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We calculate the distribution of incompressible and compressible regions at an electrostatically
defined edge of a two-dimensional electron system (2DES) in a strong perpendicular magnetic field B
for two models, one with a strictly 2D arrangement of gate and charges, and one with a realistic 3D
structure. We ensure electrochemical equilibrium by self-consistent calculation of the electrostatic
potential from the electron density and the boundary conditions defined by the metallic gates, and
of the electron density in this potential, using the Thomas-Fermi approximation. Both models
yield qualitatively the same results. In the limit of zero temperature and strong magnetic field,
and at distances from the edge which are much larger than the effective Bohr radius, our 2D
model yields quantitatively the same result for the density profile in the 2DES as recent work by
Chklovskii, Shklovskii, and Glazman, who considered a purely electrostatic model, without requiring
electrochemical equilibrium for B = 0. We demonstrate explicitly how the incompressible regions
are destroyed with increasing temperature.

I. INTRODUCTION relation

The concept of edge states has been used very success-
fully in describing many properties of mesoscopic two-
dimensional electron systems (2DES) under conditions
of the quantum Hall effect. In its single-particle ver-
sion for noninteracting electrons, it provides the basis
of the Landauer-Biittiker formalism, which has been
applied with great success to understand magnetoresis-
tance measurements on mesoscopic samples, in partic-
ular on those with complicated geometry and distribution
of filling factors, produced by special arrangements of
gates. The validity of this concept has been established
by many experiments, as has been discussed in several
review articles. Some recent experiments -sed?n to
indicate, however, that the single-particle version of this
concept is not sufficient and that many-body eÃects such
as screening of slowly varying electrostatic fields by the
interacting 2DES must be incorporated.

In a strong perpendicular magnetic field 8, the screen-
ing properties of a 2DES are very nonlinear, as has been
pointed out by analytical as well as by numerical
calculations within the Hartree approximation. If the
electrostatic potential energy V(r) of an electron varies
smoothly in the plane of the 2DES, i.e., on a charac-
teristic length d much larger than the magnetic length
l = (ch/eB) ~2, then screening leads to a pinning of
the energy bands at the Fermi level, accompanied by
spatial regions where the screened potential is fiat (per-
fect screening). i2 Under these conditions (l « d), the
spatial extent of the wave functions can be neglected on
the scale d and the Hartree approximation reduces to
the Thomas-Fermi approximation (TFA) with the local

"(~) = f«&(s)f((s+r( ) —I )I"~r)

between the density n, (r) of the 2DES and V(r). Here

f(e) = [I + exp(e)] i is the Fermi function, p the (spa-
tially constant) electrochemical potential, T the temper-
ature, and

(1.2)

the Landau density of states with (o, = eB/m'c the cy-
clotron frequency; g, = 2 takes into account the spin
degeneracy. This local relation leads in the limit of zero
temperature to a simple real-space picture of screening,
as has been emphasized by Luryi and by E&os:
the area occupied by the 2DES can be divided into two
types of regions, "compressible" regions in which one of
the Landau bands is pinned at the Fermi level and screen-
ing is perfect, since electrons can easily be redistributed
between available states, and "incompressible" regions in
which the Fermi energy falls into a gap between (or be-
low) the Landau bands and which do not contribute to
screening since a redistribution of electrons is energeti-
cally impossible. In these incompressible regions the elec-
tron density n, (r) is constant while V(r) varies, whereas
in the compressible regions n, (r) varies and V(r) is con-
stant. Recently Chklovskii, Shklovskii, and Glazman
(CSG) have shown that this simplified picture of screen-
ing can be exploited to develop, for sufFiciently simple
geometries, an analytical theory of screening in strong
magnetic fields.
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In order to obtain explicit analytical results for the
screened potential and the density profile of the screen-
ing 2DES, CSG had to rely on two somewhat oversim-
plifying model assumptions. First, a real sample with a
metal gate at some distance I &om the plane of the 2DES
and positive space charges behind a spacer is replaced by
a model with a strictly two-dimensional distribution of
charges in the (x-y) plane of the 2DES. This is thought to
be a good approximation, if I is negligible on the length
scale d. For typical experimental situations one has, how-

ever, only I /d 0.2. The second critical assumption is
that, even for vanishing magnetic field, the 2DES shows
perfect metallic screening, so that V'V(r) = 0 where the
density of the 2DES is finite, n, (r) g 0. To be spe-
cific, CSG consider a model with translational invariance
in the y direction: a metallic gate in a half plane (say
z ( 0), a background of positive charge density enp in
the other half plane (x ) 0), and the 2DES with density
n, (z) (in x ) d) separated from the in-plane gate by a de-
pletion layer of width d and approaching the background
density at infinity [n, (x) ~ np fol' x M ooj. Since the 2D
density of states for B = 0 is constant, D(E) = Dp0(E),
with Dp ——m*/vrh and 8(x) the unit step function, one
expects within the TFA for T = 0 that no ——DOE~ and

[np —n, (z)] = Dp V (x) . (1.3)

n, (x) = np (1 —d/z)'~ 8(z —d), (1.4)

is needed in the CSG theory to derive explicit expressions
for the position and width of incompressible strips in high
magnetic fields. Since the analytical result (1.4) and the
assumption V(x) = 0 for x ) d violate Eq. (1.3), it is not
obvious how reliable these explicit results are for finite
values of the parameter E~/V(0).

