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Exact wave functions for a particle in a quantum well with infinite conduction-band offset are

calculated for a well material described by the Kronig-Penney model.

The exact wave-function

envelopes are extremely sensitive to the position of the interfaces within certain “boundary-sensitive
domains.” At certain “critical positions” for the interface within these domains the envelopes fulfill

zero-slope boundary conditions.

In the nth band there are normally n well defined boundary-

sensitive domains. However, for narrow-gap materials the boundary-sensitive domains become wider
and may fill the entire unit cell. In each band, effective-mass theory reproduces adequately the low-
lying energy eigenvalues but not the wave-function envelopes, and may give misleading results for

oscillator strengths.

I. INTRODUCTION

With the invention of special growth techniques such as
molecular-beam epitaxy and metalorganic chemical va-
por deposition, semiconductors with tailor-made proper-
ties can be fabricated. These structures show unusual
quantum effects not seen in bulk semiconductors. The
freedom of choosing the compositional structures opens
up possibilities of making composite materials with quan-
tum confinement in one (quantum well), two (quantum
wires), and three dimensions (quantum dots). In addi-
tion to the many possible applications of these structures,
they also offer new and challenging problems from the
point of view of pure physics.!

Theoretically, one is interested in solutions of the
Schrédinger equation for the composite structure. But
the lack of translational invariance along the growth di-
rection seriously complicates matters. The most common
procedure is to solve the Schrédinger equation in each
constituent material, and then match the solutions at the
interfaces. This would be straightforward if one had the
exact solution at hand. Since this is hardly ever the case
one must be careful when employing some approximate
solution scheme.

One such popular method for determining electronic
states in a semiconductor is the envelope-function
method.? This is a generalization to composite structures
of the well-known effective-mass approximation in bulk.3
In the envelope-function approach the bulk effective-mass
equation is solved in each constituent material and the
envelopes are matched at the interfaces. Since the effec-
tive masses that enter into the effective-mass equation
now become position dependent, the problem of how to
connect the envelopes at the interface arises. A second
problem is where the envelopes should be matched.

The interface in real materials is not completely abrupt
and it would seem more sensible to speak of an interface
region. However, to avoid this complication the interface
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is commonly modeled as perfect, i.e., abrupt. But even
in this idealized picture there is room for ambiguity as
to where the interface should be located.® Are the exact
energy eigenvalues and wave functions sensitive to this
ambiguity? This is the main problem that we address
in the present article. We choose a simple quantum-well
setup for the analysis, with the barrier assumed to be
an insulator. This leads to complete confinement of the
electrons in the well material. A second question is how
well effective-mass theory can handle this situation which
effectively corresponds to an infinite potential-energy dis-
continuity.

Through an exact model calculation we show below
that the ambiguity in the position of the interface hardly
affects the energy levels for the present model, but that
it has a dramatic effect on the wave functions. The
most striking feature of the wave-function dependence
upon the interface position is the existence of certain
“boundary-sensitive domains,” narrow regions of inter-
face positions in which small displacements of the in-
terface leads to rapid changes in the wave-function en-
velopes. This is important for physical properties that
depend explicitly on the wave function (or its envelope).
As an important case in point we study the interface-
position dependence of optical transitions in a quantum
well.

As a simple and exactly soluble model we take the well
material to be a one-dimensional Kronig-Penney material
consisting of periodic é wells. Closed-form expressions for
energy levels and wave functions for the confined electron
are then easily obtained. In Fig. 1, we show an exam-
ple of an exact wave function for the confined electron.
Obviously, the envelope of this wave function does not
vanish at the boundaries, as simple effective-mass theory
would predict, but rather satisfies zero-slope conditions.
As will be discussed below, the reason is that for this
case the interface is located in the middle of one of the
boundary-sensitive domains referred to above.
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FIG. 1. An exact energy eigenfunction for an electron con-
fined in a quantum well. The lattice constant is used as the
unit of length.

In Sec. II, the model is presented and solved exactly
for energy levels, wave functions, and boundary-sensitive
domains. The results for this simple model motivate and
guide the following discussion, in which we generalize
some of our results to arbitrary periodic potentials in
one dimension.

