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We propose a general approach to the problem of intervalley mixing of electron states in het-
erostructures in the effective-mass method. The method has been used to calculate electron-
transmission spectra across GaAs(AlAs)yGaAs single-barrier structures taking into account the
I'-X mixing at interfaces. The spectra exhibit sharp peaks and dips connected with the electron res-
onant transmission through quasibound X-like states in the AlAs layer. The peak and dip sequence
depends on the parity of M. The developed approach allows us to present the energy dependence of
transmission probability in an analytical form. The low-temperature dc current-voltage character-
istics of the single-barrier structure has been derived making allowance for the camel-back X-band

structure in bulk AlAs and GaAs.

I. INTRODUCTION

At present, the GaAs/AlAs multilayer structure is a
convenient model object to study intervalley mixings
of electron states due to the lack of translational sym-
metry at heterointerfaces.! There have been numerous
calculations of electron tunneling probabilities across
GaAs/AlAs single- or double-barrier heterostructures
taking into account the I'-X mixing effects. These range
from computations based on the tight-binding models?~®
and those that use the enipirical-pseudopotential tunnel-
ing formalism®7 to calculations within the generalized
effective-mass approximation.871? Theoretical transmis-
sion spectra show sharp peaks due to electron resonant
tunneling via metastable X states. Such states exist be-
cause, for X-point electrons, the AlAs layer should be
considered as a quantum well. An interesting feature of
the spectra is that the resonant peaks can be preceded
or followed by sharp dips (transmission zeros). How-
ever, only recently it has been realized®!%!3 that the
transmission spectra and, in particular, the relative po-
sition between a peak and its satellite dip depend on
whether the AlAs layer contains an even or odd number
of monomolecular layers. In Ref. 12 we used a general-
ized formulation of the effective-mass method proposed
by Ando and Akera® (see also Ref. 8) and corrected by
Aleiner and Ivchenko'4 to take into account different
translational properties of I'- and X-point Bloch func-
tions. In the method, the mixing of I'- and X-like states
is described by extra terms in the boundary conditions of
electron envelope functions, and the parity dependence
arises because the phase of the I'-X mixing coefficient
changes by 7 if the interface is shifted along the princi-
pal axis by one monolayer. This sign alternation property
was also pointed out by Ando recently.!®

In this paper, we present a theoretical study of reso-
nant tunneling through a GaAs(AlAs)j)GaAs structure
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where attentions are focused on the analytical proper-
ties of the electron transmission spectra (Sec. II), the
transmission probability calculations in the perturbation
theory (or sequential) approach (Sec. III) and the ana-
lytical description of the current vs voltage dependence
taking into account a self-consistent electrostatic poten-
tial induced by the buildup of X electrons in the AlAs
layer (Sec. IV).

II. TRANSMISSION THROUGH
GaAs(AlAs)yGaAs STRUCTURE

We start with a convenient form to represent electron
reflectivity and transmissivity of a symmetric multilayer
heterostructure. Let the structure contain a chain of lay-
ers in the region between —zp and 2o (see Fig. 1) sur-
rounded by semi-infinite, uniform and identical layers.
In Fig. 1 we introduce the amplitudes of incoming and
outcoming waves on the left and right sides. For the tun-
neling problem one can put A}, = 1, A7, = 0, in which
case AT, = T and A! , = R are the amplitudes of trans-
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FIG. 1. Amplitudes of the incoming and outcoming elec-
tron waves.
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mission and reflection waves.

The structure is assumed to be invariant under mirror
reflection in the plane z = 0. This allows one to split
the above problem into two auxiliary problems and to
seek separately solutions of opposite parities with A} =
AT =1, AL, = AT, =71, (even) and Al = —AT =1
Al = —AT . =7_ (odd). It is evident that T, R, and
r4 are interconnected by

T=(ry—r_)/2, R=(ry +71_)/2. (2.1)
The main advantage of this representation is as follows:
while calculating 4 or r_, one should take into con-
sideration only a one-half of all linearly independent so-
lutions inside the interval (—zo,2p). In particular, this
means that 7, and r_, as analytical functions of the ini-
tial electron energy, have poles at complex self-energies,
respectively, for even and odd quasistationary states of
quantum-confined electrons. Moreover, if there exist no
other propagating waves outside the interval (—zo,zo)
one can show by using the electron flux conservation re-
quirement that |r4| = |r_| = 1, and from whence 74 can
be treated as phase factors

ry = et r_ = e, (2.2)
Note that Egs. (2.1) and (2.2) are in agreement with the
identity Re(R/T) = 0 obtained for symmetrical systems
(see Ref. 16).