The purpose of the present paper is to generalize the
CSG theory and thereby to explore the range of its valid-
ity, in two respects. First, we consider (at finite temper-
ature) a similar model with a strictly 2D distribution of
charges, however, with the modification that the require-
ment of electrochemical equilibrium is satisfied exactly.
The price of this modification will be that we have to
solve the self-consistency problem numerically, even for

This requirement of electrochemical equilibrium is not
satisfied in the CSG theory. Instead, CSG follow an
argument by Glazman and Larkin, who have demon-
strated that, for V(0) )) E~, the electron density varies
on the scale of the depletion length d. Then, according
to the self-consistency requirement (1.3), the gradient of
the screened potential inside the 2DES is of the order
dV/dx E~/d, which is much smaller than the potential
gradient in the depletion layer dV/dz V(0)/d. Glaz-
man and Larkin argue that the self-consistent problem
may be solved by a kind of perturbation expansion in
the small parameter E~/V(0) and that, to zeroth order
in this expansion, V(x) = 0 may be assumed inside the
2DES. Accordingly, the CSG theory sets the right-hand
side of Eq. (1.3) zero and calculates the spatial variation
of the left-hand side &om electrostatic arguments. The
result for the density profile of the 2DES at B = 0 (and
T = 0), which can be written as

II. CONSISTENT MODEL
%'ITH PLANAR CHARCE DISTRIBUTION

A. Electrostatics

We consider a 3D model with translational symmetry
in the y direction, background dielectric constants K&

and K& in the half spaces z & 0 and z & 0, respec-
tively, and with a charge density of the form p(x)b(z)
concentrated in the x-y plane. The half plane z ( 0 is

occupied by a metallic gate, so that the electrostatic po-
tential energy of an electron V(x, z) = —e4(z, z), with 4
the electrostatic potential, satisfies the boundary condi-
tion V(x, 0) = Vp for x ( 0, with a constant Vp. [Vp/( —e)
is called "gate voltage" in Ref. 15.] For z P 0, V(x, z) has
to satisfy the 2D Laplace equation, which is guaranteed
if we write V as the imaginary part

V(x, z) = ImE(() (2.1)

of a holomorphic function F of the complex variable ( =
x + iz. In the half plane z = 0, x ) 0 we assume a
positive background of surface charge density eno and a
2DES with density n, (x), so that the total surface charge

zero temperature. Second, we consider, again at finite
temperature, a realistic model with a 3D distribution of
fixed and induced charges, and we show that the distribu-
tion of compressible and incompressible strips calculated
for this model is also in good qualitative agreement with
the CSG predictions.

In Sec. II we discuss our consistent version of the
CSG model with a strictly 2D distribution of charges. In
this model we complete the requirement of the electro-
statics, which determines the potential resulting from a
given charge distribution, by the requirement of the TFA,
Eq. (1.1), which determines the charge density for a given
potential distribution. Such a self-consistent electrostatic
theory should be valid for all values of temperature T and
of magnetic field B if potential and charge density vary
on a scale d which is large compared to typical quantum
lengths, such as l for large B and the Fermi wavelength

( np
~ & 50 nm) for small or vanishing B. For suf-

ficiently low temperatures and high magnetic fields, this
theory reproduces essentially the CSG results. As com-
pared with the CSG theory, it has, however, the advan-

tage that the existence of incompressible and compress-
ible strips comes out from the self-consistent calculation,
whereas in the CSG theory it is put in as an assump-
tion, and that reasonable results can be obtained also at
elevated temperatures, where such strips no longer exist.

In Sec. III we consider a realistic model of a 2DES in
a wire imbedded in a sample based on a standard GaAs-
Al Gaq As heterostructure, with a corrugated top gate
and a 3D distribution of donor charges. Again, we treat
the case of nonzero temperature and fulfill the condition
of electrochemical equilibrium by means of the Thomas-
Fermi approximation. We also discuss the inHuence of
potential Huctuations in order to obtain a better under-
standing of the Coulomb eKects inside a confined 2DEG.
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density is ap ——(r& + )r, &)/4me Dp (2.12)

p(x) = e[n() —n, (x)] (2.2)

and the boundary condition for the electric displacement
Geld can be written as

Since

BV + BV
(x, 0+) —rc& (x, —0+) = 47rep(x) .

