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Fine structure of electron-transmission spectra across A1As single barriers
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AVe propose a general approach to the problem of intervalley mixing of electron states in het-
erostructures in the efFective-mass method. The method has been used to calculate electron-
transmission spectra across GaAs(AlAs)MGaAs single-barrier structures taking into account the
I'-X mixing at interfaces. The spectra exhibit sharp peaks and dips connected with the electron res-
onant transmission through quasibound X-like states in the AlAs layer. The peak and dip sequence
depends on the parity of M. The developed approach allows us to present the energy dependence of
trans+i~sion probability in an analytical form. The low-temperature dc current-voltage character-
istics of the single-barrier structure has been derived making allowance for the camel-back X-band
structure in bulk AlAs and GaAs.

I. INTRODUCTION

At present, the GaAs/A1As multilayer structure is a
convenient model object to study intervalley mixings
of electron states due to the lack of translational sym-
metry at heterointerfaces. ~ There have been numerous
calculations of electron tunneling probabilities across
GaAs/A1As single- or double-barrier heterostructures
taking into account the I'-X mixing effects. These range
&om computations based on the tight-binding modelsz s

and those that use the empirical-pseudopotential tunnel-
ing formalism ' to calculations within the generalized
efFective-mass approximation. ~z Theoretical transmis-
sion spectra show sharp peaks due to electron resonant
tunneling via metastable X states. Such states exist be-
cause, for X-point electrons, the A1As layer should be
considered as a quantum well. An interesting feature of
the spectra is that the resonant peaks can be preceded
or followed by sharp dips (transmission zeros). How-
ever, only recently it has been realized '~ that the
transmission spectra and, in particular, the relative po-
sition between a peak and its satellite dip depend on
whether the A1As layer contains an even or odd number
of monomolecular layers. In Ref. 12 we used a general-
ized formulation of the effective-mass method proposed
by Ando and Akeras (see also Ref. 8) and corrected by
Aleiner and Ivchenko to take into account diferent
translational properties of I'- and X-point Bloch func-
tions. In the method, the mixing of I'- and X-like states
is described by extra terms in the boundary conditions of
electron envelope functions, and the parity dependence
arises because the phase of the I'-X mixing coefficient
changes by m if the interface is shifted along the princi-
pal axis by one monolayer. This sign alternation property
was also pointed out by Ando recently.

In this paper, we present a theoretical study of reso-
nant tunneling through a GaAs(A1As)MGaAs structure

II. TRANSMISSION THROUGH
GaAs(A1As) M GaAs STRUCTURE

We start with a convenient form to represent electron
reHectivity and transmissivity of a symmetric multilayer
heterostructure. Let the structure contain a chain of lay-
ers in the region between —zo and zo (see Fig. 1) sur-
rounded by semi-in6nite, uniform and identical layers.
In Fig. 1 we introduce the amplitudes of incoming and
outcoming waves on the left and right sides. For the tun-
neling problem one can put A;'= 1, A"; = 0, in which
case A",„,= T and A,'„, = 8 are the amplitudes of trans-
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FIG. 1. Amplitudes of the incoming and outcoming elec-
tron waves.

where attentions are focused on the analytical proper-
ties of the electron transmission spectra (Sec. II), the
transmission probability calculations in the perturbation
theory (or sequential) approach (Sec. III) and the ana-
lytical description of the current vs voltage dependence
taking into account a self-consistent electrostatic poten-
tial induced by the buildup of X electrons in the AlAs
layer (Sec. IV).
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mission and reHection waves.
The structure is assumed. to be invariant under mirror

reHection in the plane z = 0. This allows one to split
the above problem into two auxiliary problems and to
seek separately solutions of opposite parities with A,'.„=
A'„, = —A."„t—:r (odd). It is evident that T, 8, and
ry are interconnected by

Here z;y is the interface coordinate,

mp 0 mp 0
'I7z = ao —Vx = ao

m; Oz mit Oz

ap is the lattice constant, mp is the free electron mass,
i = A, B. The dimensionless mixing parameter can be
written in the form of

(2.1) t(z f) ='tax exp(2vriz;f /ap), (2.6)

r = e'4'+ r = e'&-.+ (2.2)

The main advantage of this representation is as follows:
while calculating r+ or r, one should take into con-
sideration only a one-half of all linearly independent so-
lutions inside the interval (

—zp, zp). In particular, this
means that r+ a,nd r, as analytical functions of the ini-
tial electron energy, have poles at complex self-energies,
respectively, for even and odd quasistationary states of
quantum-con6ned electrons. Moreover, if there exist no
other propagating waves outside the interval (—zp, zp)
one can show by using the electron Hux conservation re-
quirement that ir+i = ir i

= 1, and Rom whence r~ can
be treated as phase factors

where tp~ is a real coeKcient independent of the inter-
face position. In addition, the envelopes m, v, u and the
derivative Bu/Bz are assumed to be continuous across
heteroboundaries. The general analysis of intervalley
mixing in the framework of the effective-mass method
is presented in the Appendix.

