo, oo) and the integration over pi
and v 2 in the volume V of the sample. The time depen-
dence of G( ) is known as temporal dispersion, 2 2 and

causality implies that Gpq~
——0 when 7.

& or 7.2 ls nega-
tive. The space dependence is usually neglected in the
second-order optical susceptibilities of AQW s, but will

be considered in the following analysis.

A. Temporal dispersion

We first consider the time dependence in a homoge-
neous medium and neglect spatial dispersion in the cal-
culation of y( ). We consider a fully local response of the
medium, so that, taking the electric field as a superposi-
tion of two monochromatic waves of frequencies ~q and

uq, we obtain

II. SECOND-ORDER SUSCEPTIBILITIES
IN BULK AND IN QUANTUM WELLS

P ' (0) = sp Ty ',„(~i,u)2)Eq((ui)E„((u2). (2)

The local quadratic polarization P (t, r) of a medium
interacting with an external electric field E(t, v') may be
expressed in the form

XEq(t —Ti, pi)E„(t —~2, p2),

where e0 is the permittivity of free space and G„q„de-
notes the quadratic response function. The subscripts

p, q, r label the Cartesian coordinates and a double re-
peated subscript means summation over all the coordi-
nates. The integration over wq and 72 is performed in

Here 0 = ~q + u2 and the tensor y( ) is the quadratic
nonlinear optical susceptibility, T being a number which
accounts for the possible permutations of indices. Ac-

cording to the type of nonlinear process, ~ the frequencies

~q and ~2 can be taken to be positive or negative to de-

scribe diferent nonlinear processes; for example, second
harmonic generation occurs when uri ——u2 and T = 1/2;
optical rectification when ui —~2, and T = 1/2; and
the Pockels effect (when uri ——0, u2 g 0, and T = 1/2).
Equation (2) gives the definition of quadratic optical sus-

ceptibility with temporal dispersion. In the dipole ap-
proximation, the density matrix approach gives a very
general expression2 for y( ) in terms of the eigenstates
of the medium under consideration

(2) 1+Pi2 ) (si~dp~s2)(s2~dq~ss)(ss~h~si) f(si) —f(ss) f(ss) f(s2)—
2spV (~i + ~2 —E.„,) L)2 —E...,81 )82 )83

where E88t = E, —E, . Here sg) s2) and s3 denote
quantum numbers labeling the eigenfunctions ~s;) and
the eigenvalues E.. . f(s, ) is the Fermi distributions, d„
is the p-component of the dipole moment operator, and
Pi2 is an operator which permutes the pairs (q, ui) and
(r, u2). Prom Eq. (3) the basic intrinsic permutational

symmetry ypq ((di (dz): gpt'q(M2 LIJ&) originates.(2) (2)

B. Nonlocal effects

The space dependence of the Green function in Eq.
(1) takes into account the nonlocal nature in the optical
response, whose main contribution is due to the nonho-
mogeneity of the medium under consideration. In the
case of QW's the nonlocality influences the radiative and
nonradiative quantum well polaritons, which can be com-
puted taking into account the dielectric mismatch and
the charge distribution inside the QW. In order to in-

elude these factors in the calculation of nonlinear effects
in quantum wells, we consider explicitly the space depen-
dence of Eq. (1) in the growth direction and perform the
integration in the plane of the well, which gives the usual
conservation of the total in-plane momentum. Then, af-
ter a Fourier transformation on the time variables we

obtain

L L
P (O, z) = spT dzi dz2y „((ui, (u2, z, zi, z2)

0 0

X Eq(ldi, Zi)E~ ((d2, Z2) . (4)

Here ypq„(ui, u2, z, zi, z2) is the nonlocal second-order
susceptibility. It may be calculated making use of the
density matrix approach, but the interaction Hamilto-
nian is to be taken in the form —f P . E instead of the
simpler form —d E used in the case of temporal dis-
persion. Thus we obtain for the total polarization in a
thickness L,
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L
dzP( )(O, z) = so ) TL

0 2sp V~ —E, ,SI qSg iSg

„ f(») —f (ss)
2 —ESSSI

(»141»)
Esgss

+ (s2[dq@q[ss) (s31d1 Ev 1s1) y

where we use the same notations as in Eq. (3). Maxwell
equations relate averaged polarizations to averaged fields
by means of the linear and nonlinear susceptibilities. To
obtain these averaged quantities inside an AQW, we must
calculate the polarization distribution P(z) and the elec-
tric field which produces it. Here we can use the fact
that the light wavelength A is much greater than L . A
similar situation appears in the case of inultiple AQW's,
when the period L is much smaller than A. In both cases
we can neglect the variation of the Maxwell fields inside
the well and define averaged fields as

where E denotes the polarization, the electric field, or
the electric displacement vector D. We would like to
emphasize that the integration in Eq. (6) is performed
on one period L in case of multiple QW's and on the QW
width L in the case of a single quantum well. We have
described the consequence of the above simplification for
the linear case in Ref. 32 and here we use the same ap-
proach to obtain the second-order susceptibility which
relates the average polarization to the averaged fields.

graphic directions [100], [010], and [001], this symmetry
reduces the number of independent nonzero elements of
y(2} to one. In the case of SQW's, the symmetry is re-
duced &om Tg to D2g. Here there are three indepen-
dent elements. When the specular symmetry plane (op, )
is absent, as in the case of an AQW, the point group is
C2 and there are seven nonzero elements. The symme-
try increases when one uses the Luttinger Hamiltonian
for the valence band with the neglect of the small linear
terms. Then for the bulk we have the Og point group,
for SQW's the D4g point group, and for AQW's the Cq„
group. Only four independent components of y( ) are
permitted by the |4 symmetry.

