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Localization in a pair of degenerate Landau levels, coupled by random interlevel matrix elements,
is discussed in a semiclassical picture appropriate to the case of smooth disorder. It is shown that
there are two distinct energies on either side of the band center where delocalization occurs. Each
transition belongs to the same universality class as that of a nondegenerate Landau level in a random
potential. Using a simple physical picture for the eigenstates, I will further argue that, unique to
this model, the localization length also diverges at the band center, in accordance with recent results
of Hikami, Shirai, and Wegner for white-noise disorder [Nucl. Phys. B 408, 415 (1993)].

There has been recent interest in the delocalization
transition in integer quantum Hall systems where the
samples are sufficiently disordered that the broadening
of the orbital Landau levels exceeds the Zeeman energy
and the levels become spin unresolved. It has been sug-
gested that this transition belongs to a different univer-
sality class from the transition in spin-split systems. It
is therefore of theoretical interest to study the effect of
the mixing of degenerate Landau levels on the localiza-
tion behavior of the system. In this paper, I study the
simplest of such models!:? and develop a simple physical
picture for the eigenstates of the system in the limit of
smooth disorder. I will show how the universality class
found in Ref. 1 is special to this model.

The integer quantum Hall effect is modeled, in the
simplest case, as spin-split Landau levels in the pres-
ence of a random potential. This system represents the
best characterized example to date of critical behavior
at a metal-insulator transition. The dependence on en-
ergy E of the localization properties of the eigenstates
has been discussed in the context of a scaling theory.34
Within each disorder-broadened Landau level, almost all
eigenstates are Anderson localized, but the localization
length £(FE) diverges at a critical energy E. (which lies
at the band center in the case of a symmetric poten-
tial): §(E) ~ |EF — E.|™%. This scaling behavior has
indeed been observed as this zero-temperature critical
point is approached, as functions of temperature, sample
size, and frequency,® yielding a value of v = 2.3 + 0.1.
This value for the critical exponent has also been ob-
tained from numerical simulations, using a variety of
models and techniques.®® The possible existence of a
universality class for spin-unresolved Landau levels has
been suggested by experimental studies which, assum-
ing that the localization length diverges only at one en-
ergy, have obtained a larger value for critical exponent:
v ~ 4.8.910 However, recent theoretical work!!:12:2 on
the “spin-degenerate” limit, where the Zeeman energy
vanishes, suggests the existence of two delocalized ener-
gies, in contrast to the scaling diagram proposed in Ref.
10.

Hikami, Shirai, and Wegner! recently introduced a
model of two degenerate Landau levels with random in-
terlevel transitions (but without potential disorder) and
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studied the limit of vanishing correlation length for the
disorder. They obtained a finite longitudinal conduc-
tance (0z; = e?/mwh) at the band center and suggested
that this signified a delocalization transition belonging
to a universality class different from that of a spin-split
Landau level. I will argue that this delocalization at the
band center can also be understood in the opposite limit
of smooth disorder where the random matrix elements are
correlated over distances large compared to the magnetic
length. Experience with the spin-split Landau level has
indicated that the question of the existence of a delocal-
ization transition (and the associated critical behavior)
does not depend on the details of the microscopic Hamil-
tonian, such as the correlation length of the disorder.6®

Using a semiclassical picture appropriate to the limit
of smooth disorder, I will show that the states near the
band center have significant amplitudes only around a set
of isolated points in space where the interband coupling
vanishes. Although one might initially expect such states
to be typically localized, it will be argued that the delo-
calization transition of Hikami et al. is possible due to an
exact reflection symmetry of the spectrum which ensures
significant hybridization among these states. I will also
show that there are two other delocalization transitions
on either side of the band center in the same universal-
ity class as that found in spin-split Landau levels (Fig.
1), similar to the results of Refs. 11, 12, and 2 for the
spin-degenerate Landau levels.