It should be mentioned that at present there remains
some doubt even in the relative ordering of the Xq and
Xs bands in the bulk A1As material (see, e.g. , Refs. 9
and 15). However, the proposed generalized effective-
mass method can be readily applied for band structures
with A~ g b,B. In the following while discussing the
results obtained for b,z = AB we will briefiy mention
how they are modified if b,~ and b,B differ in sign.

Note that Eqs. (2.1) and (2.2) are in agreement with the
identity Re(R/T) = 0 obtained for symmetrical systems
(see Ref. 16).

Now we apply representation (2.1) to a double-
interface structure GaAs/A1As/GaAs with M monolay-
ers of AlAs inside. Following Fu et al. 2 we consider the
three-band model taking into account mixing of I'i states
with the two close-lying bands Xi and Xs. The electron
wave function is written as

where il i), iXs), iXi) are the corresponding Bloch func-
tions. The envelope functions m, v, u are calculated in the
effective-mass approximation. The effective Hamiltonian
for I'-point electrons is determined by the band offset Vpr

and effective masses m~, mB with the indices A and 8
corresponding to the GaAs and A1As layers, respectively.
The Hamiltonian of X point electrons is a 2 x 2 matrix
operating on the two-component vector (v, u)

A. k ~ p interaction between Xi and X~ bands
neglected

First, we analyze the case R = 0 where only I'i and Xs
are mixed. An analytical expression for the transmission
coefficient T in this simplified case was obtained by Fu
et al. i2 using the transfer matrix approach.

Inside the AlAs layer, the Xs electron envelope func-
tion v(z) is a linear combination of exp(kiqz) with q =
[2mx(E —EXB )/52] f, where E is the kinetic energy
of an incoming electron. Outside the A1As layer, v(z)
decays as exp( —oizi) with cr = [2mx(EX —E)/5 ] f
Here E is the electron energy referred to the conduction
band bottom in GaAs, Ex' is the position of X3 mini-
mum in bulk GaAs or AlAs, and we consider the region
E ( Ex, . Sewing the solutions inside and outside the
AIAs layer at the interfaces together we obtain the r+, r
coefficients in Eq. (2.1)

2kapZ~p
r~ ———1+

~ 2 ll(k + iC~ ~)a,Z~„—itrx (mxmr" /mp)

(2.7)
(2.4)

IIX = Ex (z) + —+,' + i + —o, + Rk, o„, .
2 2m!I 2m&a 2

X

where E~ and E~ are the energies at the Xi point
in the A and B bulk semiconductors, k, = iB/Bz, the-
pseudospi. n matrices o„and o correspond to the basis
iXs), iXi). As in Ref. 12 we neglect for simplicity the

difference of m~, m~+, A, and R in GaAs and AlAs
layers, hereafter labeled as A and B, respectively. The
I'-X mixing is included by boundary conditions

K+ ——ap(o —q tan Ps), Z = ap(o + q cot Pg),
"tanh "2, C = "coth "2, (2.8)

where k = (2m~E/h, ) f, e = [2mB(Vp —E)/5 J f,
p = sgn(t/t'), t and t' are the values of t(z;f) on the left
and right interfaces,

V'r to~ = V'ptUB + t(z;f )vB,
7xvA = VXvB + t (z;f)wB. (2.5)

Ps = qb/2, b = Map/2 is the A1As layer thickness. It
is worth to note that the equations of Z~(E) = 0 give
quantum-con6nement energies E„ofX3 electrons local-
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1+~io„b
v I

+ ~f ~ 4(@A (2 9)

It follows &om Eqs. (2.7) and (2.9) that allowance for
the I'-X mixing leads to the following complex energies
of quasistationary X3-electron states

ized inside the AIAs layer if the I'-X mixing is neglected.
Here the sign + corresponds to odd and even values of
the level number v = 1, 2, . . . . According to Eq. (2.6),
when the number M of AlAs monolayers is even, one has
t = t' and Z~z ——Z~. Thus, for even M the poles of r+
and r are close to the energies E2~ q and E2~, respec-
tively. For energies in the vicinity of E„we can expand
Z+ if v is odd or Z if v is even in powers of E —E„as