We list in Table I all the nonzero elements of y( ) for
the different cases. Here the kame of references is chosen
with the z axis along the growth direction and the axes x
and y are rotated of an angle of 45' in their plane. In this
case the correspondence with the basic crystalographic
directions must be kept in mind in comparing different

components (our y, corresponds to y „, in the usual(2) (2) ~

choice). In the envelope function approach, it turns out
to be a good approximation to neglect the linear terms in
the Luttinger Hamiltonian for the hole states, so that the
symmetry is the D4h for the symmetric quantum wells
and the |4 for asymmetric wells. In this case only the
AQW's give a contribution to g( } and in the case of
second harmonic generation the constitutive equations
of type (2) take the form

The problem is then reduced to the computation of the
three independent terms described above.

C. Spatial symmetry of g(2)

In bulk zinc-blende crystals, the symmetry properties
of the electronic states at point I' of the Brillouin zone
are given by the tetrahedral point group Td. In a frame
of references with axes x, y, z along the basic crystallo-

III. EIGENSTATES AND DIPOLE
MATRIX ELEMENTS IN AN AQW

We consider two types of AQW excited states:
electron-hole unbound pairs and bound (exciton) states.

TABLE I. Symmetry determined properties of the second-order susceptibility tensor in bulk
material and quantum wells. In the upper half of the table the lack of inversion symmetry of the
bulk material is included, while in the lower half of the table it is neglected. In the latter case
only the AQW potential contributes to Xl l. N.B. Quite frequently second harmonic coeKcieuts
d~„(u) = y~~J„(u, u)/2 are labeled with only two indices (p and p), the second one indicating the
six symmetric combinations of the last two indices, for instance, y, (u, tu)/2 = di5(ur).

Symmetry (Sample)

Tq (Bulk)
Dgd, (SQW)
Cg„(AQW)

Xgq~ v
(2)

(2) (2) (2) (2) (2) (2)
gKKZ gKZK gZKK gQQZ QQZP gZ'Qp

(2) (2) (2) (2) (2) (2)
gXRZ QQ'IIZ y gZRX QZQQ y gRZR gyZy

(2) (2) (2) (2) (2) (2) (2)
QZRK ) QZQQ ) gZLZ ) gppZ ) gXZL ) QQZQ 7 QZZZ

Og (Bulk)
D4g (SQW)
C4„(AQW)

0
0

(2) (2) (2) (2) (2) (2) (2)
gZKX QZQQ ) gXRZ gPPZ ) +KZK QQZQ 0 gZZZ
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To calculate them we use a two-band model based on
the envelope function approximation, described in Ref.
38 which considers the anisotropy of the effective masses
in the kinetic energy and the dielectric mismatch in the
Coulomb interaction.

To describe the continuum in the limits of the above
approximation, we have to solve the one-particle equa-
tions for the envelope functions of the electrons Ii) and
of the holes

Ij),
H, li) = E;Ii), Hpjl) = E~Ij),

i = 1, 2, ... ; j = 1/3, 2/3. .. ; P, = hh, lb. (8)

Here H, is the con6nement Hamiltonian of an electron
in the conduction band and analogously Hp is the cor-
responding Hamiltonian in the heavy- (P=hh) or the
light-hole (P=lh) valence band. The one-electron wave
functions are (v'li, k~~) = uo(q')(r~~lk~[)(zli), where uo(r)
is the conduction band Bloch function at point I' and

p('kll ' 'pll)/v S is a plane-wave no rmalized
on the AQW surface S, with an analogous expression for
the valence states. The ground state wave function of
the AQW as a whole IO) is given as an antisymmetrized
product of the N electron wave functions, N being the
total number of electrons taken into consideration. In
the coordinate space IR~) = ~r q, v'2, ..., v'„, ..., v ~), we

write (Res~0) = A (r)„s,(eJt', tti~i~)). In a similar

way, an excited state Is) is given by replacing one sin-

gle valence state
Ij, k~~) by a conduction state Ii, k'~~).

We ~hall indicate it by the symbo l Ii, k)~, j, k~~). On
the other hand, the optical properties of bulk materi-
als are characterized by the momentum matrix elements

l(uolpqluPo)l = QE~mo/2cqp, where Ew is the Kane
energy (for GaAs Ez=23 eV), . mo is the electron
mass, and the coeScients for heavy and light holes are
c hh = 1/v 2, c,hh = 0, c p, = 1/~6, and c,~g = g2/3.