Now we apply representation (2.1) to a double-
interface structure GaAs/AlAs/GaAs with M monolay-
ers of AlAs inside. Following Fu et al.}? we consider the
three-band model taking into account mixing of I'; states
with the two close-lying bands X; and X3. The electron
wave function is written as

Ye(r) = w(r)|Ty) +v(r)|Xs) +u(r)|Xq),  (2.3)
where |I'y),|X3),|X1) are the corresponding Bloch func-
tions. The envelope functions w, v, u are calculated in the
effective-mass approximation. The effective Hamiltonian
for I-point electrons is determined by the band offset VI
and effective masses m 4, mp with the indices A and B
corresponding to the GaAs and AlAs layers, respectively.
The Hamiltonian of X point electrons is a 2 x 2 matrix
operating on the two-component vector (v, u)

A R2E?
Hx = Ex"(s) + 5 + ¢
2my

h2k2
L+ 25, + Rk.oy,

+ P
2mJX 2

(2.4)

where E% and E} are the energies at the X; point
in the A and B bulk semiconductors, k, = —i8/8z, the
pseudospin matrices 6, and &, correspond to the basis
|X3),|X1). As in Ref. 12 we neglect for simplicity the
difference of mg(, mﬁ}, A, and R in GaAs and AlAs
layers, hereafter labeled as A and B, respectively. The
I’-X mixing is included by boundary conditions

V?'wA = V?’ws + t(z,-f)vg,

Vxva =Vxvg + t‘(z,-f)'wB. (2.5)
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Here z;¢ is the interface coordinate,

Viza™ L vy =gl 2
m; 0z ml 8z
X

ap is the lattice constant, mg is the free electron mass,
i = A, B. The dimensionless mixing parameter can be
written in the form of!2!4

t(zif) = trx exp(2miz;f/ao), (2.6)
where trx is a real coefficient independent of the inter-
face position. In addition, the envelopes w,v,u and the
derivative u/dz are assumed to be continuous across
heteroboundaries. The general analysis of intervalley
mixing in the framework of the effective-mass method
is presented in the Appendix.

It should be mentioned that at present there remains
some doubt even in the relative ordering of the X; and
X3 bands in the bulk AlAs material (see, e.g., Refs. 9
and 15). However, the proposed generalized effective-
mass method can be readily applied for band structures
with Ay # Ap. In the following while discussing the
results obtained for Ay = Ap we will briefly mention
how they are modified if A4 and Ap differ in sign.

A. k- p interaction between X; and X3 bands
neglected

First, we analyze the case R = 0 where only I'; and X3
are mixed. An analytical expression for the transmission
coefficient T in this simplified case was obtained by Fu
et al.'? using the transfer matrix approach.

Inside the AlAs layer, the X3 electron envelope func-
tion v(2) is a linear combination of exp(%igz) with ¢ =
[2ml (E — EZ)/R?]'/?, where E is the kinetic energy
of an incoming electron. Outside the AlAs layer, v(z)
decays as exp(—o|z|) with o0 = [ZmH{(Ejé3 — E)/R?)Y/2.
Here E is the electron energy referred to the conduction
band bottom in GaAs, E;;B is the position of X3 mini-
mum in bulk GaAs or AlAs, and we consider the region
E < Ej‘ks. Sewing the solutions inside and outside the
AlAs layer at the interfaces together we obtain the r,r_
coefficients in Eq. (2.1)

2]60.02;;},
(k + iCxK)a0 Ty — ithy (mymit /m3)
(2.7)
where k = (2mA4E/R)V2, k = [2mp(VE — E)/R}V?,

p =sgn(t/t'), t and t’ are the values of t(z;f) on the left
and right interfaces,

ry =—1+

¥+ =ao(0 — qtandy), _ = ao(o + gcot ¢p),

C; = 24 tanh %, C_ = 24 coth %, (2.8)

¢p = gb/2, b = Mao/2 is the AlAs layer thickness. It
is worth to note that the equations of ¥4 (F) = 0 give
quantum-confinement energies F, of X3 electrons local-
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ized inside the AlAs layer if the I'-X mixing is neglected.
Here the sign + corresponds to odd and even values of
the level number » = 1,2,... . According to Eq. (2.6),
when the number M of AlAs monolayers is even, one has

=t' and ¥4, = Y. Thus, for even M the poles of 7
and r_ are close to the energies Fy;_; and Ej, respec-
tively. For energies in the vicinity of E, we can expand
Y, if v is odd or ¥ _ if v is even in powers of E — E,, as

Y+ (E) = 2a00,P,(E - E,),

1+io0,b

Po=—(1+ %) qad 25 - (2.9)
It follows from Egs. (2.7) and (2.9) that allowance for
the I'-X mixing leads to the following complex energies
of quasistationary X3-electron states

I ;
- _ -, . —n _ _ 2 mxmr Cj:nu +Zku
E,=E, ~iE, = E, — t{x 2mZ (C3k2 + k2)o,a2P,’
(2.10)

where 7, = A/ 2E is nothing more than the escape life-
time of the confined X electron and E —E,, is the energy
renormalization due to the I'-X mixing.