In Sec. III, we compare our exact results with the pre-
dictions of the effective-mass approximation. Intraband
and interband optical absorption spectra for the quan-
tum well are discussed in Sec. IV, with emphasis on the
interface-position dependence. A discussion is given in
Sec. V and a short summary is left for Sec. VI.

II. EXACT SOLUTION OF THE
QUANTUM-WELL PROBLEM

A. Model

We let the well material be a one-dimensional Kronig-
Penney material. An electron in a Kronig-Penney lattice
with lattice constant a and é functions at

z, = (v —1a,

2 v = integer, (1)

has a Hamiltonian

H= ﬁzd—z—f"-zﬁzzs(m—wu). (2)

" 2mdz?  ma

]

cosq — aq lsing

T= [—qsinq—a(l + cosq)

The barrier material in our quantum-well model is taken
as an insulator. Focusing upon energy levels close to
the conduction band in the well material, we expect to
be deep down in the energy gap in the insulator. The
wave function will then decay so rapidly in this region
that we approximate the insulator with a hard wall. The
matching conditions on the exact wave functions at the
semiconductor-insulator interface are, therefore, equiv-
alent to the requirement that the wave function should
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Here m is the free electron mass and a is a dimen-
sionless potential-strength parameter, here assumed pos-
itive. The properties of the Kronig-Penney lattice are
well known, and merely summarized here.® For positive
energies,

>0, (3)

it is seen from the dispersion relation

1

cos(ka) = cosq — aqg™ "sing (4)

that the band structure has band minima

c R* 5 2
E; = oz T (5)
for
gc=nm, n=123, ... (6)

Expanding the dispersion relation (4) around the
positive-energy band minima to second order in the wave
vector k, we obtain the effective mass

a
at the nth band minimum. In addition to these bands
there also exists a lowest (zeroth) band with a band min-
imum at negative energy. Throughout this article, how-
ever, we assume for simplicity positive energies. The dis-
persion relation shows, moreover, that band minima oc-
cur for k = 0 in the even bands and for £ = 7 /a in the
odd bands.

In the exact solution of the quantum-well problem we
will also need the transfer matrix T for the Kronig-
Penney material. T connects the wave function and
its derivative across a § well from z, — fa = va to

T, +3a=va+a:

[ ¢(ua+a)]=T[

P(va)
ay'(va + a) ] : (8)

ay’(va)

We have used ay’ as the lower component in the state
vector so that the transfer matrix is dimensionless. For
the Kronig-Penney lattice the transfer matrix has the
simple form”

¢ lsing — ag™2(1 — cosgq)

cosq — agq lsing )

[
vanish at the interface. To be specific we consider a quan-

tum well of thickness L, consisting of N unit cells. It
might seem natural to choose the interfaces at ¢ = 0
and ¢ = Na, but we will be more general and allow
the interfaces to be at ¢+ = €a and ¢ = Na + ea, with
—1/2 < e < 1/2, thus keeping the width of the well fixed
at the value L = Na. In Fig. 1, we used the natural
choice € = 0.

In terms of the state vector introduced in (8), the
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matching conditions on the exact wave function are now

X, = [m;ffgzg” = const [(1)] ,

and

XNie = const [(1]] . (10)

B. Energy levels

The energy levels in the quantum well are now readily
determined by combining the transfer matrix (9) and the
boundary conditions (10). Take first ¢ = 0. Transform-
ing the wave function and its derivative across the well,
we have

Xy=TVX,. (11)

Since the boundary conditions require the upper com-
ponent of both state vectors X¢ and Xy to vanish, the
energies are given by the condition

(TN)2=0. (12)

One can easily exponentiate the transfer matrix by first
diagonalizing it. To prepare for this we introduce a con-
venient parametrization of the diagonal elements (T}; =
T52) in the transfer matrix via

Ty, = cosq —aq lsing =ncosU , (13)

where the variable 7 takes care of the sign of the diagonal
element: 7 = sgn(T1;) = £1. Since the dispersion rela-
tion (4) can be written cos(ka) = T;; and energy bands
in the bulk material correspond to real k, it is seen that
U is real for energies in the bulk band range and purely
imaginary in the bulk gaps. The transfer matrix is then
diagonalized,