We now follow the standard procedure for calcu-
lating the dipole matrix elements &om the ground state,
using the momentum matrix elements, and we obtain

c,p(ilj) Cp(k, ~) .
ehE~

2mo

Here (ilj) gives the confinement factor, the transition
energy E;, is given by E;,.. (k~~) = E, —E~ + e(k~~),
where e is the kinetic energy e(k~)) = h k)~ /2p, ,~, and

p,~ is the corresponding reduced mass. To take into
account the residual Coulomb electron-hole interaction,
we have included in the above matrix elements the
so-called Coulomb enhancement factor ' 4o given by
Cp(k)~) = exp(rvr)/ cosh()rvr), where r = 1/k)~as and

ag = 4vrebh /e pp is the Bohr radius with a background
dielectric constant c~.

For the dipole matrix elements among excited states
we proceed in the same way as above and obtain with
good approximation an expression which involves only
the envelope functions

= —eh~„,~;, ~q„,'„(b',i' ("lzl') —b', *' (j'lzlj))- (io)

We would like to emphasize the fact that this dipole mo-
ment is diferent from zero for the AQW when i = i' and

j = j in Eq. (10), while it vanishes in case of SQW.
This feature of the AQW's is the important element for
explaining the strong rectification coeKcients observed in
the far infrared of doped samples. '

We also consider bound exciton states InS, i, j) at-
tached to a couple of of subbands i and j. These
excited states can be expanded on the above de-
scribed free electron-hole excited statess as InS, i, j) =

A,".
~ (k[~)li, k~[, jk,[~) and the envelope amplitudes

p,".s(v
~)

——P& A,". s)(k~~)(v ~~lk~~) are obtained with a vari-

ational procedure using the expressions:

1
exp I—

A;,

(
v,", (r~~) = ~~» 1&1» l

exp l&» )

E —E +h.,
.

s s j (jl lj)
$J 7g 272

where AA,~; ~ is substituted to be

A,~A, ~AA,-. .. =8
(A;, +A, , )' (14)

Thus as eigenstates Is) of an AQW we consider the
continuum (s = i, j, k~~) and the bound (s = n, i, j)

A,~ being the effective exciton radius. We have taken the
2S exciton amplitude as a two-dimensional 2S-like func-
tion orthogonal to the ground 1S state, the only varia-
tional parameter being the 1S exciton radius A,~. That
is because the 2S exciton energy possesses a very smooth
minimum as a function of A,~ and hence the stronger re-
quirement is that of orthogonality.

To derive the dipole matrix elements, we follow the
same procedure as for the continuum, make use of the
exciton wave packet, and obtain

e252E
l(nS i jldql0) I' = S 2cqp(ilj)' v,",'(0) (»)

2m E"..sij

where the exciton transition energy E," is expressed by

E," = E, —E~ —R,". , R," ) 0 being the exciton bind-

ing energy. It is worthwhile to note that the expression

p,". (0) substitutes the Cp(k~~) in Eq. (9) with the con-

tinuum exciton amplitudes. Analogously, we obtain the
only nonzero exciton-exciton transition matrix elements

(nS, i', j'ld, lnS, i, j)
= —4e *' *', (1+8„,6A;. .. )

(A;, , + A;, )'
E; —E;+b, ; (i'Iz Ii)
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exciton states and take into account transitions of
the ground state —continuum, ground state —bound exci-
ton state, continuum-continuum, and bound exciton-
bound exciton types. We neglect transitions as bound-
continuum exciton state because they give very little con-
tribution to the nonlinear processes as in the case of SQW
under an electric field.

IV. SECOND-ORDER SUSCEPTIBILITY
OF AN AQW

In the preceding section, we have shown how to de-
scribe different second-order optical phenomena in quan-
tum wells. Let us now consider in details the process
of second harmonic generation, described by y~q~„(tu, u),
and use the abbreviated notation yzq (u) or simply y&q„
in our further considerations.

Substituting the dipole matrix elements in Eq. (3), we

obtain an expression for y( ) in the form

„( ) = ) zq„(,i, j, j', u)(jlzl j')(g'li)(il j)

where tcpq„denotes the resonant part, which consist of
two terms

- (2) - (el) + - (ex)

the continuum exciton contribution K' and the exciton
contribution e' . The first suin in Eq. (15) corresponds
to the following types of precesses: valence band (j)—
conduction band (i) and valence band —valence band (j').
Analogously, the second sum involves transition between
two different conduction subbands (i, i') and one valence
subband (j). These two terms have opposite signs and
tend to cancel each other. This effect is stronger for the
light holes because their effective mass in the z-direction
is very closed to the electron mass (effect of cancellation).
We should note that the confining potentials differ for
holes and electrons. For example, in the case of strained
InGaAs jGaAs QW's, 4i the light hole is weakly localized,
while the electron is well confined in the QW, and hence
the effect of cancellation should be much smaller than in
more closely matched AQW's. The last term in Eq. (15)
gives the contribution of virtual processes of a state with
itself, which are typical of the AQW's.