For odd M, the factors ¢t and ¢’ differ in sign and X4, =
Y+ which means that r+ has a pole near E, with even
or odd v, respectively.

The above interchange of parities v can be understood
by taking into account that the additional terms in the
right-hand side of Eq. (2.5) are equivalent to include the
operator (see details in Ref. 12)

Vr,x, = aoU Z ((z1) exp (21riZ—;) 0(z— =), (2.11)

zj=%b/2

into the three-band electron effective Hamiltonian. Here
U = R%trx/2a2my, z is the heteroboundary coordinate,
{(z1) = 1 for the boundary AlAs/GaAs and ((z) = —1
for the boundary GaAs/AlAs. One can easily verify that
for even and odd M the operator (2.11) is, respectively,
antisymmetrical and symmetrical under the mirror re-
flection in the plane o, with an origin at the center of
the AlAs layer. Therefore, depending on the parity of
M, a pair of heteroboundaries at z; = +b/2 mixes the
envelope functions w(z) and v(z) of opposite parities in
case of even M and of identical parities in case of odd
M. The symmetry considerations in terms of the whole
electron wave function (2.3) can be found in Ref. 14.

It follows from Eq. (2.10) that the escape rate I, =
E /h from state v = 1 is proportional to

! 4e—nb

t
ri~1+-—
! + t 1+ (mak/mpr)?’

(2.12)

where we retain the term of the first order in e™*®
while higher order terms are neglected. Recall that
t'/t = exp(imM) [see Eq. (2.6)]. The dependence of T,
upon the parity of M is explained as follows: The damp-
ing of a bound Xj-electron state arises due to the I'-X
mixing at interfaces +b/2 described by Eq. (2.11). This
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means that the decay is accompanied by the emission of
I'-electron waves into the GaAs layers. The amplitudes
of the I'-electron waves emitted, say, to the left and in-
duced by the interfaces —b/2 and b/2 are proportional,
respectively, to

2e—nb

1 —ik,mp/K,m4

~ t’U,_,( b/2), t"l),,(b/2),

(2.13)

where v, (z) is the envelope function. While calculating
A’ we took into account the exponential decay of the I'
wave in the AlAs layer as well as its reflection on the
interface —b/2. The second term in the right-hand side
of Eq. (2.12) is obtained as a result of the interference
between contributions of (2.13) since

IL~|A+A )P~

|A|% 4 2Re(A*A'). (2.14)

B. k. p interaction between X; and X3 bands
included

Now we consider the general case R # 0, where R is
introduced in the Hamiltonian (2.4). This parameter de-
scribes the k-p interaction between X; and X3 bands
that leads to the camel-back structure of the X; conduc-
tion band in the bulk GaAs. In this practically important
case the coefficients 74 are also given by Eq. (2.7), how-
ever the expressions for the functions X4 (F) are more
complicated. They can be represented in the form

2.=2"%p. (2.15)
Zy
(51 C2 -1 -1
D_=aDet | 0181 G2 —mio—m ) 44
q181 q282 —01 —O02
01q1c1 O2q2c2 0171 0372

Z_ = (91‘12 - 92‘11)(7'2 - T1)3152
+(013102 - 023261)(02T1 - 0’1'7'2),

D, and Z, are obtained by interchange c;,c; — 81, 82
and sy,s; — —cy, —cy. Here ¢ and ¢2 are roots of the

dispersion equation
A K%q? : A
E-E -2 -2 ) = (—) + R (2.17)
2 2m’y 2

for X electrons in bulk AlAs, while io; and io, satisfy
the similar equation for bulk GaAs

2
2 .2
(E —- B4 - % + ﬁ%) = (%) — R%%. (2.18)
2mx

For simplicity, we consider here the electron energy re-
gion E)lg1 < E < Egl + A,Ej‘}l, where one of the so-
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lutions, ¢? and ¢2, is positive and the other is negative,
say qi is purely real and ¢, is imaginary. All solutions
o; of Eq. (2.18) contain both real and imaginary parts.
The solutions o; and o2 in Eq. (2.16) contain positive
real parts and are complex conjugate: o = o7. Other
notations used in Eq. (2.16) are

6= Rq
E-ES —-A- ﬁ2q2/2mg‘- ,
R
T i (2.19)

" E-Ef - A+R20?2ml ]
¢ = cos(qib/2), s; = sin(gqib/2).

