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Magnetoexcitons in quantum wires with an anisotropic parabolic potential
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We study theoretically exciton properties of quantum wires (QWR s) with an anisotropic two-

dimensional parabolic potential in a magnetic field. First, the analytical solution for the single-
particle states of the QWR's in the magnetic field is obtained. Then, the energy states are analyzed
numerically including the Coulomb interaction between an electron-hole pair. The results show
that the experimental results on magnetophotoluminescence (magneto-PL) of GaAs QWR's [Y.
Nagamune, Y. Arakawa, S. Tsukamoto, M. Nishioka, S. Sasaki, and N. Miura, Phys. Rev. Lett. 89,
2963 (1992)]can be well explained by this model, demonstrating the importance of the exciton effect
to understand the magneto-PL properties of QWR's. On the other hand, the diamagnetic energy
shift can be understood even without considering the Coulomb interaction, because the change of
the exciton binding energy due to the magnetic field is relatively small compared to the total energy
shift.

I. INTRODUCTION

Two-dimensional (2D) confinement of carriers in quan-
tum wires (QWR's) is an important phenomenon in
physics, and is expected to significantly improve per-
formance of lasers and electronic devices. ' Recently,
several types of quantum wires of high quality have
been realized by metal organic chemical vapor deposition
(MQCVD). s'4 In Ref. 4 clear blueshifts of the photolumi-
nescence (PL) peak with decreasing lateral width of the
QWR's have been reported. In addition, an anisotropic
magneto-PL effects confirms the quantum confinement
effect, where the experimental data of the rn.agneto-
PI. were compared to a simple model which neglected
the exciton binding energy. Measurement of the polar-
ization dependence of PL (Ref. 6) and of magneto-PL
(Ref. 7) in multiple-quantum-well wire structures with
lateral widths of 70—200 nm has also been reported. Pre-
viously, the analytical solution of magneto-PL energy in
quantum structures [i.e., quantum wells (QW's), QWR's,
and quantum dots (QD's) j has also been obtained only for
noninteracting particles in parabolic potentials. Re-
cently, exciton properties of quantum dots in a magnetic
field were analyzed for the special case of an isotropic
parabolic confinement. iz Quantum confinement, mag-
netic field, and electron-hole interactions are all expected
to affect the optical properties of QWR's significantly.
Therefore it is important to include all of these mecha-
nisms in the analysis of the spectra.

In this paper, we first derive the analytical solution
of the energy levels of a 1D carrier gas confined by an
anisotropic 2D parabolic potential in the presence of a
magnetic field without considering the Coulomb effect.
Then we numerically calculate the magnetoexcitons in

the QWR's, i.e., the effect of Coulomb interaction in the
presence of a magnetic field and a QWR potential, by a
variational method. The mutual relations among quan-
tum confinement, magnetic field, and the exciton effect
are discussed. Furthermore, the numerical results for
magneto-PL are compared to the experimental results
for the QWR's in Ref. 5.

II. THEORY

The Hamiltonian of an electron-hole pair with
Coulomb interaction is

H, g~ ——H, +Hg+H~, (2.1)

where Hc = —e/4nsr,

Pa

e is the permittivity, and Hs is the Hamiltonian of a
single particle (an electron or a hole denoted by j
e, h, respectively). Quantum structures (QD's, QWR's,
and QW's) are assumed to be defined by a parabolic
confinement potential. The single-particle Hamiltonian
H~ of the structure in a magnetic field is then

(2.2)

where art s (( = x, y, z) is the oscillator frequency of
the parabolic potential along the gs direction, m is the
isotropic effective mass, and q is the electron charge. If
two (one, none) of ~~s, u„s, and ur, s are (is) equal to
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zero, the structure is a QW (QWR, QD), respectively.
First, we describe the analytical solution for the Hamil-

tonian H = H~ (the subscript j is omitted below) of a
single particle in a magnetic field B along the z axis with-
out Coulomb interaction. A gauge with the vector po-
tential A = B( w—y, v x, 0), where v = g~ /(td + w„)
and iv = g~„/(w + u„), is used. The eigenfunction of

the Hamiltonian H can be separated into functions of
(z, y) and z. The eigenenergy of the Hamiltonian is ex-
pressed as the sum of eigenenergies along the (x, y) plane
(perpendicular to the magnetic field B) E!*'"!and along
the z axis (parallel to the magnetic field B) E!'!.The
eigenenergy along the z axis parallel to the magnetic field
is

(k = 1, 2, . . . ; m = 0, 1, 2, . . . , k). Then the Hamiltonian

Hi is determined by the matrix with dimension (k+ 1) x
(k+ 1) as follows:

(uh „iHi huh „) = tk —(v' —iv') (k —2n) ]Eph„„

2i—vmE, /k —n+ ly n

x(8„„,—h„ i „). (2.8)

E„'*'"' = (1+k)Ep+ (k —2m)E„ (2 9)

The eigenenergy E&*'" of the Schrodinger equation can
be found by diagonalizing this matrix,

(t+ 2)hu, (u), P 0),
E( )

((u, = 0),
(2.3)

El „'",!= (n+ -') r
0

(2.4)

where p, is the momentum of a plane wave along the z
axis, and l is an integer.