Oz Oz
(2.3)

BV dF
)9z

™
d(

'
Bv dF
Bz d( ' (2.4)

(2.5)

the boundary conditions on V deGne the discontinuity of
the imaginary part of the auxiliary function

is the usual 2D screening length. ' ' For K,&
this reduces to ap ——a&/2, with a& ——)r&h /e m' the
effective Bohr radius. We want to emphasize that the
asymptotic relation (2.10) must hold for any value of the
magnetic Geld strength B.

A corresponding asymptotic 1/x dependence of the in-
duced electron density proGle has been obtained recently
by Liu and Niu, who considered a somewhat difFerent
situation with an in-plane bias on a split 2DES in the
absence of a magnetic Geld.

In the approach of CSG, assuming perfect screening
of the 2DES, i.e., V(x) = 0 for z ) d, the electron den-
sity for 8 = 0 is given by Eq. (1.4), so that dp ——d is the
depletion length (d = 2l in the notation of Ref. 15). In-
serting this into Eqs. (2.2), (2.7), and (2.9), one obtains
V G(z) = 0 for z ) d and

along the real axis

I h(* 'o+) =
(

~(~)~~ ~f T + 0
0 ifz(0, (2.6)

where j( is holomorphic, except the branch cut along
the negative real axis (z & 0), and where

( 1 1, (2z
V (z) = Vp ———arcsin ——12vrLd

2z & 2z&
+ 2 (2.13)

4me
r(x) = p(*)

K& +K( (2.7)

and c)v/c)z(x, —0+) = —(9V/Bz(x, 0+) has been antici-
pated. The solution of our electrostatic problem is im-
mediately obtained f'rom

for 0 & z & d, in agreement with Ref. 15. Inserting this
result into Eq. (1.1) in order to calculate the electron den-
sity, one gets a constant density for x ) d and not the
input density of Eq. (1.4). Thus the CSG model for zero
magnetic field is in agreement with the requirements of
electrostatics, but not with that of electrochemical equi-
librium, Eq. (1.3).

dF —i r(z) ~z
~V( o

Integration along the real ( axis yields, for x ) 0,

(2.8)

B. Self-consistent solution

v( ) =v, —
7r

(2.9)

n, (x)/np 1 —dp/2x for x + oo, (2.10)

with

do ——(2Vo/~Em ) ao, (2.11)

where

It is easily seen from Eq. (2.8) that the total charge Q =
fp dzp(x) is exactly neutralized by the induced charge
in the metal gate at x ( 0.

The integral in Eq. (2.9) has interesting analytical
properties. If the total charge Q is finite, it approaches
zero for x ~ oo, so that V(oo) = V(0) = Vp. Since
we require that the 2DES with bulk density n, (oo) = np
screens the potential at infinity, we must have V(oo) = 0.
According to Eq. (2.9) this is only possible if, for z m oo,
t'( ) zVp/7rz. Thus, with np = DpEy', the mere require-
ment of a potential step V(0) —V(oo) = Vp leads to the
asymptotic behavior

In order to implement electrochemical equilibrium, we
require that the electron density n, (z), entering Eq. (2.9)
via Eqs. (2.2) and (2.7), is given by the TFA (1.1), with
V(x) given by Eq. (2.9). The result is in general a non-
linear integral equation for V(x), which must be solved
numerically. For B = 0 and T = 0, the TFA yields
Eq. (1.3) if V(z) & EF. This results in

ape(z) = min (E~, V(x) j . (2.14)

In the rest of this section we measure lengths in units of
the screening length ap and energies in units of Vp. Then
the self-consistency problem, Eqs. (2.9) and (2.14), de-
pends only on the dimensionless parameter E~/Vp, which
determines the depletion length d defined by V(d) = Ep
If we Gx an arbitrary value of d, the self-consistency
problem reduces in the interval d & x ( oo to a lin-
ear integral equation for r(x). Typical solutions are
presented in Fig. 1. The charge density is plotted as
[np —n, (x)j/DpVp, so that it coincides with the potential
V(x)/Vp for x & d. The horizontal straight lines indicate
the corresponding values of E~/Vp and, simultaneously,
the background charge density in the depletion region,
where n, (x) = 0. From analytical considerations one
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ing temperature the Bat regions become wider, but even
at k~T/hu, = 0.005 the full zero-temperature width is
not yet reached. At T = 0, n, (z) enters the plateaus
from both sides with vertical slope, as found in Ref. 1ef. 15.
Near k~T/~, = 0.06 the incompressible strips shrink
to zero wi an aidth and at higher temperatures all indications

ork T bc', =0.5of plateau regions rapidly vanish. For k~T/
no effect of the magnetic field is left and V(z) as well as
n, (z) practically coincide with the corresponding curves
for B = 0 (not shown in Fig. 3). Compared to the T = 0
case, the density profile in this situation is changed only
near the outer edge of the 2DES, which is softened. In the
same region the values of V(x) are somewhat increased.