Z~(E) = 2aoo„p„(E—E„),

A tv„(—b/2), A' 2e —~b

1 —ik„mg/m„mg
t v (b/2)

(2.i3)

where v„(z) is the envelope function. While calculating
A' we took into account the exponential decay of the I'
wave in the AIAs layer as well as its refiection on the
interface —b/2. The second term in the right-hand side
of Eq. (2.12) is obtained as a result of the interference
between contributions of (2.13) since

means that the decay is accompanied by the emission of
I'-electron waves into the GaAs layers. The amplitudes
of the I'-electron waves emitted, say, to the left and in-
duced by the interfaces —b/2 and b/2 are proportional,
respectively, to

IImxmp C+Kgp + xk~
v v @' Fx 2 Ig2 z I z) 2P2mo k +x + )~crvao

(2.io)

I'„~A+ A'( (A( + 2Re(A'A'). (2.14)

where r„=5/2E„ is nothing more than the escape life-

time of the confined X electron and E„E„is th—e energy
renormalization due to the I'-X mixing.

For odd M, the factors t and t' differ in sign and Zy~ =
Z+ which means that r~ has a pole near E„with even
or odd v, respectively.

The above interchange of parities v can be understood
by taking into account that the additional terms in the
right-hand side of Eq. (2.5) are equivalent to include the
operator (see details in Ref. 12)

B. k ~ p interaction between X~ and X~ bands
included

Now we consider the general case R g 0, where R is
introduced in the Hamiltonian (2.4). This parameter de-
scribes the k p interaction between X1 and Xs bands
that leads to the camel-back structure of the X1 conduc-
tion band in the bulk GaAs. In this practically important
case the coefBcients ry are also given by Eq. (2.7), how-
ever the expressions for the functions Zy(E) are more
complicated. They can be represented in the form

( . z)l
&r,x, = aoU ) t,'(zl) exp

~

2vri —
~
b(z —z~), (2.11)

n =+&/2 ao) Zy —— Dy,
Z+

(2.15)

into the three-band electron efFective Hamiltonian. Here
U = h~trx/2aome, z~ is the heteroboundary coordinate,
((z1) = 1 for the boundary AIAs/GaAs and ((z&) = —1
for the boundary GaAs/AlAs. One can easily verify that
for even and odd M the operator (2.11) is, respectively,
antisymmetrical and symmetrical under the mirror re-
flection in the plane n, with an origin at the center of
the AIAs layer. Therefore, depending on the parity of
M, a pair of heteroboundaries at z~ ——+b/2 mixes the
envelope functions 1v(z) and v(z) of opposite parities in
case of even M and of identical parities in case of odd
M. The symmetry considerations in terms of the whole
electron wave function (2.3) can be found in Ref. 14.

It follows &om Eq. (2.10) that the escape rate I'„=
E„"/5 &om state v = 1 is proportional to

D = aO2Det

( cl
elS1

8].gy cy

c2 —1 —1 )
~282 71 72

f282 —0 y
—02

f 292c2 ol&1 o2r2 )
(2.i6)

~——(t 192 ~2'gl)(&2 &1)slsz

+(8181c2 8282cl)(%2rl o lr2))

t'
E —Ex, ———

2 II
i

—
I
+ R & (2.17)

D+ and Z+ are obtained by interchange c1, c2 -+ s1, sz
and s1, s2 ~ —c1, —c2. Here q1 and qz are roots of the
dispersion equation

t' 4e-"'
Fg 1+—

t 1+ (m~k/m~K)
(2.12) for X electrons in bulk AIAs, while io1 and io2 satisfy

the similar equation for bulk GaAs

where we retain the term of the 6rst order in e
while higher order terms are neglected. Recall that
t'/t = exp(inM) [see Eq. (2.6)j. The dependence of I'„
upon the parity of M is explained as follows: The damp-
ing of a bound X3-electron state arises due to the F-I
~ixing at interfaces +b/2 described by Eq. (2.11). This

n'~2 IE —E" ——+ =
~

—
~

—R' '. (2.18)
2mll

y

For simplicity, we consider here the electron energy re-
Ex + +,Ex, ~h~r~ one of thes
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Rq

E —E~ —S —n» I2q(' mx
Ro.

E —E" —b, + h2o 2/2m
(2.19)

ci = cos(qib/2), si = sin(qib/2).