Equations 4 (E) = 0 [or equivalently,Dy(E) = 0] de-
termine the quantum-confined states of X electrons in
the absence of I'X mixing: ¥, = 0 corresponds to
the states with an even envelope v(z) and odd envelope
u(z) whereas ¥_ = 0 corresponds to states with v(z)
odd and u(z) even. Note that if the X; band lies be-
low the X3 band the lowest level v = 1 is associated
with even u(z) and the parity of the whole wave func-
tion u(z)|X1) +v(z)|X3) coincides with that of the Bloch
function | X;). The AlAs layer is supposed to be compar-
atively thin so that the lowest X level E,—; lies above
E J%' For thick enough AlAs layers the level E; would lie

between the minimum
A2
1 R
" ( Ao )

where Ay = Rzmgl{/Zﬁz, and the maximum E% of the
camel-back band structure in bulk AlAs.

Emin = E)B;'I - Ap

I

C. Energy dispersion of the phases ¢

Figure 2 shows the transmission coefficients for single-
barrier heterostructures with the monolayer number M
ranging from 8 to 12. The curves are calculated in the
effective-mass approximation!?!3 using an improved ver-
sion of the computer program for trx = 0.5. The band
parameters are the same as in the Ref. 12. In Fig. 2,
the incident electron energies lie below the conduction X
edge in GaAs so that the transmission probability is con-
tributed by I-I'-T", I-X-I" but not by I'~X-X processes.
In order to understand the fine structure in the trans-
mission spectra, we analyze the variation of the phases
¢+ with increasing the energy of an incoming electron.
They are smooth functions of E except in the narrow re-
gions of the width ~ E near the self energies E, where
either ¢, or ¢_ rapidly increases by the value up to 2.
The other phase can be considered to be constant within
the region so that there exists an energy value satisfying
the resonance condition ¢+ = ¢_ + 7(2n + 1) in which
case, according to Egs. (2.1) and (2.2), the transmission
|T|?2 =1 (n is an integer).

Far from the resonant states evX we can neglect the
T'-X mixing and approximate ¢4 by

¢£ = 2arg (cosh ﬁl_) _ ¥4 Ginh %b) ,

2 kmp
6T = 2arg (sinh "2 — i"M4 cogh ©0 (2.20
== -— — 11— cosn — .
- & 2~ 'kmp 2 ) )

taking into account the electron tunneling only via the
I’ states of AlAs. Since coshz > sinhz, the following
inequalities can be written down:

- < ¢t <ol <o, (2.21)
When increasing b — oo, qSI; and ¢T tend to the same
limiting value of —2arctan(km4/kmp).

It is clear from the discussion in Sec. IIB that if
t' = —t, r_ has a pole at E; and the phase ¢_ exhibits
a 27 increase near the energy F;. Thus, when increas-
ing E the phase ¢_ first reaches the value of ¢, =~ ¢_§
where the transmission vanishes and the resonant condi-
tion ¢_ = ¢4 + 7 is achieved at higher energy E{, so
that the transmission zero is followed by the transmis-
sion peak (see the spectra in Fig. 2 for M = 9,11). On
the other hand, if ¢ = t, the phase ¢, varies rapidly

10)
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FIG. 2. Electron tunneling transmission coefficients vs inci-
dent energy for the GaAs(AlAs)y GaAs heterostructures with
M =8-12.
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near E; and the transmission zero occurs above the en-
ergy E; (Fig. 2, M = 8). It should be mentioned that,
for a thick (AlAs)ps layer, the values ¢£ and ¢' are
so close to each other that the crossing of ¢, and ¢_
does not occur between E; and E and, for M even, the
peak is not followed by a zero (Fig. 2, M = 12). It can
be shown that for a type-I double-barrier structure the
transmission spectrum contains resonant peaks but zeros
are absent in the transmission because ¢, and ¢_ have
the same asymptotics far from the energies E,,.

III. TRANSMISSION IN THE PERTURBATION
THEORY APPROACH

In this section, we apply the perturbation theory to
rederive the formula for the transmission coefficient for
energies E close to E. of a quasibound state v. Us-
ing Fermi’s golden rule and the resonant scattering the-
ory one can present the transmission probability for the
structures under consideration in the form of

2
‘/V‘,VVV,I

Ey — E! +ihT,
(3.1)

IT(R)2 = = / ~ dk'§(By — By)

hv, Jo

Here we consider the incidence of an electron with
wave vector k from the left to the right, where E; =
h%k?/2my,v, = hk/ma, and T, = B/E! is the escape
rate from the quasibound state v:
1 o ]
r,=—

- dk(|Voal? + V2o )3(Br — B,).