Figure 4 shows, at a very low temperature (k~T/flu, (
0.01), the pinning of the energy spectrum at the Fermi
level and the formation of compressible strips for a
smaller value of the depletion length (d/ap = 5), where
the deviations from the CSG approach are noticeable and
the position of the outermost compressible and incom-
pressible strips does not agree well with the CSG predic-
tion.

elf-In Fig. 5 we show V(x) and n, (x) obtained from se-
consis en ca c a it t l ul tions for very low temperatures an or
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increasingly wider. As vp gets smaller than 2, the incom-

FIG. 4. Electrochemical equilibrium results for potential
snd electron density (solid lines) snd Landau bands j = 0, 1,
snd 2 (broken lines) for finite magnetic Beld snd temperature

long-dashed line indicates the Fermi level. Potential, electron
density, and Fermi level for B = 0 and T = 0 are indicated by
thin solid lines. The thin dash-dotted line is the corresponding
CSG result for the electron density at B = 0.
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pressible strip disappears and the electrostatic potential
changes dramatically. Then the screening becomes nearly
perfect everywhere in the 2DES and the self-consitent re-
sult looks very similar to the CSG result for B = 0. t
is seen that the asymptotic behavior of n, (z) for z -+ oo
is always given by Eq. (2.10), whereas V(z) approaches
zero much faster for strong magnetic fields than for B =
0.

Finally, we compare in Fig. 6, again o p y'p-r V, E =423
and for several values of the bulk filling factor, the posi-
tion of the incompressible strips obtained &om our self-
consistent model with the analytical prediction of Ref. 15.
The CSG prediction for the edges of the incompressible
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strip with local filling factor v(zi, ) = g, k is, in our nota-
tion and for r& ——K& (i.e., a& ——2ap), zs 6 as/2, with

zi, = dp/[1 —(g, k/i p)2] (2.i5)

the position of the center and

ai, = 4zx(g, ka&/xd ) / /i (2.i6)

III. MODEL WITH THREE-DIMENSIONAL
CHARGE DISTRIBUTION

A. Model

We now consider a realistic model of a real 3D sam-
ple containing a laterally confined 2DES. For techni-
cal reasons we consider a 2DES in a wire, with transla-
tional symmetry in the y direction, and we repeat the
wire structure periodically in the x direction, with a suf-
ficiently large distance between the wires, so that they do
not interact with each other. The inset of Fig. 7 shows
(in the x-z plane) a schematic sketch of a unit cell of this
structure. The 2DES is located in the GaAs substrate
near its interface (at z = I,) with an Al Gai As layer,
which behind a spacer is doped with Si donors (concen-
tration Ng = 10 cm ). The periodic wire structure is
defined by a corrugated (etched) cap layer (GaAs) with
a x-dependent surface profile [z = g(z)], which is covered

the width of the strip number k (= 1, 2, ...). The thin
lines in Fig. 6 indicate these results for g, = 2. Note that
Eqs. (12) and (28) of Ref. 15 refer to the case g, = 1 and

Apparently, the agreement is astonishingly
good for strips which are not too close to the outer edge
of the 2DES.

FIG. 7. Numerical results calculated for a 800 nm wide

sample and a negative gate voltage of V~ = —0.7V. Bottom
panel: lateral dispersion of the lowest Landau bands accord-

ing to the self-consistent potential (dashed line). Energies are
measured relative to Fermi level p. Middle panel: local 6lling
factor calculated from our model for B = 1 T and T = 0.1 K
(thick solid line) and according to Eq. (3.4) (thin solid line).
The dashed line gives the local 6lling factor at B = 0.5T
and T = 10K, where no Battening out at even 6lling factor
occurs. Even values of v are indicated by dotted lines. Top
panel: as in the two lower panels the compressible regions
are shaded. Starting with the situation at 8 = 1T this plot
shows the evolution of the incompressible strips, embedded in

a compressible liquid, with increasing magnetic 6eld.

pFHy, x) = —en, (x) ~(pFH(P, z)
~

(3.1)

with a metal gate. The lateral confinement of the 2DES is
determined by the electrostatic potential resulting kom
the gate voltage applied between the corrugated top gate
and a plane metallic backgate, the charge distribution in
the 2DES, and the (also inhomogeneously distributed)
donor charges. We take the width a of the unit cell
sufBciently large so that, similar to the model discussed
in Sec. II, the x dependence of the potential confining
the 2DES to the wire is smooth on the scale of typical
quantum mechanical lengths. Then we expect that, in a
strong perpendicular magnetic field, the 2DES near an
edge of the wire behaves similarly to the 2DES near the
edge of a half plane, which we discussed in Sec. II.