Ay O _
T=S[6L)\_]Sl, (14)
with
_ T2 T2
§= [insinU ——insinU] ) (15)

Using the fact that Ay = ne*®V, we arrive at the fol-
lowing form of the transfer matrix raised to an arbitrary
power s

T — e [ _fo.s(sU) . nT12 sin(sU)/sinU] ‘
—nTy5 sin(sU)sinU cos(sU)
(16)
The condition (T%);, = 0 then reads®
NU =rm r = positive integer , (17)

so the energy levels in the box is determined by the equa-

tion

rm

a
cosq—;smq:ncos(ﬁ) , r=1,2,..,[N/2],

(18)

where g is related to the energy via Eq. (3) and [z] de-
notes the integer part of z. The restriction on the number
of 7 values in Eq. (18) avoids double counting.

This was for ¢ = 0. However, for ¢ # 0 the same
condition applies. This can be shown as follows. The
boundary conditions are now that X. and Xpy.. have
a vanishing upper component. These state vectors are
related through

Xnie =T.TNT_ X, , (19)

where the transfer matrices T, connect state vectors
over a distance *ea. Multiplying both sides of (19) by
T_. we arrive after some algebra at the same condition,
Eq. (12) as before. Keeping the width of the well fixed,
the interface position has, therefore, no effect on the en-
ergy levels (except levels associated with band edges).
We note that all the allowed energy levels in the quan-
tum well lie at energies corresponding to bands in the
bulk material.

The comparison with effective-mass results is post-
poned to Sec. III.

C. Wave functions

We now turn to the wave functions in the well. In the
intervals between the § wells the wave functions satisfy
the free-particle Schrodinger equation. Let us enumerate
these intervals such that interval v corresponds to z, <
z < x,4+1. Here v = 1,2,..., N, with the adjustment that
N+1 = Na+ea. In addition there is an interval between
the hard wall at £ = ea and the first § well at z = %a.
In this zeroth interval the solution of the Schrodinger
equation that fulfills the boundary condition at the wall
is

Pe(z) = Acsinfg(z — ea)/a] , (20)

where A, is a constant.
In interval number v the general solution has the form

¥, (z) = A, sin[g(z — va)/a] + B, cos[g(z — va)/a] .
(21)
The constants A4, and B, of neighboring intervals are

related through the transfer matrix T. Since ¥, (va) =
B, and ay! (va) = gA, we have

Bv+1 Bu
=T . 22
[ un+1 ] [ un ] ( )
Use of the boundary conditions from Eq. (20), A¢ =
A, cos(qe) and By = — A, sin(ge), and of the exponenti-

ated transfer matrix (16), yields explicit expressions for
A, and B,:
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A, = Acn”[nsin(vU) sin(ge) sin U/ (qT12)

+ cos(vU) cos(ge)] ,
(23)
B, = A.n"[nsin(vU) cos(qe)qT12/ sin U
— cos(vU) sin(ge)] .
The remaining constant A, is determined by the normal-
ization
Na+ea
1= / dz [p()|? , (24)
which gives
|42 = %‘l{l — ¢~ ' sin g cos(2¢e)
+[1 — g7 sin q]T;5%q~ 2 sin®(ge) sin® U
+[1 4 ¢~ sinq]¢®T?% cos?(ge)/ sin® U} . (25)

The phase of A, is without significance and we take A,
real. With the exact solution at hand, we can now study
the effect of varying the interface position simply by plot-
ting the wave functions for different € values. Figures
2 and 3 show the wave function for the lowest energy
state above the first conduction-band edge, ie., r = 1
and n = 1. We have chosen four different interface po-
sitions, corresponding to € = 0, 3, 1, and 3 . The two
figures represent, respectively, narrow-gap and wide-gap
situations (corresponding to shallow and deep § wells,
respectively).
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We see from the figures that the narrow-gap results
are not sensitive to the interface position, as the wave
function in this case hardly feels the periodic potential
anyway. We note, however, that the exact envelope is
fairly constant throughout the well and does not vanish
at the interface, as one would expect from a simple (one-
band) effective-mass point of view. We will return to this
phenomenon in Sec. V.