(3.2)

The coupling constant between the bound state and free
state in the left lead is defined as

V1= / Vo (2)V ik, (2)dz, (3.3)

where 9, (2) is the normalized envelope function of state
v, V is the perturbation operator,

Yun, (2) = etkv(2420) 4 7 e=thu(2t20) for z < —z,
v (147, )eirv(z+20) for z > —2z,
(3.4)

Ty = (1 - qu)/(l + i.fv)a

k,,k,, and f, = (ma/mp)(k./k,) correspond to E =
E,. In a symmetric heterostructure the absolute val-
ues of V,,; and V;, coincide. For the single-AlAs-layer
structure, 2o = b/2, 9, (2) is a component of the enve-
lope function v, (z) while the perturbation V is given by
Eq. (2.11), so that in the limit of exp(—x,b) < 1 we
obtain

Vv,l = *GOU(]- + T,,)UV(—b/2),

Vew =aoU(1 + r;)ei"Mv,, (b/2), (3.5)

where we chose the phase of t(—b/2) in Eq. (2.6) to be
zero.

Equation (3.2) for the escape rate can be easily trans-
formed to

Vu,l 2
F,, = |_h',21;—| . (3.6)

Comparing Eq. (3.6) with Eq. (2.10) one obtains for the
AlAs-layer structure in the simplified model with R =0

ﬁzm’)l(t%x k3 )
2a2miP, 0,(C3kK2 + k2)

Vel = (3.7)

Note that Egs. (3.5) and (3.6) enable one to establish
a relation between the envelope function, v,(z), at the
heteroboundary and the lifetime, 7, = (2I',)~1, of the
quasistationary state, state v.

Integrating in Eq. (3.1) over k’, using Eq. (3.6) and
taking into account that |V,., |2 = |V, ;| we arrive to the
well-known general expression for the resonant tunneling
probability through a symmetric structure

()‘zl‘.,)2
(BEx — EL)? + (A,)2

T (k)I* = (3.8)

In addition to the transmission channel via resonant X
states, one can include a contribution to T'(k) due to non-
resonant tunneling via I' states of the AlAs layer. If the
I-I'-T" tunneling probability is small, i.e., exp(—&,b) < 1,
this contribution can be easily taken into account by rep-
resenting the transmission matrix element in Eq. (3.1) as
a sum

7 LAY (3.9)
Ei — B!, +ifT,
where
h2 —nbkz
yro__ he™kr (3.10)

mp(k? + m4k?2/m%)

and the total transmission probability can be rewritten
in the form of

2

AT, (-1)¥ , (3.11)

Ty = | 2fe_emmb gy ADCD”
Ey — E/ +ifl,

1+ f2

the sign + or — corresponds to even or odd v, (z). Thus,

the energy position, Egd), of the F;-related dip is given
by

ml+ fi
4f

the peak-dip distance being much larger than Al'; or
|Ey — Ej.

The relative positions of E; and Egd) alternate with the
increasing M in accordance with the peak-dip sequence
in the spectra of Fig. 2.

Figure 3 presents the comparison of our results (solid
curves) with ones of Ting and McGill® obtained by an
empirical eight-band second-neighbor sp® tight-binding
model (dotted curves). By Fig. 3 we like to emphasize

EY =E, +(-1) ebhT, (3.12)
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FIG. 3. Electron transmission through the single-barrier
structures with M =9,10,12. Dotted curves show the numer-
ical results of Ting and McGill (Ref. 5). Results obtained in
the generalized effective-mass method for the optimized set of
band parameters are presented by solid curves.

the importance about the phase of mixing term, a vi-
tal factor implicitly included in the sophisticated tight-
binding method of Ting and McGill.> The difference in
the peak positions obtained in Refs. 5 and 12 was re-
moved by fitting the band offsets and X-electron longi-

tudinal effective mass mgf: when calculating solid curves
in Fig. 3 we took trx = 2, Vi = 0.75 eV, E%(GaAs) =
E%, +A/2=05eV, EY(AlAs) = E§ +A/2=03¢V,
mljl( = 0.65m, instead of trx = 0.5, VOr = 1.1094 eV,
E%(GaAs) = E% + A/2 = 0.5645 eV, E%(AlAs) =
E)B}l +A/2 =0.3424 eV, mg{ = 1.68mp used in the cal-
culation of curves in Fig. 2. Thus, a good agreement
can be achieved between the transmission spectra calcu-
lated by the different methods. However, the final choice
of parameters should be made after comparison of the-
ory with relevant experimental data. In the transmission
spectra numerically calculated by Ko and Inkson” for
AlAs single barriers with M = 10 and 20, the resonance-
antiresonance structure is reversed in comparison with
Fig. 2 and Eq. (3.12). The opposite peak-dip order-
ing was also obtained by Schulz® for a simplified tight-
binding model (an atomic chain with two s-like orbitals
per site and nearest-neighbor interaction only). The re-
sults of Refs. 3 and 7 can be understood in terms of the

generalized effective-mass approximation provided that
the X3 band in bulk AlAs lies lower than the X; band,
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i.e., Ap < 0. In the tunneling experiments the sharp
structures are smeared out due to the contribution to
the current from electronic states with different energies
(see Sec. IV). However, the analysis of these structures
can be used for making comparison between various com-
putation methods.?"'!