Equations Z E
termine the quant - nfi o

y E = 0 [or equivalentl D
uan um-con6ned states o

th b fl Xo - mixing: Z
h ihi an even envelope v z a() op

1 h b d h 13 an e owest level v = 1
i () dth

M

( )~+ )+
an e parity of the wh

1 t}li o t}1 t tll 1

e s ayer is su osed
e owest X level E

E, . F thik hA1A 1

lutions, q and, q& an q2, is positive and the ot
1 1 nd g y. All solutions

con ain both real and
'

h 1 doi an 02 in Eq. &2.16 c p
are complex conjugate: o.

notations used in E i2q. ( .16j

+
——2arg

~

cosh ——i
Kb r. sinh-

m~ 2)'
" = 2arg

~

sinh ——'( . r.b r.m cos}1—
mg 2) (2.20)

taking into account the electron tunn
1" states of A1As. S's. ince cosh x ) sinh 2:

e written down:

—~ ((t' (yr+ (0. (2.21)

When increasing b -+
~ ~ ~

oo, and
1 t' 1 of —2e o — arctan(emA/km~).

t is clear from the dis
t' = —t

e discussion in Sec. IIB tha

a 2vr increase nea thar e energy Ei. Thu

ere e transmission vanishes and t
+= +

s es an the resonant condi-

+ ir is achieved at hi her eg nergy E, so
smission zero is followed

see e spectra in Fi . 2 fo
an, i t = t, the phase P+ varies rapidly

2

Emin = Ex~ & 1+
&&o)

where Ao ——R m 2h, and the, and the maximum E+ of the
and structure in bulk A1As.

C. Energy dispersion of the phe p ases

Figure 2 shows the transmission coefficients
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'
h o a ec ures with the monola e
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near Eq and the transmission zero occurs above the en-

ergy Ez (Fig. 2, M = 8). It should be mentioned that,
for a thick (A1As)M layer, the values P+ and gF are
so close to each other that the crossing of P+ and P
does not occur between Eq and E2 and, for M even, the
peak is not followed by a zero (Fig. 2, M = 12). It can
be shown that for a type-I double-barrier structure the
transmission spectr»m contains resonant peaks but zeros
are absent in the transmission because P~ and P have
the same asymptotics far &om the energies E„.

v
(3.6)

Comparing Eq. (3.6) with Eq. (2.10) one obtains for the
AlAs-layer structure in the simpli6ed model with R = 0

2m, ll g2 k2

2a20mzsP„o„(C~2~z + kz)
' (3 7)

Equation (3.2) for the escape rate can be easily trans-
formed to

III. TRANSMISSION IN THE PERTURBATION
THEORY APPROACH

In this section, we apply the perturbation theory to
rederive the formula for the transmission coeKcient for
energies E close to E„' of a quasibound state v. Us-
ing Fermi's golden rule and the resonant scattering the-
ory one can present the transmission probability for the
structures under consideration in the form of

I&(k) I' =
OO 2

dk'b (Es —E),)
Av p Eg —E' + jM'„

(3.1)

Here we consider the incidence of an electron with
wave vector k &om the left to the right, where EI, ——

5 k /2m~, v, = hk/m~, and I'„= 5/E'„' is the escape
rate &om the quasibound state v:

(E), —E')'+ (Sl'„)2
(3.8)

In addition to the transmission channel via resonant X
states, one can include a contribution to T(k) due to non-
resonant tunneling via I' states of the A1As layer. If the
I'-I'-I' tunneling probability is small, i.e., exp( —K„b) « 1,
this contribution can be easily taken into account by rep-
resenting the transmission matrix element in Eq. (3.1) as
a sum

Note that Eqs. (3.5) and (3.6) enable one to establish
a relation between the envelope function, v„(z), at the
heteroboundary and the lifetime, r„= (21'„),of the
quasistationary state, state v.

Integrating in Eq. (3.1) over k', using Eq. (3.6) and
taking into account that IV, „I = IV„~I we arrive to the
well-known general expression for the resonant tunneling
probability through a symmetric structure

1
dk(IV-, ~I'+ IV., I')b(E~ —E-).