A. Crossed component g&~&

) +pqv (i) i) 2~ 2r ~)

x ((ilzli) —(jlzl j))(ilj)

This component gives the polarization on the plane
when the incident electric fields have both an in-plane
and a z-component [Eqs. (7)j. Following the same pro-
cedure as above, we obtain, for the continuum contribu-
tion,

P
E,,E....(r - E, , + ir) (2r —E;, + ir) ' (17)

and for the exciton contribution

&~~g (i12) i ) 2 ) ~) =
Kcc

zP )(A;j+A; j )

E;, —E;, +b;;.b, , (~lyra + ~2)n+~ij yi'j' j27)
E s E s+g, g, E sE s(~ E s+ir)(2~ —E" +ir)

Here we used the substitutions

3
l e p„p 2

KpP ——— E~cpP,
4xepL mp

4e h2
K p

— E~cpp
KEpmp

where L is the AQW width and c„p are numerical co-
eKcients given in Sec. III. Please note the small con-
tribution of the 2S exciton states in Eq. (18), which
is about 30 times smaller than the 1S contribution.
In Eq. (17) we changed the summation on the in-
plane vector k~~ with integration on the kinetic energy

We see that this component possesses simple reso-
nances when 2hz —E,". . . In this case, the incident wave
spreads without absorption through the sample. On the

other hand, there are also double resonance terms when
Ru —E;z and 2k' —E;~ (E;j), which could lead to
extremely large peak values with respect to those ex-
pected near single resonances. In the widely used ma-
terial GaAs/Gai Al As, the double resonances are irn-
possible because the confining potential is smaller than
Eq. We show in Fig. 1 the spectrum of y, (w) for a
typical steplike AQW, when the frequency of the inci-
dent electromagnetic wave is near half of the fundamental
band gap (half-band-gap spectrum). In the calculations
we have used the damping values (at T = 4 K) I" = 2
meV and I = 4.7 meV. ' ' We see the manifesta-
tion of both direct (EiHHi, EiLHi, EzHHz, . . .) and
indirect ' (EiHH2, EzLHi, EzHHi, . . .) AQW exci-
tons. The 2S excitons give a little contribution to the
spectrum, but could be seen very clearly in the spectrum
of the phase, where they appear as peaks near the corre-
sponding 1S excitons.
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B. Perpendicular component y(~)

As one sees from Eq. (7), this component gives the
z polarization for an electromagnetic wave with electric
Geld polarized along the z axis. This component is absent
in the bulk case. The continuum electron contribution is

= 2X' Cp
E E(her —E;., iF)

"I,n +E, , +iF 2r —E, , +iF~ (20)

and the exciton contribution

3
N

I

i
I I

', : Fi~LH

I i I
I

",

; E,HH~
I
I
i
I

0— ~ELH &
! ! I l I I I I I I I I I

900 1000 1100 1200
hv [meV]

FIG. 1. Half-band-gap second-order susceptibility spec-
trum y „(~)for a steplike AQW composed of 1.5 nm GaAs
and 3.5 nm Gap. BAlp. 4As in a barrier region of AlAs. The elec-
tron and hole con6ning potentials are shown in the inset with
the lowest electron and heavy-hole levels and the correspond-
ing envelope functions. The solid line indicates ly, (~)! and
refers to the left scale and the dotted line shows the phase
expressed in radians on the right scale.

0—
l I I !

900 1000 1100
h~ [zneV]

1200

FIG. 2. Spectrum of the y„, component for the same(2)

AQW as in Fig. 1 in the half-band-gap region. In the inset
we show the lowest light-hole levels and envelope functions.

We see that this component possesses both single and
double resonances and therefore gives the largest contri-
bution to the polarization P„ in spite of the fact that only
light-hole excitons and interband transitions contribute
to it. We wish to remark that this term has been erro-
neously neglected in previous papers. We present in Fig.
2 the plot of y„, for the same AQW as in the previous
case. We see that the light-hole peaks are of the same or-
der of magnitude as the corresponding ones for the heavy

holes in the y ~, spectrum. This may be explained with
the fact that the effect of cancellation is compensated
with the larger exciton binding energy and light-hole

dipole moment in the z direction (chh /cIh,
——3/4), as

well as with the weaker cancellation between different
exciton peaks, because of the relatively large distances.

C. In-plane component y(~)

(bg „+b2 „AA,, ;, /27)
EnsEns (~ E~s + iF)

2~ —E,"-, , +iI'
1

X

(hu + E,", ~ +iI'.
From expression (7) we can observe that the nonlinear

polarization P when the electric fields lie in the plane

(z, y) of the AQW is determined by y . To calculate(2)

this term, we substitute the dipole matrix elements (9)
and (10) into Eq. (3) and obtain

el . -i ~ .I 2g el dE
Cp

E,;E;, (M —E;i iI'!(Ed+ E;, +iI'! ' (22)
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A. Crossed component

We follow the procedure used in Ref. 32 for the lin-
ear case, and use a parallel ail(~) and perpendicular

s~(&u) linear dielectric functions, whose expressions are
also given in Ref. 32. We recall that the linear z compo-
nent of the electric displacement vector D is given by

D, (u)) = si((u)E, (~) (25)
0.5—

3
A

iHH

;:lE,Lgj ",

: E' HH~:;
I

0—
I

1800 2000 2200
hv [meUj

2400

FIG. 3. Spectrum of the y, component for the same(~)

AQW as in Fig. 1 in a frequency region near the band gap.

and is a constant inside the AQW. On the other hand,
the perpendicular component E, changes through the
internal boundaries. It is given as a steplike function
E,(z), which changes according to the usual boundary
conditions. It is worthwhile to note that because of
the very large light wavelength A in comparison with the
AQW width I, , the above statements remain valid for

any direction of the incident wave, as well as in the case
of multiple AQW's when the single period L « A.