The perturbation theory approach can be readily ex-
tended to consider oblique incidence or tunneling through
asymmetrical structures. For the oblique incidence, the
above results can be used as well if k,,, k,,, F,, are replaced
by

ky(ky) = (2maE,., /K — k3)Y/2,
Ky(ki) = [2mp(Vo — Euk,)/B* + k3 ]2,
Euk_L = EV + (hzk_zL/sz—)’

(3.13)

where m is the effective mass describing the movement
of a confined electron in the (z,y) plane and k, is the

in-plane component of the incident electron wave vector,
k3 =kZ + k2.

IV. TUNNELING CURRENT THROUGH A
GaAs(AlAs)yGaAs STRUCTURE

In the following we express the kinetic energy E of
an incident electron as the sum E| + E,, where E| =
R?k2/2m,4 and E; = h%k% /2m, are associated to the
electron motion perpendicular and parallel to interfaces.
Knowing the transmission coefficient T'(E), E1) one can
readily obtain the tunneling current density as

. 1 em "

i = gy g [ ABBLIT(E, EP(F - F), (41)
where F5" are the electron distribution functions in the
left and right leads, which is described at low tempera-
tures by the step functions

F' = ©(Er — E), F" = ©(Ep + eV — E),

Er being the Fermi energy and V being the bias be-
tween the leads. We take V > 0 so that the product
eV is negative. We consider the region of electric fields
where the level FE.;x is tuned to resonance with the left-
lead states occupied by the degenerate electron gas and
F7 in Eq. (4.1) can be put zero. The current is calculated
self-consistently taking into account the electrostatic field
induced by the electrons temporarily confined inside the
AlAs layer. The whole electrostatic potential ¢(z) is de-
termined from the Poisson equation

d? 4N
20 = ) + k(2]

(4.2)

where N is the two-dimensional density of the confined
electrons. The structure is assumed to contain GaAs
spacers of effective thicknesses L; and L, on both sides
of the (AlAs)ps layer. The boundary conditions for the
potential ¢(z) are taken as

¢(_Ll - b/2) =0, ¢(Lr + b/2) =V, (43)
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log;o(Transmission Probability)

Bias (V)

FIG. 4. Transmission coefficients vs applied bias through
a five monolayer AlAs barrier for an electron normally in-
cident from the GaAs lead with the initial energy 10 meV
(solid curves). The effective spacer thicknesses are taken to
be Ly = 30 A and L, = 50 A. The curves 1 and 2 present,
respectively, probabilities of transfer between the GaAs I';
state on the left into the GaAs I'y and X states on the
right. The dashed curve is the transmissivity through the
unbiased structure as a function of the equivalent potential
V = [(E — 10 meV)/le|](Li + b+ L,)/(L: + b/2), where E is
the incident electron energy.

the origin z = 0 being chosen at the center of the AlAs
layer.

Figure 4 shows the bias dependence of transmission
probabilities via the structure with M = 5, L; = 30 A,
L, = 50 A for the initial kinetic electron energy E =
10 meV. In accordance with the definition of the spacer
effective thicknesses, the electric field is assumed to be
uniform along the whole structure L; + b + L,. While
calculating the transmission we took into account both
I-I-T', I'-X-T' and I'-T"- X, I'-X-X channels. In Fig. 4 the
solid curves 1 and 2 represent separate contributions due
to transmissions into I' and X states. The set of struc-
ture parameters was the same as for Fig. 2. One can see
that the resonance and antiresonance pairs are present in
the transmissivity-bias curves and the relative position of
peaks and dips is parity dependent. The opposite peak-
dip sequence obtained in similar curves by Boykin and
Harris? can be related to the above-mentioned problem
of the ordering of the X; and X3 states.

It follows from Fig. 4 that for the chosen set of band
parameters the contributions from I'X-X and I'-I'-X
channels are comparatively small in the region of the first

J
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resonance and hereafter we neglect these contributions.
For comparison we also present in Fig. 4 the transmis-
sion spectrum (dashed curve) of the unbiased structure
plotted versus the equivalent bias

1 Li+b+ L,
V=—F-10)—-FF—,
e ¢ ) Tivo2

where F is the electron initial energy in meV. One can
see that the dashed curve is close to curve 1, the small
difference in peak positions being just connected with the
Stark shift of the quasibound X levels. This allows one
to neglect in the following calculation the reflection of
electron waves from the spacer areas.

Note that in the narrow resonant regions of |[E — E, | <
AT, , the nonresonant contribution in Eq. (3.11) is neg-
ligible while in off-resonant regions V;' can dominate if
the AlAs layer is not very thick. Thus, the resonant and
nonresonant contributions to the tunneling current can
be calculated separately. When calculating the nonres-
onant background current one should obtain the usual
exponential-like dependence on the applied bias. In the
following for simplicity we take into consideration only
the resonant contribution to |T'(E), E1)|?.