To be precise, I consider the motion of a particle in a
plane in the presence of a strong uniform magnetic field B
perpendicular to the plane. This particle has an internal
degree of freedom which can be regarded as an S = 1/2
pseudospin. Disorder is incorporated as local scattering
between the two degenerate Landau levels but not within
each level. In the pseudospin language, the pseudospin
has a Zeeman coupling to a random external pseudofield
in the zy plane: h(r) = (hy(r),hy(r)). I will use the
magnetic length g = (%/eB)'/? as the unit of length
and the cyclotron energy Aw. = ehB/m as the unit of
energy. The Hamiltonian can be written as

H=1-iV+A?+ h(r) o, (1)
where A is the vector potential due to the uniform field
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FIG. 1. Schematic diagram of the energy dependence of the
localization length ¢ and the Hall conductance o,y (in units
of e2/h). Energy is measured from the center of the Landau
band.

B, and o, 4 are the Pauli matrices. The random pseud-
ofield has a Gaussian distribution with

hey(r) =0,
ha(P)ha(r) = hy()hy (r/) = A2 e~ IF7'1/3 (2)

I consider here the “semiclassical” limit, defined as the
case when the correlation length A is much larger than the
magnetic length [g. I will also require that the disorder
is weak (A < hw.) so that the mixing of orbital Landau
levels can be ignored.

The XY coupling to the pseudofield has the property
that it changes sign under the unitary transformation
which transforms the spinor 1 to 0,1 (since 0,0, 40, =
—0zy). It will be shown explicitly [see Eq. (5)] that
this gives rise to an important symmetry of the spectrum
after the projection onto a given orbital Landau level:
if one can find an eigenstate (v4,%;) at an energy of
(n+3)fwc+E, then (1, —%,) is also an eigenstate of the
system with an energy of (n+ %)fwc — E. This reflection
symmetry in the spectrum is important to the description
of the states near the center of each Landau band.

I will now argue that this system can be understood to
a large extent, using arguments borrowed from the semi-
classical theory of a nondegenerate orbital Landau level
with scalar disorder.!3!® In the latter system, electron
motion can be separated into two components: a rapid
cyclotron orbit and a slow drift of the guiding center
along equipotential lines. Delocalization coincides with
the percolation of the guiding-center trajectory. In the
present problem, one might expect that the pseudospin of
the particle would follow the smoothly varying local field
h(r), so that the particle would drift along contours of
constant Zeeman energy. The energy of the correspond-
ing eigenstate, measured from the unperturbed Landau
level, should be proportional to +|h|. (Note that this pic-
ture respects the reflection symmetry in the spectrum.)
The analogy of the semiclassical picture of the present
system with that of the Landau level in scalar disorder
suggests that the two systems possess similar localization
properties. In particular, I argue that, near the delo-
calization transition, both systems can be mapped onto
the network model of Chalker and Coddington.® Hence,
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the lowest Landau level should have delocalization tran-
sitions at a pair of energies E. = th. (as measured from
the unperturbed Landau level), when the electron trajec-
tories on the contour |h| = h, ~ O(A) percolate through
the system. This transition should be accompanied by
a change in the Hall conductance of Ag,, = e?/h, and
belongs to the same universality class as that found in a
spin-split Landau level with a localization length expo-
nent of v ~ 2.3.

This simple picture of trajectories on contours of |h|
ignores the precession of the pseudospin around the local
pseudofield which should affect the quantization of the
electron orbit. I argue here that this is justified in the
limit of smooth disorder. Formally, one can write, as in
Ref. 2, h = |h|pton, where n(r) = (n1,n;) is a spinor
chosen such that h lies in the zy plane: |n4|? = |n|? =
1/2. Performing a local SU(2) gauge rotation

o Ty
the Hamiltonian becomes
H=1(-iV+A—iU'VU)? + |h(r)|o. . (4)

The semiclassical picture discussed above assumes that
the term UTVU in the covariant derivative can be ne-
glected in our limit since the spatial variation of U is
small on the scale of the magnetic length. The ef-
fect of this term on an open trajectory can be illus-
trated in a simple example where the pseudofield h has
a fixed magnitude but rotates along the z direction:
h = |h|(cos Qz,sin Qz). It can be shown that, after pro-
jection onto the lowest Landau level, the eigenstates have
energies of *|h|exp(—3Q?), as measured from the un-
perturbed Landau level. Since Qlgp ~ lg/A < 1 in the
limit of smooth disorder, it is reasonable to neglect the
exponential correction factor for the energy.