The problem of a carrier in the (z, y) plane perpendic-
ular to the magnetic field along the z axis is solved as
follows. In the case of erg = 0 and w„P 0 ((, g = z, y),
the Schrodinger equation can be solved to obtain the
eigenenergy

where Ep —— zhgu, + (u + u„), and Ei
zhgw, 2+ (&u

—tu„)2. This eigenenergy is equal to the
value obtained in a somewhat diferent context. In the
isotropic case of u~ = u» the eigenvalue is equal to
the value given by Fock and Liu et al. In this pa-
per, we focus on the ground state with the energy E =
Ep + 2k', and the eigenfunction along the (z, y) plane
4 = exp( —2X —

2 Y ).
In the following, we discuss our numerical method for

the magnetoexciton effect on an electron-hole pair in a
QWR. The variational method is used for the Hamil-
tonian H, h c determined by Eq. (2.1). We assume a
variational function of the form 4'e h c ——Pi/2, where

Hi ——Ep v'
i
—,+2X

8' 0 't
+2Y

1' 8 8)—2ivivE,
~

X —Y (2.5)

Eo = 2~o and E, = —~,.
Furthermore, the wave function 4 can be expanded by

basis functions

where tdp = g(d 2+ (ld +(d„)2, u, = qB/m' is the cy-
clotron frequency, pg is the momentum of the plane wave
along the ( axis, and n = 0, 1, 2, . . . is the order of the
Hermite polynomials.

When ur u„g 0, we can make the ansatz

@exp(—2X2 —
2 Y2), where X = vz pm*up/ti and Y' =

ivygm'up/h. The Schrodinger equation H! '"~4(x, y) =
E! '"!@(z,y) is then transformed into Hi@ = (E!*'"!—
Ep)C, where

(~-,2zz + ~w, ly'+ ~.2", ) (210)

Pz ——exp( —Pr), (2.11)

(@e,h, C
~
He, h, C

~
@e,h, C)

(@.,h, C)@., h, C)
(2.12)

The exciton binding energy of the system is defined as
E~ ——E, + Eh. —E, h, ~. We parametrize the parabolic
confinement potentials in terms of equivalent widths Iq,
which are chosen such that the ground state single-
particle energies zkuq ~ agree with that of an infinite-
barrier square well h vr2/2m' L&~. .

and nq z, P are variational parameters. Pi is the Gaus-
sian function which gives the correct eigenfunction for
the Hamiltonian H, + Hg, describing the eKect of the
2D parabolic confinement and of the magnetic field.
is the hydrogenic function which gives the correct eigen-
function for the Hamiltonian Hc, describing the effect of
the Coulomb force. The energy is computed as

H (X)Hh (Y)
gm!(k —m)!

where H (t) are the Hermite polynomials

[ni 2]

H„(t) = ) (—1)"(2 —1)!!
i (2p j

(2.6)

(2.7)

III. RESULTS AND DISCUSSION

Figure 1 shows calculated exciton binding energies
Ec of the following quantum structures: (a) a QW
with L, = Liv, L = L„= oo, (b) a QWR with
I = L„= Live, L, = oo, and (c) a QD with I
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FIG. 1. Exciton binding energies of quantum structures:

(a) quantum well with L, = L~, L = L„=oo, (b) quantum
wire with L = L„= Lw, L, = oo, (c) quantum dot with
La = Iy = Ii = LW
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L„=L, = L~, using the material parameters of bulk
GaAs, m,' = 0.067mo, mh ——0.45mo, and e = 12.8e'tt.

In a quantum well, the static dielectric constant e un-
der a perturbing electric field is known to be reduced by
quantum confinement and to have an anisotropy along
the direction of the electric field. is However, the reduc-
tion of e is small in the parameter regime of our inter-
est (larger than 30 A.). Therefore we used the isotropic
e of bulk GaAs. At Lvt = oo, the calculated exciton
binding energy E~ of all three structures reaches the
bulk exciton value of m„'e4/32zzezh 4.S meV, where
m„' = m,'m&/(m, ' + m&) is the reduced effective mass.
In addition, at Ltv = 0, E~ of the QW reaches the
analytical value m„'e4/Sz s h 19.4 meV. i4 In this
case, the exciton wave function is a b function along
the confined direction and a hydrogenic function along
the QW plane, i and is asymptotically given by our
variational function @,, p, ,~ = Pig's with the parameters

-+ oo (j = e, h). Moreover, our calculated ex-
citon binding energies for the QWR and the QD are con-
sistent with the results by previous workers. i

In order to clarify the exciton properties in our model,
we calculate (a) the exciton binding energy Ec and
(b) the root mean square of the relative separation

g(((, —t,"t,)z) along the t,
'