The spectral dependence of |T'(Ej, E1)|* can be ap-
proximately expressed in the form of

IT(Ey, EL)?
3 (KI;)?
" [By+ EL(1—ma/m%) — E1 — edo)? + (AT1)? ’
(4.4)

where
do = / dz $(2)[ud(2) +v3(2)],

my% is the in-plane effective mass of an X electron.
For normal incidence |T(Ej,0)|*> reduces to the reso-
nant contribution to the transmission probability given
by Eq. (3.11). Substituting Eq. (4.4) into Eq. (4.1) and
taking into account that for small enough escape rate of
I'1, the transmission spectrum (4.4) can be rewritten as

1rﬁI‘16[E|| +E (1 —mA/mjL() — E; — edo), (4.5)

we obtain

1 emy

R (4.6)

E,
/ dE.Ty(E.),
0

where the upper limit is

0 ifE1+€¢!o<001'E1+e¢o>EF

E, = { (B +ego)/(1~ma/mz)

if0< Ey+epo < (1—mua/m%)Ep
(m%/ma)Er — (Ey + edo)] if (1 —ma/m%)Er < E1 + edy < Ep.

(4.7)

Neglecting the variation of I'1 (E1) within the energy interval of the width Er we have

1

. emy -
Jz = —“}—ijiEJ_(tﬁo)Fb

™

(4.8)
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In the same approximation j, and N; are connected by a simple relation

J=eNil/2. (4.9)
Taking into account Eq. (4.9) we obtain a final I-V characteristic
0 if V< Vmin orV > Vmax
iV)=30{ (V= Vain)/(V' = Vi) if Vinin <V <V’ (4.10)
(Vimax — V)/(Vmax — V') if V! <V < Vipax-
[
Here In general the parameters of a heterostructure can be
1 em B —E E such that V' exceeds Viax, in which case the current-
Jo = —2—~’—i—2£I‘1EF, Vinin = —1|—T£——F ; Vinax = ﬁ , voltage dependence exhibits an intrinsic bistability.
T e e

2
m4 €M 4
lekV" = By ~ EF{l Cmg  wA*

x [27"5(1:, ~L)+ éo] }

&= (Li+b/2)(Li + L, +b).

For convenience we introduced the function ¢(z) so that
eN;¢(z) is an even solution of Eq. (4.2) with the bound-
ary condition ¢(—L; — b/2) = 0. Due to screening in the
heavily doped leads ¢(z) = 0 for z < —L; — b/2, and
¢(z) =V for 2 > L, +b/2,

z+ Ly +b/2
Li+L,+b

(4.11)

#(z) = eN1§(2) + [V — eN1¢(L, + b/2)]

inside the interval between —L; —b/2 and L, +b/2. One
can see that ¢(z) is independent on the applied bias,

Fo = / dz 3(2)[u(2) + v2(2)]-

Figure 5 shows the shape of the resonant j(V') curve ne-
glecting (dashed line) and including the self-consistent
potential influence (solid line). We use the notation
|CI€V0, = E1 - EF(l - mA/m,L()

" Vein Yy V' v
Bias
FIG. 5. The shape of the resonant tunneling current
through the single-barrier structure vs the applied bias ne-
glecting (dashed) and including the self-consistent potential
influence (solid line).

V. SUMMARY

We have proposed an approach to calculate the elec-
tron reflectivity and transmissivity in a symmetrical mul-
tilayer structure. The approach is based on splitting the
problem into simpler auxiliary problems for even and odd
solutions. The analytical properties of the transmission
spectra have been analyzed in the vicinity of the struc-
ture quasistationary bound states.

We have calculated tunneling probability as a func-
tion of electron energy across a single-barrier structure
GaAs(AlAs)pGaAs within the generalized effective-mass
approximation. The intervalley mixing at the interfaces
is included in the boundary conditions which depend on
the parity of monolayer number M so that the latter be-
comes an additional parameter of the problem. As a re-
sult, the fine structure of transmission spectra is sensitive
not only to the value of integer M but also to its parity. It
seems that the existing controversy in literatures concern-
ing the calculated peak-dip sequence is connected with
the uncertainty of model parameters and accuracy of nu-
merical calculations. Our effective-mass-method calcu-
lations show the reversal of ordering between, say, the
lowest peak and its satellite dip with the sign inversion
of the X;- X3 splitting, Ag. In this connection, we attach
much importance to a reliable determination of the bulk
AlAs band structure near the X point.

We have analyzed the parity-dependent effects in a
biased AlAs single-barrier structure. As well as in the
transmission spectra, the peak-dip sequence in transmis-
sion vs bias curves is sensitive to the parity of M and the
sign of Ap.