The wide-gap results of Fig. 3 show, on the other hand,
that the envelope for ¢ = 1/2 differs qualitatively from
the other three envelopes. Furthermore, there must be
a rather abrupt change in the envelope as € approaches
1/2. This is confirmed in Fig. 4 where we again plot the
wave function in the strong §-potential limit, this time
taking £ = %g, ;%(1), %, and %%. In this narrow range
of interface positions the envelope changes character dra-
matically. We will denote an interval of interface position
of this nature a boundary-sensitive domain.

So far we have merely presented evidence for one such
boundary-sensitive domain for the first band. In the fol-
lowing section we look more closely at the number and
positions of such domains.

D. Critical interface positions
and boundary-sensitive domains

To investigate the envelope, we rewrite the exact wave
function, Eq. (21), in terms of an amplitude and a phase:
Py (z) = F, sinfg(z — va)/a + ¢.] . (26)

The amplitude F, and the phase ¢, are determined from

0.4 0.4

"= <L

l
!

15 20 FIG. 2. The wave function inside the well
in the weak potential limit, @ = 0.1, for
four different interface positions. The well
is N = 20 unit cells wide, and the positions

of the § wells are marked with black dots.

0.4 0.4

(a)e=10,(b)e=1/6,(c) e =1/3, and (d)
€ = 1/2. The first band is chosen and the
lattice constant is used as the unit of length.

"
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€T xr in the strong potential limit, « = 10, for
(a) (b) four different interface positions. The well

is N = 20 unit cells wide, and the positions
of the 6 wells are marked with black dots.
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the interval constants A4, and B, through the relations

F?=A%24+B?, and tan¢, =B,/A,. (27)
The variation of the amplitude F, with the interval po-
sition v characterizes the envelope of the complete wave
function.

Insertion of the explicit form (23) for A, and B, de-
termines the envelope F,,, and in the general case this
is best done numerically. Our objective is different. We
aim at ezxplicit relations between position and width of
the boundary-sensitive domains and the material param-
eters. Such explicit results can be obtained for energies
close to the bulk band minima in the Kronig-Penney lat-
tice. Moreover, this is the energy range in which the
effective-mass approximation is expected to be valid (See
Sec. III). At the band minima the variable U, defined by
Eq. (13), vanishes. To be near the band minimum corre-
sponds to U = 7r/N < 1, i.e., the excitation number r
within the band should be small compared to the number
of unit cells in the well.

Near the band minima in the bulk material, expan-
sion of the off-diagonal transfer-matrix element T; to
the lowest nonvanishing order in U gives

2a
_—nz—ﬂ'i ) odd n
T12 = 1 (28)
—U?, evenn.
2a

Similarly we can expand the envelope F, to second or-
der in U, with all other parameters fixed. Up to a v-
independent proportionality constant we find in the odd
bands

nmw sin(2q.€)

F? « cos®(gee)sin®(vU) + 1o Usin(2vU)
ninr? .,
+ 1o U? cos*(vU), (29)

and to the same order in U we find in the even bands

nw sin(2¢.€)

F?  sin®(g.e)sin®(vU) + " U sin(2vU)
nir? .,
4oz U® cos*(vU). (30)

Now we clearly see the origin of the boundary-sensitive
domains. For sufficiently small U, the envelope is given
by the zeroth-order expansion in U,

cos(gce) sin(vlU) , odd n
Fy o { sin(g.€) sin(vU) , even n, (31)
except for those interface positions (¢ values) for which
the first factor vanishes. That happens precisely for

ets = { (s+ 1)r, integer s (odd bands)

s, integer s (even bands) , (32)

and by (29) and (30) the envelopes then have mazima
at the interfaces; F, ~ cos(vu) in both even and odd
bands. Since g, = nm at the band minima, these critical
positions of the interface are given by
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(s+3)/n, s=0,+1,42,..,%£(n—1)/2
(odd bands)

s/n, s=0,£1,42,...,+(n—2)/2,n/2
(even bands) .

Esg =

(33)

Because |e,| < 1/2 we note that there are n critical inter-
face positions for the nth band. Furthermore, we see that
the natural choice € = 0 corresponds to critical positions
in the even bands.