2h p
(3.2) V„,„V„,)

EI, —E„'+iM'„
(3.9)

The coupling constant between the bound state and &ee
state in the left lead is defined as

where

V„,i —— „z V ig„z dz, (3.3)
452e "~k2~

Vr
mg(kz + m2 ~z/mz )

' (3.10)

where g„(z) is the normalized envelope function of state
v, V is the perturbation operator,

and the total transmission probability can be rewritten
in the form of

e iI(: ( + o) + —ik„( +s )
Aa„(z) =

(1 + r )e
—'lc„($+Izp) for z ~ —zp,

IT(k)l' = "",e ""'+ "-' '. , (3»)1+ f„' E„—E~ + iver„

r„ = (1 —if„)/(1 + if„),
(3.4)

k„,r„, and f„= (m~/m~)(e„/k„) correspond to E =
E„. In a symmetric heterostructure the absolute val-
ues of V„~ and V coincide. For the single-A1As-layer
structure, zo ——b/2, @„(z) is a component of the enve-

lope function v„(z) while the perturbation V is given by
Eq. (2.11), so that in the limit of exp( e„b) « 1—we
obtain

the sign + or —corresponds to even or odd v„(z). Thus,
the energy position, E~, of the Eq-related dip is given
by

V„,~ = —aoU(1+ r„)v„(—b/2),

V„„=aeU(1 + r„')e* v„(b/2), (3.5)

where we chose the phase of t(—b/2) in Eq. (2.6) to be
zero.

E( ) E + ( 1)M &1 ~qbgl
4f 1 'I (3.12)

the peak-dip distance being much larger than hl q or

The relative positions of Eq and Ez alternate with the
increasing M in accordance with the peak-dip sequence
in the spectra of Fig. 2.

Figure 3 presents the comparison of our results (solid
curves) with ones of Ting and McGills obtained by an
empirical eight-band second-neighbor sp tight-binding
model (dotted curves). By Fig. 3 we like to emphasize
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0 (

—]
I

1

I

3 L

/,

~ W

a3 —6:
0

-i - M=10
0

i.e. , A~ & 0. In the tunneling experiments the sharp
structures are smeared out due to the contribution to
the current &om electronic states with difFerent energies
(see Sec. IV). However, the analysis of these structures
can be used for making comparison between various com-
putation methods

The perturbation theory approach can be readily ex-
tended to consider oblique iacidence or tunneling through
asymmetrical structures. For the oblique incidence, the
above results can be used as well if k„, tc„,E„are replaced
by

k„(k~) = (2m~E„s /fi —k )'~

K„(kg) = [2m~(Vo —E )/h'+ k']
E„s~ = E„+(5 k~/2m'),

(s.ls)

0

-'- M=12
w ere m~ is the effective mass describing the movement
of a confined electron in the (2:,y) plane and k~ is the
in-p ane component of the incident electron wave vector,

2 2 +I2

—3

—6
0 0.05 0.1 0.15 0.2

I

0.25 0,3

IV. TUNNELING CURRENT THROUGH A
GaAs(A1A. s)IGaAs STRUCTURE

Energy (eV)

FIG. 3. Electron transmission through the single-barrier
structures with M =9,10,12. Dotted curves show the numer-
ical results of Ting and McGill (Ref. 5). Results obtained in
the generalized efFective-mass method for the optimized set of
band parameters are presented by solid curves.

the importance about the phase of mixing term, a vi-
tal factor implicitly included in the sophisticated tight-
binding method of Ting and McGill. s The difference in
the peak positions obtained in Refs. 5 and 12 was re-
moved by fitting the band offsets and X-electron longi-

tudin 1 8'a!effective mass mx. when calculating solid curvesII .
in Fig. S we took trx = 2, V = 0.75 eV, Ex(GaAs) =
E&+, + 6/2 = 0.5 eV, Exo(AlAs) = E + b, /2 = O.S eV,

IImx ——0.65mp instead of tpx = 0.5 Vp = 1 1094 eV
p

p

Ex(GaAs) = E&+, + b, /2 = 0.5645 eV, Ex(AlAs)
Ea + ~tt2 II= 0.3424 eV, m~ ——1.68mp used in the cal-
culation of curves in Fig. 2. Thus, a good agreement
can be achieved between the transmission spectra calcu-
lated by the different methods. However, the final choice
of parameters should be made after comparison of the-
ory with relevant experimental data. In the transmission
spectra numerically calculated by Ko and Inkson for
AlAs single barriers with M = 10 and 20, the resonance-

in comparison withantiresonance structure is reversed in
Fig. 2 and Eq. (S.12). The opposite peak-dip order-
ing was also obtained by Schulz for a simplified tight-

inding model (an atomic chain with two s-like orbitals
per site and nearest-neighbor interaction onl ~j. Thybj. e re
s s o e~~. 3 and 7 can be understood in terms of the
generalized efFective-mass approximation provided that
the X3 band in bulk AlAs lies lower than the Xi band,