(t,
' = z, y, z) axis for a QD

with variable confinement along one axis (z) and fixed
confinement along the other axes (x, y). The results
are shown in Fig. 2. In Fig. 2(b), it is seen that
the relative separation is not much changed along x, y,
but increases strongly with L until it reaches a con-
stant corresponding to the exciton radius of the QWR.
A difFerent measure of the exciton states is provided by
the normalized parameter tq = P/+2uq (g = x, y, z),
where 1/u~ = 1/uq, + 1/u~ t, . tg describes the char-
acter of the variational function along the g axis, which
can be more Gaussian-like (tq ~ 0) or more hydrogen-
like (tg -+ oo). When L, )) L,L„, the parameters are
related as t & t, t„. When L, && L, L&, t & t, t&.
These show that the wave function is more hydrogenlike
along the direction which is less tightly con6ned by the

~ a a ~ ~ ~ ~ ~ I ~ ~ ~ k ~ I

(b) to 100 1000
L, [A]

FIG. 2. (a) Exciton binding energy Eo and (b) root
mean square of electron-hole separation in the ground state
g((t,', —t,'z)z) along the ( (( = z, y, z) axis, for a quantum
dot which has variable dimension along one axis (z) and fixed
dimension along other axes (s, y).

parabolic potential. On the other hand, the wave func-
tion is more Gaussian-like along the direction which is
more tightly confined.

Figure 3 shows the dependence of (a) the magneto-PL
energy calculated with the Coulomb force (E, t, ~+ Es)
and without the Coulomb force (E, + EI, + Es), and
(b) the exciton binding energy E~ of a QWR with an
anisotropic 2D parabolic potential on magnetic fields
along the difFerent directions, where Es is the band
gap. In this calculation, the following parameters are
used: L~ = 102.5 A, L„= 198.8 A. , mp, = 0.48mo,
m, = 1.42 x 0.067mo, e = 12.8eo, and E~ = 1.519 eV.
The experimental results of magneto-PL for the QWR's
in Ref. 5 are also shown in Fig. 3(a). It is seen that, as-
suming an electron mass 1.42 times heavier than in bulk
GaAs, the magnetoexciton energy E, p ~ + Ez 6ts the
experimental magneto-PL of the QWR's in Ref. 5. This
heavier value of the electron mass is consistent with a the-
oretical calculation including nonparabolicity of the con-
duction band, which shows the electron mass of QWR's
is heavier than that of the bulk by the factor 1.45. The
dimensional parameters L = 102.5 A., L„=198.8 A. are
close to the dimensions estimated in Ref. 5 (10 nm and
20 nm). However, the magneto-PL energy calculated
without the exciton efFect E + E~ + Eg with the same
parameters does not 6t the experiments. These results
show that our model including the exciton efFect well ex-
plains the anisotropic magneto-PL, and supports the 2D
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the calculations with and without Coulomb interaction.
These properties are explained as follows. The change of
the exciton binding energy and the energy shift with the
magnetic field is compared in Figs. 3(a) and 3(b). At
B

~~
x and B = 40 T, the energy shift E, i, c increases

17.0 meV compared. to B = 0, while the exciton binding
energy E~ increases only 2.2 meV. The change of the ex-
citon binding energy is small (about 13'%%uo) compared to
the energy shift due to the magnetic field. Thus, in the
parameter regime of present interest the ground state
energy levels of QWR's in magnetic fields can be under-
stood by the sum of electron and/or hole single-particle
energies and the zero-field exciton binding energy.
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FIG. 3. (s) Photon energy E,,p„,c + E~ (calculated with
Coulomb interaction) snd E, +Ei,+E~ (without Coulomb in-

teraction), (b) exciton binding energy E& of s quantum wire
with sn snisotropic 2D parabolic potential (L = 102.5 A. ,
L„= 198.8 A, L, = oo) with different direction snd mag-
nitude of the magnetic field. Effective masses are taken as
mh, ——0.48mo and m, = 1.42 x 0.067mo. Solid, broken, and
dotted lines show the magnetic field along x, y, and z, respec-
tively. In (s), experimental msgnetophotoluminescence data
of the quantum wires in Ref. 5 are shown. Circles, squares,
snd triangles represent the data for w J B

~~ k, w J B J k,
snd w

~~
B J k, respectively, where w snd k are s vector

parallel to the quantum wires and a vector perpendicular to
the substrate, respectively. Inset: Schematic illustrations of
the quantum wires and the directions of the magnetic field.

IV. SUMMARY

In summary, we have described the analytical solu-

tion of energy levels of a 1D carrier gas confined by an
anisotropic 2D parabolic potential in the presence of a
magnetic field. The exciton properties of a QW with
an anisotropic 2D parabolic potential in a magnetic field
have also been calculated. The numerical calculations in-

cluding Coulomb interaction agree with the experimental
magneto-Pl data of QWR's in Ref. 5 and the results sup-
port the 2D anisotropic confinement of the QWR's. The
exciton effect turns out to be important to determine the
magneto-PL in QWR's. On the other hand, the relative
energy shift due to the magnetic field can be explained
by noninteracting particles, because in the present struc-
tures the change of the magnetoexciton binding energy is
relatively small compared to the energy shift caused by
the magnetic field. Therefore the energy level of a QWR
in a magnetic field can be understood as the sum oi the
energy level calculated without Coulomb interaction and
the exciton binding energy at zero magnetic field.
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