To study the sensitivity of the wave-function envelope
upon changes in the interface position, we introduce a
boundary-sensitive domain (¢, — A, e, + A) around each
critical (dimensionless) position €,. We define A such
that at the domain boundaries (¢, + A)a the envelope
has, to lowest order, changed from the cos(vU) form at
the critical position to

F, «sin(vU) % cos(vU), (34)

in some sense “halfway” to the normal form sin(vU).
We find that to lowest order in U the domain width,
for both even and odd bands, is given by

_ nr _ T m
~ 2aN ~ 27n2N m*

(35)

The wave-function envelopes seen for the shallow and
deep 6 wells in Figs. 2 and 3, respectively, are now easy to
interpret. For the first band we have a boundary-sensitive
domain near the critical position €9 = 1/2. Since the
corresponding width is inversely proportional to the 4-
well strength, the boundary-sensitive domains will fill
the whole unit cell. In this extreme situation the wave-
function envelopes do not really depend sensitively on the
interface position, but possess nevertheless zero-gradient
boundary conditions, at least approximately. This is
seen in Fig. 2. The strong-potential situation in Figs.
3 and 4, where a = 10 and N = 20, should, according to
the present analysis, have a boundary-sensitive domain
stretching out to ¢ = 1/2 — A ~ 0.4921. This agrees pre-
cisely with Fig. 4, since the value ¢ = 123/250 = 0.492 is
just outside the domain.

III. COMPARISON WITH THE
EFFECTIVE-MASS APPROXIMATION

In the effective-mass approximation (EMA) the prop-
erties of the periodic potential are contained in the band-
edge energy and the corresponding effective mass.3 For
our quantum-well problem the effective-mass wave func-
tions ¢(z) for electron states close to the band minima
satisfy

h? d?
[ ——— — — c
sr 7-30(@) = (B — E5)é(2) (36)
with boundary conditions ¢(0) = ¢(L) = 0. The solution
to this textbook problem is
22

E:E;+Wr2, r=1,2,3, ..., (37)
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and the corresponding wave functions are

¢(z) = y/2/Lsin(nrz/L). (38)

Can we expect the EMA to give an adequate descrip-
tion of our quantum-well problem? A prior: this might
be doubtful, since usually EMA is associated with slowly
varying perturbations of a periodic crystal, and the hard
walls of the present problem can hardly fit that descrip-
tion.

In any case, the effective-mass approximation can only
give an adequate description of states energetically close
to the bulk band edges. For comparison we, therefore, ex-
tract values of the exact energy levels, determined in the
previous section, near the conduction-band minimum.
Combining Egs. (3), (5), and (18) we find that

B2 nlr? R2m?
= E¢ U2+...=Fc4+ "~ 24 ...
E=FE,+ 2ma? «a + nt 2m*L27’ T

r=1,2,3,... (39)

where we have used the result for the effective mass
m*/m = a/n?*n? from Eq. (7). To this order the exact
energy levels coincide with the effective-mass result (37).
Thus the effective-mass energy levels are asymptotically
exact when we are close to a band edge.

The EMA wave function, however, does not enjoy a
similar status, in the sense that the envelopes of the
exact wave functions are not well approximated by the
effective-mass wave functions (38). In Sec. V we com-
ment upon this in a more general setting.

IV. SENSITIVITY OF OPTICAL ABSORPTION

In this section, we discuss a measurable quantity that
depends on the interface positions, viz. the oscillator
strength for optical transitions in the quantum well.

The oscillator strength f characterizing the optical
transition from the initial state 1; to the final state vy
is given by®

2 . 2
f= m /"/’f(z) Pz Yi(z) dz
_ 2 2
= ;-5 4o

assuming the light to be linearly polarized in the z direc-
tion. The magnitude of the momentum matrix element
P;¢, which can be evaluated straightforwardly using the
exact wave functions of Sec. IIC, depends strongly on
the interface position. This is illustrated by Fig. 5, which
shows how the oscillator strength varies with the inter-
face position for an intraband transition [Fig. 5(a)] and
for an interband transition [Fig. 5(b)].