We now sketch brie6y the mathematical treatment of
this model, closely following Ref. 18, to which we refer for
further details. Assuming a strong confinement in the z
direction, we neglect efFects of higher electrical subbands
and decouple the slow lateral variation of the electron
density &om the rapid variation in the z direction by
means of a product ansatz
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where we describe the lowest occupied electrical subband
by a Fang-Howard trial wave function

1

ypH(P, z) = P /2 ' z —L, exp[—P(z —L,)/2], (3.2)

de6ned for z )L, . Here L, is the position of the interface
between spacer and GaAs. To calculate the optimum
value of the variational parameter P, we minimize the
single-particle energy at x = 0,

h2 82
Eo —— ypH, z 2 + V x = O, z;b ypH, z

(3.3)

where the Hartree contribution to V is calcutated with a
Fang-Howard function as in Eq. (3.2), but with P re-
placed by a value b which is kept fixed. To achieve
self-consistency, the stationary condition is evaluated for

P = b For .a laterally homogeneous 2DES this calcula-
tion can be performed analytically and leads to the well
known results. ' The lateral modulation of the 2D elec-
tron density is calculated in the Thomas-Fermi approxi-
mation, Eqs. (1.1) and (1.2), where V(r) is replaced by
V(z, (z)), i.e., the potential energy of an electron is taken
at the expectation value of the z coordinate ((z) = 3/P).
The Landau spectrum is, of course, shifted by the energy
Eo of the lowest electrical subband defined by Eq. (3.3).
This defines the charge density of the 2DES in a given
potential V(z, z).

As mentioned above, we also include the fixed ion-
ization profile for the Si donors, which has been cal-
culated self-consistently at elevated temperatures, when
the electrons in shallow and deep donor states within
the Al Gaq As doping-layer behave like mobile charges
and screen efFectively the electrostatic potential imposed
by a top gate. This screening and, in addition, the expo-
nential decay of short-range lateral potential fluctuations
due to Poisson's equation, smoothens the efFective lateral
potential confining the 2DES in the z direction, although
the etching pattern on top of the heterojunction may be
extremely sharp.

To achieve electrochemical equilibrium we proceed as
follows. We calculate the potential distribution from
Poisson's equation with the charge density of the 2DES
and the donor distribution as source terms and with the
boundary conditions imposed by the metallic top and
back gates. Then we use this V(x, z) to calculate the
electron density anew and we iterate the process until
convergency is achieved. Using the TFA with the Lan-
dau density of states, Eq. (1.2), we thus calculate the
peculiar screening behavior of the 2DES at low temper-
atures and high magnetic fields.

B. Results

The lowest panel of Fig. 7 shows the self-consistent
potential energy of an electron as well as the 6ve lowest
Landau bands for B = 1T and T = 0.1K. The gate
voltage applied between the corrugated top gate and the
plane backgate is V~ = —0.7 V, resulting in a total vari-

ation Vo = 18 meV of the electrostatic potential energy
in the plane of the 2DES, which is not very much larger
than the Fermi energy E~ 7.1 meV. The pinning of dif-
ferent Landau bands at the Fermi level is clearly resolved.
These compressible regions are well separated by incom-
pressible strips with even (g, =2) filling factor, which can
be identi6ed in the panel above. There we have plotted
the local filling factor v(z) = 2vrl2 n, (x), whose behavior,
as in the 2D model of Sec. II, is complementary to that of
the potential. The strips with flat potential coincide with
variable filling factor, while the adjacent incompressible
strips with constant filling factor show a nonzero gradient
in the electrostatic potential. The dashed curve indicates
the local filling factor for B = 0.5T and T = 10 K and
demonstrates the vanishing of incompressible regions at
higher temperature.