An analytical form of current-voltage characteristics
has been obtained taking into account the self-consistent
electrostatic potential due to the space charge stored in-
side the AlAs layer. Due to contributions to the current
from electron states with different energies, the parity
of M has no remarkable influence on the shape of I-V
X -resonant peaks.

We expect the parity-dependent effects to be more
pronounced for intersubband or interband absorption re-
spectively in n-type and intrinsic GaAs/AlAs superlat-
tices near the type-I-type-II transition'?!? and to influ-
ence electron quasibound-state lifetimes in GaAs/AlAs



50 FINE STRUCTURE OF ELECTRON-TRANSMISSION SPECTRA . ..

double-barrier heterostructures.® All these effects can be
described in the generalized effective-mass formalism de-
veloped in the previous!? and present papers. The for-
malism can be further improved to include factors like the
nonparabolicity in bands. We can also extend the work
to study the I-L mixing in Ga,Al;_,Sb/GaAs system
provided that the basic physical parameters are known.
Nevertheless the fundamentals remain the same.

APPENDIX

Here we present a general approach to solve the prob-
lem of intervalley mixing in heterostructures in the
effective-mass method. Evidently, two electron states
with the wave vectors K; and K, can be mixed at a
heterointerface with the normal N if there exists a three-
dimensioanl (3D) reciprocal-lattice vector b which satis-
fies the equation

(Ki—Kz—-b), =0. (A1)
Here 1 means the in-plane component of a vector. The
wave vector conservation law in the N direction is re-
moved because the translational symmetry is broken in
this direction due to the presence of interface.

The K;-valley-related electron wave function can be
compactly written in the generalized effective-mass ap-
proximation as

r) = va(r)Ks1), (A2)
l

where i = 1,2, |K;,!) are the Bloch functions at the K;
point and 1;;(r) are the envelopes. The index [ takes into
account the possible complex band structure, in particu-
lar the band degeneracy or close-lying bands.

The boundary conditions at the A-B interface can be
expressed in the form of

PP PP
VA'¢1 ( Tu T12 ) VB"/’

3 Tor T2z 7 ' ’ (43)
Vis \2521

where ;(r) is the column with the components ;;(r),
Yia(r)..., VB = ag(mo/mP)(8/82), 2 is the coordi-
nate in the N direction, a¢ is the lattice constant, mg
is the free electron mass, m{"® is the effective mass of
electron in the K; valley along N. The interface matrix
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T is dimensionless, its submatrix T,,r connects the values
of 1/’ V“‘t/:A with ¢?,V 1,[:‘,: T.. describe boundary
conditions for the K;-valley envelope functions while Tia
and T3, describe the intervalley mixing effects at the het-
eroboundaries. In order to include the different transla-
tional properties of the Bloch functions K; and K, one
should impose the following relations:

?ﬁ(zz) = Ti(z1),
T12(22) = exp[i(K; — K2 — b)j (22 — 21)] Ti2(21),
Ty1(22) = exp[—i(Ky1 — Kz — b)) (22 — 21)] Taa1(21)

(A4)

between the T' matrices for the two equivalent interfaces
z1 and 2z with

3
23 — 21 = E njay.
j=1

Here a; are the basic translational vectors of the 3D crys-
tal lattice and n; are integers, the symbol || means the
component of a 3D vector parallel to the structure prin-
cipal axis z || N. Thus, the description of intervalley
mixing in the generalized effective-mass approximation
assumes an explicit dependence of boundary conditions
on the valley wave vectors.

The possible ambiguity in the choice of the vector b
from Eq. (A1) makes no influence on the relations (A4).
Really, if the other reciprocal lattice vector b’ satisfes
Eq. (A1) then (b — b’), = 0 and the product

E :nJaJ

(b - b’)" (22 - 21) b,)

is an integer of 2.

Note that the above simple considerations can be read-
ily modified to take into account the lattice constant mis-
match and intrinsic strain in multilayer heterostructures.

Following the general procedure for the particular case
of I'-X mixing in (001)-oriented A3Bs heterostructures
we have Kr = 0, Kx = (0,0,27/ao), Eq. (A1) can be
satisfied with b = 0, and Eq. (A2) reduces to ¥r(r) =
w(r)|T1), Tx(r) = v(r)|Xs) + u(r)|X;). For the zinc-
blende structure the basic vectors can be chosen in the
form of a; = (ao/2)(1,1,0), a2 = (ao/2)(0,1,1), and
a3 = (ao/2)(1,0,1). Therefore, z; — 23 = (nz + n3)aoe/2,
(Kr — Kx — b)) (22 — 21) = (n2 + n3)m, and the mixing
coefficients in submatrices Tp X Txr change their signs
if the interface z is shifted by one monomolecular layer
along the principal axis z || [001].
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