Figure 5(a) corresponds to an intraband transition
within the first band for a case with a single boundary-
sensitive domain near g = 1/2 according to Eq. (33). In

1.4

f

1.2

0.8

0.6

0.02

0.015

0.01

0.005

(b)

FIG. 5. Oscillator strengths for (a) intraband absorption
in the first band between the r; = 1 and 7y = 2 states, and
for (b) interband absorption from the first to the second band
between the r; = ry = 1 states. In both cases N = 15 and
a = 10.

the intraband transition the initial and final states have
boundary-sensitive domains around the same critical in-
terface position, but with different widths. The peak seen
in Fig. 5(a) for € = 1/2, therefore, corresponds to both
the initial and final state associated with the boundary-
sensitive domain. The height of the peak, relative to the
value outside the domain, can be shown to be

1/r ri\?
HEAEIE (a1)
4 T; Tf
where r; and ry are the excitation numbers of the states
involved. This factor can, of course, be large. The width
of the peak is of the same order as the width of the small-
est boundary-sensitive domain, here 2A ~ 0.0209.
In the standard effective-mass description? the oscilla-

tor strength for an intraband transition is given by the
wave-function envelopes F;(z) and Fy(z):

2
2 m

= E —Eyme o

L
/{; F}(z) pz Fi(z) dz

a quantity that is independent of the interface posi-
tion. For states close to the bulk band edge, the oscilla-
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tor strength calculated with the effective-mass functions
¢(z), Eq. (38), taken as envelopes, agrees well with exact
values outside the boundary-sensitive domains. It is in-
teresting to note that the enhancement factor (41) for the
oscillator strengths associated with a boundary-sensitive
domain can be recovered from the effective-mass expres-
sion (42) if the envelopes of the exact wave functions are
used instead of the effective-mass functions (38).

Figure 5(b) shows the oscillator strength for an inter-
band transition between states in the first and second
band. The initial and the final state have the same ex-
citation number, i.e., 7; = 7y = 1. The first band has
merely one critical interface position, viz. for eg = 1/2,
whereas the second band has critical positions for €9 = 0
and 1 = 1/2. The oscillator strength has peaks for these
interface positions. It can be shown that the height of
the peak at € = 0 is proportional to 1/L? while the peak
at £ = 1/2 is proportional to 1/L, where L is the width of
the quantum well. So for large well widths, the interband
transitions for which both the initial and final states are
associated with boundary-sensitive domains will have the
largest oscillator strengths.

For interband transitions in an infinitely deep quan-
tum well, the oscillator strength in standard effective-
mass theory? is proportional to [ Fj(z)F;(z)dz. That
the exact results in Fig. 5(b) cannot be described in this
way, be it in terms of the effective-mass functions (38) or
the exact envelopes, is not surprising, since for this in-
terband transition the initial and final states correspond
to band minima at different points in the Brillouin zone.

V. DISCUSSION

An envelope constitutes a useful characterization of the
wave function when it is a relatively slowly varying mod-
ulation F(z) of a rapidly varying function u(z), so that
correction terms (in which the gradient of F(z) enters)
are very small:

P(z) = F(z) u(z) + O (fli;é@—) . (43)

The enforcement of a boundary condition ¥(zo) = 0
at o = 0 requires F(zo) = 0 if u(zo) # 0. This is
the normal situation. However, if u(zo) = 0 then it is
not necessary that the envelope vanishes at the bound-
ary. On the contrary, the next-to-leading-order term in
(43), proportional to the gradient of the envelope, gives
F'(z¢) = 0. This is the basic mechanism behind the
existence of critical interface positions.

A relevant example is the usual envelope-function

expansion'?
_ . don(z) 1
’l/)(l‘) = ¢n(w)un0(1') - Zhd__’tg
E: _ Pn .
" &7 Eno — Euo wo(®) + -+, (44)

where the momentum matrix element p;, near a band
edge at the zone center (k = 0), is given as the integral
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over a unit cell,
a . . d
Pin = A 'u,lo((l,‘) —‘Lﬁ(—i; 'Uno(z) dz. (45)

The critical interface positions correspond in this case
to the solutions of u,o(z) = 0, and since for any peri-
odic potential the Bloch function has n zeroes in the nth
band, there are n critical interface positions for which the
envelope of the exact wave function fulfills zero-gradient
boundary conditions at the interface. From this argu-
ment one can also draw the conclusion that the existence
of the boundary-sensitive domains is independent of the
number of unit cells in the well, and hence the boundary-
sensitive domains persist even when the well width is in-
creased to infinity, as might not have been expected at
first.