A further objection to the neglect of the SU(2) gauge
term in (4) is that this term gives rise to a nontrivial
Berry phase if the electron trajectories form closed orbits.
This is not important to the argument for the delocal-
ization transitions discussed above because the relevant
trajectories percolate through the system. Nevertheless,
small closed orbits are found in the vicinity of the zeros
of the pseudofield h. These orbits correspond to states
near the center of the Landau band because the Zeeman
energy is small in these regions. I will now concentrate on
this part of the spectrum, since, as already mentioned,
a delocalization transition has been found at the band
center for the case of a short correlation length.?

The zeros of the pseudofield are sparsely distributed
around the system with a density of 1/A2. One might
therefore have reason to expect the electron orbits around
these points to be localized. To reconcile this argument
with the results of Hikami et al.,! one has to consider
these eigenstates near the band center in greater detail.
I will, from now on, project onto the lowest Landau level
and measure energy from the center of the band, %ﬁwc.
The projected Hamiltonian, written out as a 2 X 2 matrix
in the pseudospin space, is then
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0 h .
HP=(h;, ;‘) , hp = P(ha(r) +ihy(1))P, (5)

where P = 3", |t )(¥m| is the projection operator onto
the orbital wave functions ., of the lowest Landau level.
The off-diagonal form of the Hamiltonian ensures that
the eigenenergies of Hp occur in (E,—F) pairs for each
realization of the disorder. It should be noted that this
reflection symmetry in the spectrum is destroyed if the
Hamiltonian (1) contains a random potential or a Zeeman
coupling to a third component of the pseudofield, h,.

Consider first an isolated h = 0 point at the origin.
Typically, the pseudofield has a vortexlike configuration
with a winding number of unity around this point. A
linearized configuration, for the region within a correla-
tion length from the origin, can be written in the general
form

_ A [ €lysin(® + @) + zcos(P + )]
h= V2 (e‘o[—m sin(® — ¢) + ycos(® — gb)]) - (6)

For instance, a field configuration with circular symmetry
is given by 6 = 0 and ¢ equal to 0 or /2, depending on
the sense of circulation of the vortex configuration [i.e.,
the rotation of h(r) as r is taken around the origin]. The
parameter 6 is a measure of the difference in the gradients
of the field in the = and y directions. The angle between
the lines of h, = 0 and h, =0 is 2¢ + %'n.

Working in the symmetric gauge where the vector po-
tential A = 1B(y, —z), the basis states {1, } are of the
form z™exp(—z*z) (m = 0,1,2,...). These states are
generated by the creation and annihilation operators

b=2:(8:+2") and bl =5(-0..+2), (7)

where z = %(:c-l»iy). The projection onto the lowest Lan-
dau level is given by the procedure!® z — bf//2,2* —
b/v/2. Thus

hp=A [e“iq’ cosh(f — ig)bT + €*® sinh (8 + ig)b]. (8)

From now on, ® is set to zero without loss of gener-
ality by rotating spin space relative to real space. A
zero-energy state in this vortex configuration is annihi-
lated by either hp or its Hermitian conjugate. This is an
eigenstate of o, with eigenvalue —1 and +1, respectively.
The spatial part of the wave function can be written as
¥ = f(z) exp(—2z*z). For the 0, = —1 state (annihilated
by hp), f = f, satisfies

[sinh(0 + i®)8, + 2 cosh(0 — ip)z]fi (2) =0 (9)
so that
cosh(f — ¢¢) 2
sinh(6 + i¢) '
For a spin-up state, f; is obtained from f, by the ex-
change cosh < sinh. Only one of these wave functions
is normalizable. There is therefore only one zero-energy
state associated with this vortex configuration. It is spin
down if | tanh(@ + i¢¢)| > 1, which requires cos2¢ < 0.

Otherwise, the state is spin up. This condition on ¢
simply says that o, is determined by the sense of circula-

fu(z) ~exp |- (10)
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tion of the pseudofield. (The wave function becomes very
elongated and becomes unnormalizable as cos2¢ — 0.
This occurs in the rare event when the lines of h, = 0
and h, = 0 coincide with each other.)