Quantitative predictions of the CSG theory as well as
its self-consistent version proposed in Sec. II should fail
if the depletion length d is comparable with the distance
of the 2DES from the top gate L (see the inset of Fig.
7). The parameters of Fig. 7 are chosen so that the ratio
of the depletion length d to the gate distance L is 0.9,
i.e., the 2DES and the gate can hardly be assumed to be
located in the same plane. In addition to the numerically
calculated local filling factor (thick solid line) we plotted
the result of the (here hardly justified) CSG model at
B = 0 T, but for a finite wire [see, e.g. , Eq. (6) of Ref. 16]
in the way that the depletion length d and the filling
factor in the "bulk" v(0) fits our data,

v(0)
1 —2d/

1

(d —a/2) 2 —xz

a2/4 —x2 (3.4)

The positions of incompressible strips would be expected
where the CSG curve crosses the horizontal dotted lines
of even-integer filling factor, in obvious disagreement
with our self-consistent results. The situation is simi-
lar to that of Fig. 2, where we compared the CSG result
with its self-consistent generalization, assuming the same
values of the bulk density no and of the total potential
step Vo for both. If we had assumed instead the same
values of no and of the depletion lenght d, i.e., a smaller
value of Vo for the CSG curves, then the CSG result
for the electron density n, (x) would always be larger
than the self-consistent-screening result and would in-
crease much more rapidly with increasing distance &om
the edge. This means that in the self-consistent theory
screening of the electrostatic potential in the edge region
is less efFective and the electrons are repelled more efFec-
tively &om the edge than in the CSG model, which as-
sumes perfect metallic screening by the 2DES. Whereas
in Fig. 2 difFerences between the CGS model and the self-
consistent approach become visible because the depletion
length d is not much larger than the screening length ao,
the discrepancies seen in Fig. 7 originate also &om the
fact that d is not (much) larger than the distance L of the
gate &om the plane of the 2DES. Apparently the smooth
confinement potential produced by the remote charges is
only poorly screened by the 2DES so that it penetrates
into a broad edge region of the wire, resulting there in
a much smaller electron density than expected &om a
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model assuming perfect screening. As a consequence,
the self-consistent 3D calculation yields incompressible
strips of considerably larger width and at a considerably
larger distance (on the scale of d) from the edge than is
predicted by the analytic CSG model.

As a guide for the eye the compressible regions in Fig.
7 are shaded. Starting with the pattern at B = 1 T,
the uppermost panel gives an impression of the further
evolution of the position of compressible and incompress-
ible strips with increasing magnetic field up to 5 T. The
fuzzy boundaries of the shaded areas are due to the coarse
mesh of 8 values and, even more important, of the x val-
ues used in our numerical calculations. Note that all
the characteristic features of this pattern agree qualita-
tively with those of Fig. 6, obtained within the simplified
inodel of Sec. II for the edge region of a semi-infinite
2DES. Quantitatively, however, the wire version of the
latter would lead to a pattern of unshaded strips which
are nearly horizontal in a broad central region and then
fall ofF very rapidly in a narrow region near the edge of
the wire, with a much steeper slope than seen in Fig.
7. This is a direct consequence of the fact that, for zero
temperature, the electron density profile in the perfect-
screening approximation increases near the edge with a
much steeper slope than the self-consistent result.

We want to emphasize the following most remarkable
features. On the one side the width of the incompress-
ible strip in the center ("bulk" ) is much larger than the
width of those located close to the edge. But incom-
pressible bulk channels can exist only in a narrow range
of magnetic fields. In the semi-infinite model of Sec. II
the width of this range shrinks to zero. For most mag-
netic fields the bulk region is compressible. In general, if
B is swept to higher values, the innermost incompressible
strip will vanish and the subsequent strips of even-integer
filling factor move from the edges towards the middle of
the sample, eventually merging into a new incompress-
ible bulk channel. Especially at filling factors larger than
2, this channel immediately disappears after further in-
creasing the magnetic field by a rather small amount.
This repeats until the last incompressible bulk channel
has disappeared and, within our model assumptions ne-
glecting spin splitting and many-particle correlation ef-

fects, the whole sample becomes compressible.
The width of the incompressible strips decreases if the

width of the wire, i.e., the period a of our array model, is
reduced and the confinement potential becomes steeper.
For a & 600 nm we could hardly resolve any incompress-
ible strips within the accuracy of our calculation.

Figure 8 shows results for a broader wire (a = 2 pm)
and a smaller bulk filling factor, where only one incom-
pressible strip exists in each edge region and the cen-
ter region is compressible. To demonstrate the "per-
fect screening" property of our 2DES in the compress-
ible regions, we also performed the calculation with an
additional small external potential fluctuation bV(x) =
(8V/2) cos(2vrx/A) with a period much smaller than the
wire width but somewhat larger than the magnetic length
(A/l = 11/4 and bV/Ru, —1/7). The results are also
shown in Fig. 8. It is seen that pinning of the energy
spectrum at the Fermi level, accompanied by the char-
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FIG. 8. Comparison between a "dirty" sample, simulated
by s potential fiuctustion hV(x) = (hV/2) cos(8+x/lit )
with 6V = 0.85meV, snd s clean one (bV = 0), for psrsm-
eters a = 2 pm, I3 = 3.7T, T = 0.1K, and Vg = —1.2V
(chosen to keep the ratio of a snd the width of the 2DES
close to that of Fig. 7). The local variation of the potential
profile snd the dispersion of Landau bands (the two lower

panels) as well as the local filling factors (upper panels) are
shown. The right scale refers to the perturbed 2DES.