So far we have only considered parallel displacements
of the two interfaces, and one might wonder whether
other types of interface displacements would introduce
any new features. We have, therefore, also considered
displacements that change the width of the well. The new
feature that appears is, of course, that the energy levels
change, and may cross the bulk band-edge energies. In
this respect the boundary-sensitive domains play a new
role. The energy levels vary especially rapidly, and cross
the band edges, when the interfaces are in boundary-
sensitive domains. However, with respect to the wave-
function envelopes, no essentially new features appear.

An infinitely high confining barrier is clearly an ap-
proximation of the physical situation and it is natural
to reflect on what happens to the boundary-sensitive do-
mains when the conduction-band offset is finite. Then
there always will be an evanescent wave in the barrier
material. Will boundary-sensitive domains still exist?
The answer is yes.

Assume first that the insulator material is modeled by
a very large, but finite offset. (The crudest approxima-
tion would be a constant potenial, but that is not neces-
sary.) It is intuitively clear, and can be shown by explicit
examples, that energies and interior wave functions are
closely approximated by the infinite-offset results.

Second, assume the insulator to be modeled with a
moderate offset, so that the bound-state energies are near
the middle of an insulator band gap. The wave functions
are still sensitive to the interface position, but the loca-
tion of the critical interface positions are shifted. The
simplest way to see this is as follows. For a given off-
set one can always find a position of the interface within
the unit cell such that the energy of the state involved
is the same as with infinite offset. This is so because
at this energy the bound-state condition in the insulator
fixes the ratio /9’ at the insulator boundary. Since an
infinite-offset eigenfunction possesses all values of /v’
within a unit cell, one can simply position the boundary
suitably in the unit cell so that the evanescent wave joins
this interior wave function smoothly. This means that by
some choice of the interface position, eigenfunctions with
(almost) zero-slope envelopes at the interface still exist.

If the semiconductor is a periodic superlattice rather
than a homogeneous material, the possibility of bound-
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ary sensitivity on a mesoscopic scale, rather than on a
molecular level, is possible. (A quantum-well of super-
lattices is an example of such a material.!!) In this case,
the position of the interface within the superlattice unit
cell can be varied ezperimentally by changing the number
of layers in the two ultimate semiconductor regions. It
would be interesting if corresponding phenomena occur
on this mesoscopic scale.

Wave-function envelopes with zero-slope conditions at
an infinite-potential barrier do also occur in Sham and
Nakayama’s version of effective-mass theory.!? In their
treatment evanescent waves apparently play a crucial
role, and since they are absent in the one-dimensional
situation it is not clear to us that the effects have the
same origin.

Another setting with zero-slope wave-function en-
velopes at interfaces is confinement of a particle in a
quantum well when the barrier effective mass is very
large.!® This is, however, a different physical phe-
nomenon.

VI. SUMMARY

In this article, we have studied the sensitivity of the ex-
act wave-function envelopes at semiconductor-insulator
interfaces. Using the Kronig-Penney model as a starting
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point we are led to the following conclusions for a general
periodic potential in one dimension.

(1) In the nth band there exist n critical interface posi-
tions for which the envelope satisfies zero-slope boundary
conditions.

(if) These n critical positions are the n zeroes of the
Bloch function in the unit cell at the interface.

(iii) In a wide-gap situation the zero-slope boundary
condition is exceptional, in the sense that the relative
measure of the boundary-sensitive domains around the
critical positions is small.

(iv) In a narrow-gap situation (weak periodic poten-
tial), however, the boundary-sensitive domains around
the critical interface positions are wide and cover the
whole unit cell, so the exact wave-function envelopes al-
ways fulfill zero-slope boundary conditions, at least ap-
proximately.

(v) In a theoretical treatment of physical properties
like oscillator strengths the precise localization of the in-
terface may be crucial.
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