In our case, taking into account Eq. (7), we perform a
space average in Eq. (5) for fixed indices p = x, q = x,
and r = z, and obtain

and substituting expressions (12) and (13),

P (2~) = coL ) ~,(i~ j i' j' ~) (ilg)(i'lg')E~
~ ) ~ ~

't 0 2'i2

2K p

(&v + &' i )'.=i,2

E;, —E;; +b, ;8, ,
E,",' —E,"~, + b. ..b. ..

W

(bi „+b2,„bA;, ;; /27)
E"sE,",s (ibad —E"~ + iF) (Ru + E",~, + iF)

We see that this component of the second harmonic sus-
ceptibility possesses only single resonances in the region
of the fundamental band gap E~, when hem E,":
this occurs in correspondence to both heavy-hole and
light-hole resonances. According to the interband dipole
matrix elements (e2rr, /c2hh ——1/3) the peak values of the
light-hole excitons are weaker than the heavy-hole ones.
This can be seen in Fig. 3, where we have plotted y, (u)
in the exciton (near-band-gap) region.

x(b'", [z(j'I )( lj)E ( )j

-b,' (z(i'Iz)(zlzz)E. (z)] ) (26)

E.(z ~) = ss'(z)D. —L-):x.'"(i j ~)(ilz)(zlj)
it2

'( )(( I )( Ij)E.) (27)

to multiply by Zr, r(z) = z(klz)(zll) and perform a space
average on the both sides, to obtain

Here the resonant part x, (i, j,i', j', u) is given by the
same expression as obtained in Sec. IV. The contribution
of the nonlocal interaction between the field and the well
is given by the integrals (z(klz) (zll) E,(z)), which can be
calculated by expanding P, (z) to first order of the field as
in the linear case. %e make use of the linear constitutive
equation32

V. SECOND-ORDER SUSCEPTIBILITY
WITH NONLOCAL INTERACTION

Zrr(~) = (ss'Zrr(z)) —L ).X."'(i j ~)
)2

x(s '(ilz)(zlj) Z (z))r,';, ((u), (28)

In this section we show how to calculate the second-
order susceptibility, taking into account the nonlocality
of the interaction between the electromagnetic field and
the charge distribution inside a single AQW. In this case,
we base our calculations on the fact that A )) L . As a
first approximation, we can neglect the z component of
the light wave vector Q inside the well and look for the
average second-order susceptibility y( & defined by the
relation

where the functions

»r(~) = (Zir(z)E*(z))/D.

C*;(~) = ((ilz)(zlj)E-(z))D" (30)

depend only on the photon frequency ~ since D is a
constant across the interfaces. The couple of states k
and E belong to the same band, while similar expressions,

P„(2(u) = —y~ i„(ur, (u)Eq(~)E„(~). (24)
correspond to interband transitions and are given as so-
lutions of the following system of equations:
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) [b;, bi, + L y& &(i', j', (u)
i' 2'

x (&s '("l~)(~lj') (il~)(~lj))]&* '
= (s (il~)(~lj))

Computing the (,i from (31) and substituting into (28)
to obtain the Zl, i to be used in (29) and (25) and sub-
stituting the averages into Eq. (26) we finally obtain
an equation of the type (24) where the second harmonic
susceptibility is

3

(g

HH

1
-:'- E,HH~

0.8

06

04

E~HH~

E,LH, E,LHa

~ ~

, (~) = s~(u) ) r, (i, j, i', j' ~)(ilj)(i Ij') 0.2
~ ~ ~

~ ~ ~
~ ~

~0

x [b, , Z, , ((u) —b, , Z, ; ((u)]. (32)

This is the expression which gives the second-order sus-

ceptibility y, with inclusion of all nonhomogeneities
due to the AQW structure and expressed in terms of the

, containing all the resonances, as described in Sec.
IV. To compute it for all specific cases only requires a
microscopic calculation of exciton and continuum states.

We show in Fig. 4 the plot of ly, (ur)l for a dou-(2)

ble AQW, in a frequency region near the fundamental
band gap. We see that the effect of the nonlocal inter-
action decreases the stronger EqHH~ exciton peak and
increases the light-hole exciton peaks whose resonances
coincide with the e~ resonances. We may conclude that
the nonhomogeneity in the z direction produces a small
redistribution of spectral intensity from the heavy-hole

peaks to the light-hole ones.