C. Implications for magnetoconductance

Recently Chklovskii, Matveev, and Shklovskii sug-
gested to generalize the Landauer two-terminal conduc-
tance formula for a wire to the case of noninteger filling
factor within the bulk as

2

G = —v(0),
h

(3.5)

where v(0) is the maximum of the local filling factor v(x).
In Fig. 9 the magnetic-field dependence of 1/v(x) is plot-
ted for various x values along the cross section of the
2 pm wide sample (for bV = 0). Incompressible strips
lead to plateaus in this plot. The width of these plateaus

acteristic Battening of the potential in the compressible
strips, survives, as does the region of constant filling fac-
tor. Apparently the perfect screening is the consequence
of a pronounced redistribution of the electron density in
the compressible area as response to the additional po-
tential fiuctuation. Note that the unequality bV ) k~T
holds. With increasing amplitude of the perturbing po-
tential the density modulation will become larger until
the local filling factor approaches somewhere in the com-
pressible region an even-integer value and the perfect
screening breaks down. A large-amplitude perturbation
with smoothly varying potential will behave similar to
the confinement potential at the edge of the 2DES and
introduce new compressible and incompressible regions.
If, in a real sample, such a perturbation is localized and
located far &om the edge, the surrounding strips will be
closed and act as bound states.
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within our self-consistent approach. It turns out to be
very small (of the order of l%%uo) and cannot lead to any sig-
nificant consequences like a realistic plateau width of the
quantized Hall resistance. This very small variation of
n, as a function of B is in total agreement with results of
previous self-consistent calculations for heterostructures
with a homogeneous 2DES,2 where no confinement in
lateral directions was included and acceptor states in the
GaAs substrate were treated as a reservoir. The weak
B dependence of n, leads to the tiny steps seen in the
dotted curve of Fig. 9, which refers to the mean filling
factor v. Since these steps are closely correlated with the
narrow plataus seen in 1/v(0), the latter, and according
to Eq. (3.5) also the plateaus of the conductance, would
essentially shrink to zero if n, instead of Vs would be
kept constant during the B sweep.

FIG. 9. Magnetic field dependence of the inverse local fill-

ing factor at difFerent equidistant positions close to the sample
edge (~z~ =0.36—0.61 pm). In addition, the inverse of the fill-

ing factor taken at the middle of the sample (z = 0 pm) is
shown (thick line). The dotted line corresponds to the aver-
aged filling factor defined in (3.6). Parameters are the same
as in Fig. 8.

decreases as z moves from the edge towards the center
of the wire (x = 0), where the plateaus are narrowest.
As is seen from Fig. 9, Eq. (3.5) leads to extremely nar-
row quantum Hall plateaus for our wires, similar to the
narrow plateaus due to edge states obtained in the single-
electron picture. Thus, in order to understand, on the
basis of this suggestion, the pronounced quantum Hall
plateaus seen in transport experiments on quantum point
contacts (see, e.g. , Refs. 22 and 3) and Hall bars, one
must, in addition, invoke pinning of the Fermi energy by
some kind of localized states. Without any additional as-
sumptions, Eq. (3.5) cannot explain the experimentally
observed width of quantum Hall plateaus and the situa-
tion is just as in the single-electron picture, which does
not take into account any screening effects. The plateau
width read off from Fig. 9 is even larger than one would
expect for a sample with constant mean electron density
in the wire. To elucidate this point, the dotted line shows
the inverse of the mean filling factor v = 2xlz n, defined
with the mean electron density

(3.6)

For constant n, the dotted line would have to be straight.
In our B sweep, however, we Gx the gate voltage and not
the density, just as in the experiments. As a consequence,
the mean electron density in the wire, but also the width
of the Fang-Howard function in z direction and the cor-
responding electrical-subband energy Eo of Eq. (3.3) be-
come B dependent. In principle, and for oversimplified
not self-consistent models, such a B dependence of the
density may lead to broad quantum Hall plateaus ("reser-
voir model"; see, e.g. , Zawadski and Kubisa2s). We have
calculated the variation of the mean 2D electron density