1 em~
dEiidEiiT(Eii, Ei)i (F' —F"), (4.1)

where I'" are the electroa distribution functions in the
left and right leads, which is described at low tempera-
tures by the step functions

F' = O(Ep —E), F' = O(Ey + eV —E),

E~ being the Fermi energy and V being the bias be-
tween the leads. We take V ) 0 so that the product
eV is negative. We consider the region of electric fields
where t~ere the level E,i~ is tuned to resonance with the left-
lead states occupied by the degenerate electron gas and
F" in Eq. (4.1) can be put zero. The current is calculated
self-consistently taking into account the electrostatic field
induced by the electrons temporarily coafined inside the
A1As layer. The whole electrostatic potential P(z) is de-
termined kom the Poisson equation

d2&P 4vr Ni
, 't'ai(z)+~i(z)l (4.2)

where Ni is the two-dimensional density of the confined
electrons. The structure is assumed to contain GaAs
spacers of efFective thicknesses L~ and L„on both sides
of the (A1As)M layer. The boundary conditions for the
potential P(z) are taken as

Q( Li —5/2) = 0, $(L„—+ 5/2) = V,

In the fo&&owollowing we express the kinetic energy E of
~ ~

an incident electron as the sum E + E h E
y2 2m an 2 2an

g, w ere
2/ ~ and E~ = 5 k&/2m~ are associated to the

electron motion perpendicular and parallel to interfaces.
Knowing the transmission coefFicient T~E Eg' one can
readily obtain the tunneling current density as
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FIG. 4. Transmission coefBcients vs applied bias through
a five monolayer AlAs barrier for an electron normally in-

cident &om the GaAs lead with the initial energy 10 meV
(solid curves). The effective spacer thicknesses are taken to
be L( = 30 A and L„= 50 A. The curves 1 and 2 present,
respectively, probabilities of transfer between the GaAs I'&

state on the left into the GaAs I'i and X states on the
right. The dashed curve is the transmissivity through the
unbiased structure as a function of the equivalent potential
V = [(8 —10 meV)/lel](I i + f) + L„)/(Li + t)/2), where E is
the incident electron energy.

the origin s = 0 being chosen at the center of the A1As

layer.
Figure 4 shows the bias dependence of transmission

probabilities via the structure with M = 5, Li = 30 A, ,
L„= 50 A for the initial kinetic electron energy E =
10 meV. In accordance with the definition of the spacer
effective thicknesses, the electric Beld is assumed to be
uniform along the whole structure L~ + 6+ L„. While
calculating the transmission we took into account both
F-F-I', I'-X-I' and F-F-X, F-X-X channels. In Fig. 4 the
solid curves 1 and 2 represent separate contributions due
to transmissions into F and X states. The set of struc-
ture parameters was the same as for Fig. 2. One can see
that the resonance and antiresonance pairs are present in
the transmissivity-bias curves and the relative position of
peaks and dips is parity dependent. The opposite peak-
dip sequence obtained in similar curves by Boykin and
Harris4 can be related to the above-mentioned problem
of the ordering of the Xi and X3 states.

It follows from Fig. 4 that for the chosen set of band
paraxneters the contributions froxn I'-X-X and I'-I'-X
channels are coxnparatively small in the region of the 6rst

IT(Eii, Ei)I'

(AFAR)
s

[Eii + Ei(1 —m~/mx) —R —ego]'+ (&Fi)

(4.4)

where

4v = J dz P(z) [vz (z) + vz (z) ]

mx+ is the in-plane efFective mass of an X electron.
For normal incidence lT(Eii, 0)l reduces to the reso-
nant contribution to the transmission probability given

by Eq. (3.11). Substituting Eq. (4.4) into Eq. (4.1) and
taking into account that for small enough escape rate of
Fi, the transmission spectrum (4.4) can be rewritten as

n hFib[Eii + Ez(1 —mg/mx) Ex —e4'o] (4.5)

we obtain

I em'j, = — dE&F&(E&)i
27' p

(4.6)

where the upper limit is

resonance and hereafter we neglect these contributions.
For comparison we also present in Fig. 4 the transmis-
sion spectrum (dashed curve) of the unbiased structure
plotted versus the equivalent bias

1
(E 0)

Lj + ~ + L

lel Lg + b/2

where E is the electron initial energy in xneV. One can
see that the dashed curve is close to curve 1, the small
difFerence in peak positions being just connected with the
Stark shift of the quasibound X levels. This allows one
to neglect in the following calculation the refiection of
electron waves from the spacer areas.