0
1700

E HH I
I I I I

1750 1800
hv [mev]

1850 1900

B. Perpendicular and in-plane component

We can repeat the same procedure for an electromag-
netic wave polarized along the z axis to obtain

FIG. 4. Crossed quadratic susceptibility Iy~,~, (&u)l in the
band-gap region calculated for the double AQW given in the
inset and taking into account the internal nonhomogeneity of
the well (solid line). The corresponding spectrum, without
consideration of nonlocal e6'ects, is shown by a dotted line.
The AQW consists of Gao.5A10.5As barrier regions and two
GaAs wells of width 2.2 nm and 2.8 nm and separated by
a 2.2 nm barrier. Electron and heavy-hole eigenstates are
shown in the inset.

(33)

Here the resonant term K, is given by Eqs. (22) and
(23) for the continuum and the exciton contribution, re-
spectively, and analogously K, is given by Eqs. (17)
and (18). The summation on j and j' is performed in
this case on the light-hole states only (P=lh) because the
dipole matrix elements vanish for the heavy hole in the z

direction. In Fig. 5 we show the ly„, (w) I
spectrum. We

see that in this case the effect of the nonlocality of the
interaction is to increase by more than 3 times the prin-
cipal EqIIIq exciton peak. That is related to the fact
that this peak coincides with the corresponding peak in
the absorption spectra described by s~ (see Fig. 6).

For what concerns the component y, , we can use
—(2)

the same expressions as in Sec. IV because the in-plane
components E, E„do not change inside the AQW and
nonlocal effects are not present in our approximation. We
report the second harmonic spectrum calculations for the

double AQW in the near-band-gap region in Fig. 6. Note
the very clear presence of the crossed E&HH2 exciton
transition, which is very weak in the linear absorption
spectrum.

C. Contribution of the bulk and multiple AQW

In the preceding sections we have calculated the y( ) of
a single AQW taking into account the asymmetry of the
confining potential and the internal inhomogeneity of the
sample. We can observe that the maximum peak values
previously computed are of the same order as those com-
puted and measured in the bulky which m.ay seem
surprising because of the additional symmetry. In fact
we have only considered the con6ning potential effect, as
can be seen from the fact that our expressions so far do
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C3
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C3
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„ 0.5

E,LH,

~\

0

LH

E~LH~

and valence bands of the bulk. In the linear case, the
envelope function approximation does not introduce the
above-mentioned problems because only interband ma-

trix elements appear in that case, while for second-order
processes intraband dipole matrix elements, as well as
virtual transitions to all the bands, appear. To estimate
the eKect of the terms neglected in our approximation,
we reconsider the momentum matrix element (related to
the dipole one in the usual way) of the intraband type of
expression (10)

(i, k, jklp, li', k, j'k)

= r~~~'(alp. li') —~'* (~lp. li'))

+~**'hg~ [(u.~ lp. l~.~) —(u~~lp. Iud~) j (34)

0 "P "1 "t ~~ i l~ I I

1700 1750 1800
h~ [meV]

1850

~ ~ % ~

1900

not give the correct limit when I —+ oo, which should
be the bulk value of y( ), as well as when we change
smoothly the geometry of the AQW to the case of a sym-
metric QW, where g( ) -+ 0. The reason is twofold: (i)
we have adopted the first order envelope function ap-
proximation as described in Sec. III with symmetry C4,
which corresponds to Og and zero y(2) for the bulk, as
shown in Table I, and (ii) we include only I's and I's
bands and do not take into account the other conduction

100
Q

3

~ X

1

M

0 C0

Q-
—1

40—

FIG. 5. Near-band-gap spectrum ly~„l, (~)l (solid line) and

local ly„,(u)l (dotted line) for the same AQW as in Fig. 4.
Electron and light-hole confined states are shown in the inset.

where u,g and upg are the Bloch function at some 6xed k
point. That is the expression that should be used in the
calculation of the susceptibility. We see that the first two
terms in Eq. (34) correspond to those we have used pre-
viously. They come from the confining AQW potential
and do not relate to the bulk susceptibility. On the other
hand, the third and fourth terms in Eq. (34) depend on
the bulk band structure only and do not include contri-
butions from the AQW potential. When we substitute
them in Eq. (5) and expand the sum over all the bands,
we obtain an additional term y~, which contributes to the
total AQW susceptibility and goes to the susceptibility
of the bulk when L ~ oo. In Eq. (5), the bulk ma-
trix elements are multiplied by the oscillator strengths of
the AQW excitons, and hence we may expect that y~ is
greater than or equal to the bulk susceptibility and pos-
sesses resonance peaks on the QW exciton energies. Note
that because of its bulk origin ys gives a QW suscepti-
bility even in the case of symmetric QW's as observed
experimentally. A complete calculation of this bulklike
contribution is a rather difBcult task because it requires
the knowledge of the band structure, as modified by the
quantum well. As a 6rst approximation, which gives the
correct limit at L ~ oo, we take as a value of y to be
added to the previous result the bulk susceptibility, as
calculated by Moss pt zl.