IV. CONCLUSIONS

Using the Thomas-Fermi approximation for the elec-
tron density distribution in electrochemical equilibrium,
we have investigated the screening of slowly varying elec-
trostatic fields by a two-dimensional electron system in a
perpendicular magnetic field of arbitrary strength and
at arbitrary temperature. We considered two differ-
ent models for GaAs-(A1Ga) As heterostructures contain-
ing a 2DES with translation symmetry in one direction.
For the first model, which assumes the metal gate and
all charges to be in the plane of the 2DES, Poisson's
equation can be solved analytically, so that the require-
ment of electrochemical equilibrium reduces to a one-
dimensional nonlinear integral equation. For the second
model, with a three-dimensional arrangement of gates
and space charges, this is not possible and the full, ef-
fectively two-dimensional self-consistency problem must
be solved numerically. Both models yield qualitatively
the same results and lead to the same picture of screen-
ing. In a strong magnetic Geld and at low temperatures
(k~T/fur, & 0.01), the 2DES can be divided into alter-
nating incompressible and compressible regions. In the
compressible regions the screening is "perfect" and the
electrostatic potential is constant, while in the incom-
pressible regions the electron density is constant, so that
they do not contribute to screening. The results for the
electron density profile n, (x), and in particular for po-
sition and width of the incompressible regions, obtained
from the Grst model is in excellent quantitative agree-
ment with the corresponding results of Ref. 15, provided
that the depletion length d is much larger than the screen-
ing length ao for B = 0 or that the distance from the edge
is large enough x » ao. The results for the second model
demonstrate that, for realistic sample geometries, consid-
erable deviation (on the scale of d) of these positions and
widths from the predictions of Ref. 15 or its wire version,
Ref. 16, must be expected if d is not much larger than
the distance L of relevant gate or space charges from the
plane of the 2DES.

At elevated temperatures the concept of incompress-
ible and compressible regions breaks down and the ap-
proach of Ref. 15 becomes meaningless, whereas our ap-



7766 KARLHEINZ LIER AND ROLF R. GERHARDTS 50

proach is still valid. We have shown that this happens at
a temperature where k~T exceeds a few percent of the
cyclotron energy ~ . Below this temperature, the simple
analytical theory of Ref. 15, despite its somewhat over-
simplifying assumptions, yields excellent results if the
conditions d )) ao and d &) L are fulfilled. This is an
important result of our work, which does not assume the
existence of the compressible and incompressible regions
as CSG do, but calculates them from a more general,
self-consistent approach.

The condition d &) L may, however, not hold for a
given sample and then the quantitative predictions of
Ref. 15 will also not apply. We have presented such an
example for a gated structure, where a large gate voltage
applied in the vertical direction produces only a relatively
small lateral potential variation Vo in the plane of the
2DES, so that the relevant ratio Ey'/Vp is not very small.
On the other hand, the predictions of Ref. 15 may apply
well to deeply etched samples (even without top gate)
where an etched surface produces the lateral confinement
of the 2DES and the Fermi level is pinned by surface
states in the middle of the fundamental band gap, which
leads to a large lateral band bending. This may be well
described by a large potential variation in the plane of
the 2DES, Vo 0.5 eV )) Eg 10 meV, and therefore
a large depletion length d 100 nm » ap 5 nm.

In conclusion, our calculations essentially confirm the
general picture of screening in the quantum Hall regime
propagated by Chklovskii, Shklovskii, and Glazman, and,
in particular, they confirm the formation of alternat-
ing incompressible and compressible strips in regions
of varying electron density, e.g. , in edge regions. The
interpretation of some recent experiments on Hall bar
samples ' seems to be possible only within this picture
and strong evidence for the existence of incompressible

strips has been found. Also tunnel-spectroscopy exper-
iments on quantum dot systems and related Hartree
calculations ' support this picture of screening. There-
fore, it seems necessary to comment on a recent Hartree
calculation by Brey, Palacios, and Tejedor, who find
pinning of the Landau bands at the Fermi energy, but
no noticeable incompressible regions of constant electron
density. The reason for this finding is the absence of long-
ranged smoothly varying electrostatic potentials in their
model, which defines a quantum wire by infinite-step po-
tentials at the edges and a trapezoidal distribution of
positive background charges being locally neutralized by
the 2DES. In this model the minimization of electrostatic
energy forces the electron density to follow closely that of
the background charges, resulting in narrow incompress-
ible strips (a few magnetic lengths wide) between broad
compressible strips in which adjacent Landau bands are
pinned at the Fermi level. This situation is very differ-
ent from the one considered in our model, where uncom-
pensated (depletion) charges produce a smoothly vary-
ing electrostatic potential which bends the Landau bands
and leads to broad incompressible strips. Thus the ex-
periments probing the existence of incompressible strips7
indicate that a (deeply etched) surface serving as a lat-
eral confinement of a 2DES acconiinodates charged sur-
face states, leading to strong band bending and a large
depletion length, and that it cannot be well described by
a simple step potential.
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