Note that in the narrow resonant regions of lE E„l &—

SF„, the nonresonant contribution in Eq. (3.11) is neg-
ligible while in off-resonant regions V& can dominate if
the A1As layer is not very thick. Thus, the resonant and
nonresonant contributions to the tunneling current can
be calculated separately. When calculating the nonres-
onant background current one should obtain the usual
exponential-like dependence on the applied bias. In the
following for simplicity we take into consideration only
the resonant contribution to lT(Eii, Ei)l .

The spectral dependence of lT(Eii, Ei)l can be ap-
proximately expressed in the form of

t' 0 if Ex+ego &0 or Ei+ePo) E~
EJ —J (Ej + ego)/(I mA/mx) if «Ex + e(to & (1 —mzt /mx)Ez

(m&/m~) [Ep —(Ei + e()t)o)] if (1 —m~/m&) Ep & Ei + ego & Ep.
(4.7)

Neglecting the variation of I i(E~) within the energy interval of the width E~ we have

1 em~-j = —» E~((t'o)Fi.
2m A2

(4.8)
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In the same approximation j, and N1 are connected by a simple relation

j = eel'g/2.

Taking into account Eq. (4.9) we obtain a final I V-characteristic

(4.9)

'0 if V(V;„or V)V
j{V)= j() ( (V —V;„)/(V' —V; ) if V;„&V & V'

(V .„—V)/(V .„—V') if V' & V & V .„.
(4.10)

Here

~ 1 em' V. E1 EF
V

El

In general the parameters of a heterostructure can be
such that V' exceeds V, in which case the current-
voltage dependence exhibits an intrinsic bistability.

e2m V. SUMMARY

2'
x ((Lr ——Ll) + ()()o

( = (L( + b/2)(L) + L„+b)

For convenience we introduced the function (t)(z) so that
eNqg(z) is an even solution of Eq. (4.2) with the bound-
ary condition P( L~ —b/2) —= 0. Due to screening in the
heavily doped leads P(z) = 0 for z & L( —b/2, —and

P(z) = V for z ) L„+b/2,

P(z) = eNqg(z) + [V —eNqg(L„+ b/2)]
z+ L(+ b/2

L~+ L„+6

(4.11)

1.0—

C)

'~ 05—

O.C ]~-Jl
Vmin Vo V'

Bias
max

PIG. 5. The shape of the resonant tunneling current
through the single-barrier structure vs the applied bias ne-

glecting (dashed) and including the self-consistent potential
in6uence (solid line).

inside the interval between L~ —b/2 a—nd L„+b/2. One
can see that (t)(z) is independent on the applied bias,

y, = f a* y( )[',(*)+ v,'(*)).

Figure 5 shows the shape of the resonant j(V) curve ne-
glecting {dashed line) and including the self-consistent
potential infiuence (solid line). We use the notation
).i(Vo = Z, E~(I —m~/m—x).

We have proposed an approach to calculate the elec-
tron refiectivity and transmissivity in a symmetrical mul-

tilayer structure. The approach is based on splitting the
problem into simpler auxiliary problems for even and odd
solutions. The analytical properties of the transmission
spectra have been analyzed in the vicinity of the struc-
ture quasistationary bound states.

We have calculated tunneling probability as a func-
tion of electron energy across a single-barrier structure
GaAs(A1As) M GaAs within the generalized effective-mass
approximation. The intervalley mixing at the interfaces
is included in the boundary conditions which depend on
the parity of monolayer number M so that the latter be-
comes an additional parameter of the problem. As a re-
sult, the 6ne structure of transmission spectra is sensitive
not only to the value of integer M but also to its parity. It
seems that the existing controversy in literatures concern-
ing the calculated peak-dip sequence is connected with
the uncertainty of model parameters and accuracy of nu-

merical calculations. Our efFective-mass-method calcu-
lations show the reversal of ordering between, say, the
lowest peak and its satellite dip with the sign inversion
of the X1-X3 splitting, A~. In this connection, we attach
much importance to a reliable determination of the bulk
AlAs band structure near the X point.

We have analyzed the parity-dependent effects in a
biased AlAs single-barrier structure. As well as in the
transmission spectra, the peak-dip sequence in transmis-
sion vs bias curves is sensitive to the parity of M and the
sign of A~.