Another fact to consider is that we may have multiple
quantum wells with barrier region of length L~ ——L —L
and bulk susceptibility of the barrier y . To take into
account both the above described contributions we add
to y„v„(z,zi, z2) of Eq. (4) the term

CO 20— E,HH

~ ~

X„„e(z—L ) + y,',„(z)O(L —z)

xb(z —zi)$(z —z2),
1700 1750 1800 1850

h~[meV]
1900

FIG. 6. Near-baud-gap spectrum lx, (&u)l for the same
AQW as in Fig. 4. The dotted line is the phase given in radi-
ans on the right scale. In the lower part of the figure we show
the absorption spectra o.„(cu) when the incident electromag-
netic wave is polarized along the x axis (p = x, solid line), as
well as along the growth direction z (dotted line).

where 8(z) is the step function. Then we proceed in a
similar way as for y~ ) and perform the space average on
the period L. In this way, with simple algebraic manip-
ulations, we obtain the following expressions:

f I

0
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than without the bulk contribution and all the frequency-
dependent values are consistently increased. This is in
basic agreement with the experimental observations re-
ported in Ref. 17. —(2}

In the present self-consistent calculation of P we

have not included contributions which originate from the
linear response of the type

10 —,
l

I I I I l I I I I I I I
I

[
I I I I

t
I 1

hQ( ) (2u) = e y~ ) (2~)E(2cu),

1.5
3

1

0.5

0
850

I I I I I I I I T I I I I
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890

Mqw & sL aI a X...I,
L

sa

FIG. 7. Nonlinear ~y
q (cu)) (upper plot) and (y„~ (tu)(

(lower plot) spectra for a multiple AQW consisting of AQW's
as in Fig. 4, separated by barrier regions of width 3.8 nm.
The vertical scales are given in units of 10 mV

where E(2u) is the field produced by second harmonic
generation. The requirement of self-consistency gives a
small correction to our results, which may be relevant in
different materials. This question will be considered in
another paper.

The above described theory allows a reasonably good
understanding of the overall microscopic processes of sec-
ond harmonic generation. Its weakest point is the fact
that we must limit the summation on intermediate states
and completeness cannot be ensured. This is particularly
relevant also to satisfy the condition of gauge invariance
when the scalar (—d E) or vector (—p A.) potential rep-
resentation are adopted. A way to improve on the above
shortcoming is to impose that the sum rules are obeyed,
as shown in Ref. 44 for y~ } of the hydrogen atom. We
are currently investigating this possibility, making use of
a set of newly derived sum rules. 4

~zzs + I (2} VI. CONCLUSIONS

MQW 1 fi B
2

I E'B

where sa is the barrier dielectric function and ga is the
barrier susceptibility; ss(z) is the background dielectric
function and ys is the second-order bulk susceptibility,
both dependent on the alloy composition at point z of
the well region; gz~z„ is given by Eqs. (32), (33), (22),
and (23).

With the above prescriptions we are now in a posi-
tion to compute the second-order susceptibility of any
multiple AQW, including both inversion asymmetry and
confinement efFects. The general result is to increase con-
siderably the overall values of y q and to modify sig-
nificantly its kequency dependence. We observe that,
according to Table I, the barrier and bulk contribution
to y, vanish by symmetry so that for this tensor corn-

ponent the results of Sec. V B are not modified.
As an illustrative example we give in Fig. 7 the &e-

quency dependence of )gM&w( and (yM'Pw( up to the
half-band-gap region, having used for the bulk and
barrier susceptibilities the values computed by Moss
et al. '2 It can be noticed that the basic structure
due to the confinement potential asymmetry is preserved
and peaks corresponding to all QW excitons can be ob-

served, though their line shape is much more asymmetric

The results of the above paper can be summarized as
follows.

All the nonzero independent second-order susceptibil-
ity tensor components have been computed for a single
and multiple AQW of arbitrary shape.

Contributions that go beyond the local approximation
are shown to originate from the asymmetry of the con-
fining potential. Other contributions originate from the
inversion asymmetry of the material; they are responsible
for the correct limits as I ~ oo and AQW —i SQW.

The spectral dependence of yzq„reBects the exciton(2}

structure with peaks of y and y„, at half band gap
and of y, } in the near-band-gap region. The contri-
bution &om the continuum states is relatively small in
comparison with the exciton contribution.

The contribution of the inversion asymmetry and of
the confining potential asymmetry reinforce each other
in the case of y and y, so that the susceptibility
values are larger than those of the bulk. In particular

y „is difFerent &om zero in AQW and originates from
the we11 potential structure only.

ACKNOWLEDGMENTS

The authors are indebted to P. Giannozzi for his help
in the numerical calculations. Thanks are also due to
C. Andreani and G. La Rocca for the very useful and
constructive discussions of this work.