We can also study the rest of the spectrum on these
linearized vortex configurations, by diagonalizing hp us-
ing a Bogoliubov transformation to new operators, ¢ and

ct:
c)_ 1 cosh®y sinhvy b 1
ct )~ W)_ sinh+* coshy* bt ) (11)

where a(¢) = [|cosh®|? — |sinh%|?]'/2 and [c,cl] = 1.
Choosing ¥ = 0 + i¢, we can write hp as

hp = A(cos 2¢)/2ct. (12)

The eigenenergies of these “vortex states” are therefore
E=0,+F,, ~O(lgA/)) (m =1,2,...), where

+E,, = 24| cos2¢ |V ?m!/2, (13)

The m'/2 dependence of the energy is easy to understand.
Consider, for instance, the circularly symmetric case of
0 = ¢ = 0 (so that the Bogoliubov transformation is
unnecessary). The zero-energy state is [m = 0,1) and
the states away from E = 0 are (|m,|) £ |m +1,1))/V2.
These states have significant amplitudes at a radius of
R ~ m'/? from the origin. Noting that |h| o R, we
see that these eigenstates are well described, at least for
large m, by the semiclassical picture in which the wave
functions are peaked on contours of |h].

Before drawing general conclusions about these vortex
states, one should examine how they are affected by devi-
ations from the simple field configuration (6). In addition
to corrections to the functional form of h(r), another cor-
rection is the presence of nonlocal terms in the projected
Hamiltonian arising from spatial variations in h(r) over
length scales smaller than the magnetic length 5. One
can see that these perturbations are weak in the limit of
lp € A. As long as the matrix elements due to these
perturbations are nonsingular, one may switch on these
terms adiabatically. The states with small but nonzero
m will then be shifted in energy by an amount small
compared to the level spacing. (States at large m can
be strongly admixed because the level spacing decreases
as m~Y/2)) However, the E = 0 state is not shifted in
energy at all in this process because no adiabatic shift of
this single state at £ = 0 can give rise to a pair of states
at *F # 0, as required by the reflection symmetry of
the spectrum. Thus, I argue that, in the regime where
A > lp, there is always a single E = 0 state associated
with each zero of the pseudofield h.

In general, there are more than one zero in the pseu-
dofield so that these zero-energy states are degenerate
and will hybridize with each other. One can envisage an
effective Hamiltonian with long-range hopping for these
states near the band center:

Heg =Y tijlra)(rjl, (14)
4,3

where {|r;)} is the set of zero-energy states associated
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with the zeros of the pseudofield h(r;) = 0. Due to the
exact degeneracy of these states, they will hybridize in
spite of the exponentially small overlap between their
wave functions. Thus a delocalization transition anal-
ogous to that of Hikami et al.! may be found at the
band center. (This transition is not accompanied by any
change in the Hall conductance of the system — the to-
tal change in o4y of 2e? /h across this pair of Landau
levels has been taken up by the pair of mobility edges at
E = tE,_ discussed above. See Fig. 1.) This is in sharp
contrast to systems without the reflection symmetry in
the spectrum. In such systems, the probability for find-
ing two localized states sufficiently similar in energy to
give significant hybridization is very small and conduc-
tion is only possible with the assistance of processes at
finite temperature or frequency.!”

I have argued that the semiclassical picture for this
system can be reconciled with the expectation (from the
results of Ref. 1) of a delocalized state at the band center.
Indeed, the physical picture for the eigenstates near the
band center clarifies the importance of the exact symme-
try of the spectrum to the nature of the wave functions.
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Conversely, one expects this delocalization transition to
be a fragile phenomenon: even weak disorder which is
diagonal in the pseudospin space would destroy it by lift-
ing the special degeneracy of the E = 0 states associated
with the zeros of the pseudofield.

In summary, I have studied a model of a pair of degen-
erate Landau levels with random interlevel mixing in the
semiclassical limit. As summarized in Fig. 1, delocaliza-
tion transitions are found at a pair of energies displaced
symmetrically from the center of the band. Each of these
transitions belongs to the same universality class as that
found in spin-split quantum Hall systems and should be
robust to the introduction of other forms of disorder. An
additional delocalization transition may be found at the
band center but this critical point is unstable to the intro-
duction of other scattering processes, such as a random
potential in the modeling of a spin-degenerate Landau
band.
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