An analytical form of current-voltage characteristics
has been obtained taking into account the self-consistent
electrostatic potential due to the space charge stored in-
side the AlAs layer. Due to contributions to the current
kom electron states with different energies, the parity
of M has no remarkable in8uence on the shape of I-V
X-resonant peaks.

We expect the parity-dependent effects to be more
pronounced for intersubband or interband absorption re-
spectively in n-type and intrinsic GaAs/A1As superlat-
tices near the type-I —type-II transition and to in8u-
ence electron quasibound-state lifetimes in GaAs/A1As
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double-barrier heterostructures. s All these effects can be
described in the generalized efFective-mass formalism de-

veloped in the previousi and present papers. The for-
malism can be further improved to include factors like the
nonparabolicity in bands. We can also extend the work
to study the I' Lm-ixing in Ga Ali Sb/GaAs system
provided that the basic physical parameters are known.
Nevertheless the fundamentals remain the same.

APPENDIX

Here we present a general approach to solve the prob-
lem of intervalley mixing in heterostructures in the
efFective-mass method. Evidently, two electron states
with the wave vectors Ki and K2 can be niixed at a
heterointerface with the normal N if there exists a three-
dimensioanl (3D) reciprocal-lattice vector b which satis-
fies the equation

(Ki —K2 —b)g = 0. (A1)

Here J means the in-plane component of a vector. The
wave vector conservation law in the N direction is re-
moved because the translational symmetry is broken in
this direction due to the presence of interface.

The K,-valley-related electron wave function can be
compactly written in the generalized efFective-mass ap-
proximation as

(A2)

where i = 1,2, IK, , /) are the Bloch functions at the K;
point and Q;& (r) are the envelopes. The index' takes into
account the possible complex band structure, in particu-
lar the band degeneracy or close-lying bands.

The boundary conditions at the A-B interface can be
expressed in the form of

(~,"l
pAyA

@A

( gAyA )
(Tzi &n P

(A3)

where Q;(r) is the column with the components Q;i(r),
@;2(r).. ., V; ' = ao(ms/m; ' )(8/t9z), z is the coordi-
nate in the N direction, ao is the lattice constant, mq

is the &ee electron mass, m,. ' is the effective mass of
electron in the K; valley along N. The interface matrix

T is dimensionless, its submatrix T;; connects the values
of Q,--, V, Q,. with Q+, V', , Q,, : T;; describe boundary

conditions for the K;-valley envelope functions while Ti2
and T21 describe the intervalley mixing effects at the het-
eroboundaries. In order to include the different transla-
tional properties of the Bloch functions K1 and K2 one
should impose the following relations:

T'*'(z2) = T'*(zi)

Tiz(zz) = exp[i(Ki —Kz —b) ~((z2
—zi)] Tg2(zi)) (A4)

721(z2) = exp[—i(Ki —K2 b)
[~

(z2 zi)] T2i(zi)

between the T matrices for the two equivalent interfaces
z1 and z2 with

Here aJ are the basic translational vectors of the BD crys-
tal lattice and n~ are integers, the symbol II means the
component of a SD vector parallel to the structure prin-
cipal axis z II N. Thus, the description of intervalley
mixing in the generalized efFective-mass approximation
assumes an explicit dependence of boundary conditions
on the valley wave vectors.

The possible ambiguity in the choice of the vector b
from Eq. (Al) makes no inffuence on the relations (A4).
Really, if the other reciprocal lattice vector b' satisfes
Eq. (Al) then (b —b') ~ ——0 and the product

3

(b —b'))((z2 —zi) = (b —b') ) n, a, i

is an integer of 2x.
Note that the above simple considerations can be read-

ily modiffed to take into account the lattice constant mis-
match and intrinsic strain in multilayer heterostructures.

Following the general procedure for the particular case
of F-X mixing in (001)-oriented AsB5 heterostructures
we have Kr = 0, Kx = (0, 0, 2x/ao), Eq. (Al) can be
satisfied with b = 0, and Eq. (A2) reduces to @1(r) =
tU(r)IF'i) @x( ) = "( )IXs) + u(r)IXi). For the zinc-
blende structure the basic vectors can be chosen in the
form of ai ——(ao/2)(1, 1,0), a2 ——(ao/2)(0, 1, 1), and
as ——(ao/2)(1, 0, 1). Therefore, zz —zs ——(nz + ns)ao/2,
(Kr —Kx —b)

~~
(z2 —zi) = (nz + ns)z', and the mixing

coefBcients in submatrices Tp~, T~z change their signs
if the interface z2 is shifted by one monomolecular layer
along the principal axis z II [001].
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