50 SECOND-ORDER NONLINEAR OPTICAL SUSCEPTIBILITY OF. . . 7819

P. Bois, E. Rosencher, J. Nagle, E. Martinet, P. Boucaud,
F.H. Juluen, D.D. Yang, and J.-M. Lourtioz, Superlatt.
Microstruct. 8, 369 (1990).
P. Boucoud and F. Julien, J. Phys. (Paris) III 1, 13 (1991).
P. Boucaud, F.H. Julien, D.D. Yang, J-M. Lourtioz, E.
Rosencher, P. Bois, and J. Nagle, Appl. Phys. Lett. 57,
215 (1990).
S. Yoo, M. Fejer, R. Byer, and J. Harris, Appl. Phys. Lett.
58, 1724 (1991).
E. Rosencher and P. Bois, Phys. Rev. B 44, 11315 (1991).
P. Boucaud, F.H. Julien, D.D. Yang, E. Rosencher, and P.
Bois, Opt. Lett. 16, 199 (1991).
C. Sirtori, F. Capasso, D. Sivco, S. Chu, and A. Cho, Appl.
Phys. Lett. 59, 2302 (1991).
C. Sirtori, F. Capasso, D. Sivco, A. Hutchinson, and A.
Cho, Appl. Phys. Lett. 60, 151 (1992).
M. Fejer, S. Yoo, R. Byer, A. Harwit, and J. Harris, Phys.
Rev. Lett. B2, 1041 (1989).
L. Tsang, Sh. Chung, and Sh. Lee, Phys. Rev. B 41, 5942
(1990).
L. Tsang and S. Chuang, Phys. Rev. B 42, 5229 (1990).
J. Kurgin, Phys. Rev. B 38, 4056 (1988).
J. Kurgin, AppL Phys. Lett. 51, 2100 (1987).
Y. Xie, Z. Chen, D. Cui, S. Pan, D. Deng, Y. Zhou, H. Lu,
Y. Huang, S. Feng, and G. Yang, Phys. Rev. B 43, 12477
(1991).
P. Harshman and S. Wang, Appl. Phys. Lett. BO, 1277
(1992).
S. Scandolo, A. Baldereschi, and F. Capasso, Appl. Phys.
Lett. 62, 3138 (1993).
Zheng-hao Chen, Yuan-lin Xie, Shi-jie Gu, Yue-liang Zhou,
Da-fu Cui, Hui-ben Lu, Jun-ming Zhou, Zu-yan Xu, and
Guo-zhen Yang, Phys. Rev. B 42, 5117 (1990).
C. Sirtori, F. Capasso, D. Sivco, S. Chu, and A. Cho, Phys.
Rev. Lett. 68, 1010 (1992).
W. Bloss and L. Friedman, Appl. Phys. Lett. 41, 1023
(1982).
C. Cooperman, L. Friedman, and W. Bloss, Appl. Phys.
Lett. 44, 977 (1982).
D. Chemla and D. Miller, J. Opt. Soc. Am. B 2, 1155
(1985).
T. Wood, R. Tkach, and A. Ch3pllyvy, Appl. Phys. Lett.
50, 798 (1987).
D.E. Aspnes, Phys. Rev. B B, 4648 (1972).
B.F. Levine and G.G. Betha, Appl. Phys. Lett. 20, 272

(1972).
D.J. Moss, J.E. Sipe, and H.M. van Driel, Phys. Rev. B
36, 1153 (1987).
D.J. Moss, J.E. Sipe, and H.M. van Driel, Phys. Rev. B
36, 9708 (1987).
Paul N. Butcher and David Cotter, The Elements of Non
linear Optics (Cambridge University Press, Cambridge,
1990).
J.Ducuing and C. Flitzanis, in Optical Properties of Solids,
edited by F. Abeles (North-Holland, Amsterdam, 1972).
V.M. Agranovich, in Modern ProbLems in Condensed Mat-
ter Physics, edited by V. Agranovich and D. Mills (North-
Holland, Amsterdam, 1982), Vol. 1.
V. Agranovich, Solid State Commun. 78, 747 (1991).
V. Agranovich and V. Kravtsov, Solid State Commun. 55,
85 (1985).
R. Atanasov, F. Bassani, and V.M. Agranovich, Phys. Rev.
B 49, 2658 (1994).
F.G. Bassani and G.P. Parravicini, Electronic States and
Optical Properties in Solids, edited by R.A. Ballinger
(Pergamon Press, Oxford, 1975).
V.M. Agranovich and V. Ginzburg, Crystal Optics with
Spatial Dispersion and Ezcitons (Springer-Verlag, Berlin,
1984).
L. Andreani, F. Bassani, and A. Pasquarello, in Symmetry
in Nature (Scuola Normale Superiore, Pisa, 1991),p. 19.
S. Jorda and U. Rossler, Superlatt. Microstruct. 8, 481
(1990).
G. Bastard, 8'ave Mechanics Applied to Semiconductor
Structures (Les Editions de Physique CNRS, Paris, 1988).
R. Atanasov and F. Bassani, Solid State Commun. 84, 71
(1992).
M. Shinada and S. Sugano, J. Phys. Soc. Jpn. 21, 1936
(1966).
P. Lefebvre, P. Christol, and H. Mathieu (unpublished).' M.J. Joyes, Superlatt. Microstruct. 12, 293 (1992).
J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M. Coloci,
Ph. Roussignol, and G. Weimann, Phys. Rev. B 4T, 10456
(1993).
A. Zrenner, P. Leeb, J. Schafer, G. Weimann, J.M. Wor-
lock, L.J. Florez, and J.P. Harbison, Surf. Sci. 263, 496
(1992).
S. Scandolo and F. Bassani, Nuovo Cimento D 14, 873
(1992).
S. Scandolo (private communication).


