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The electrophonon resonance, based on the long-wavelength optical-phonon population detectable by
the Raman-scattering technique and on the hot-electron cooling rate, is studied theoretically with the
aim of obtaining the separate contributions of the confined and interface modes to the resonance pattern.
Two models of optical phonons are applied to a semiconductor Al Ga& „As-GaAs quantum well with
the square shape of the potential profile: the bulk phonons of the GaAs and the dielectric continuum
model of the optical phonons in a quantum well. The control of the onset of the resonant intersubband
optical-phonon scattering is assumed to be provided by means of either varying the quantum-well width
or the applied homogeneous electric field normal to the interfaces. The electrophonon resonance based
on the detection of the long-wavelength optical-phonon population is shown to give a strongly modulat-
ed resonance pattern for both the confined modes and the interface modes. The intensities of the reso-
nance patterns due to the confined and the interface phonons appear to be comparable with each other
for a broad range of well widths.

I. INTRODUCTION

A basic role in the understanding of transport proper-
ties of semiconductor quantum wells is played by the in-
teraction between charge carriers and lattice vibrations.
The interaction of the conduction electrons with the opti-
cal phonons is of fundamental importance in bulk semi-
conductors like GaAs and in low-dimensional semicon-
ductor structures' at temperatures above 50 K. In low-
dimensional structures, in which the electronic motion is
confined at least in one dimension, an electron-energy
subband structure emerges. Physical properties of such a
quantum-well structure may then appear to be quite sen-
sitive to the ratio between the intersubband energy sepa-
rations and the energies of the optical phonons, especially
in the vicinity of the onset of the resonant intersubband
optical-phonon scattering (RISOPS). The electron-
energy levels can be brought into resonance with the
optical-phonon energy upon varying an external parame-
ter. Various parameters suitable for the tuning of the on-
set of RISOPS were considered. Besides varying the
quantum-well dimensions, such as quantum-well width,
the static electric field normal to the interfaces of the
quasi-two-dimensional (Q2D) quantum well (QW) also
has been considered for the tuning of the onset of the res-
onance. ' In the case when the electric field is used to
control the onset of RISOPS, the effect is called electro-
phonon resonance, although this term is sometimes used
even in the case when the onset of RISOPS is controlled
simply by varying the quantum-well width for the sake of
simplicity of the calculations.

From the point of view of obtaining information about
the electron-subband structure and on the energies of op-
tical phonons, it may be desirable to understand the reso-
nant intersubband optical-phonon-scattering effect as
manifested in various physical quantities available in ex-
periment. In this respect, the high field electronic trans-
port was studied by Briggs and Leburton using the

Monte Carlo technique of semiclassical simulation of
electronic motion in quantum wires, under the presence
of the resonant intersubband optical-phonon scattering.
Peeters, Devreese, and Xu ' studied the electron mobili-

ty and electron-scattering rate in Q2D parabolic, square,
and triangular quantum wells. The quantum-well width
dependence of the hot-electron cooling rate has recently
been shown theoretically to display distinct resonant
features in Al„Ga& „As-GaAs Q2D quantum wells with

a square-shaped potential profile.
Using simple arguments, it becomes readily obvious

that under a situation at which RISOPS occurs, namely,
when the energy separation of two electronic subbands
becomes very close to the optical-phonon energy (reso-
nance condition), the momentum of the optical phonons
emitted or absorbed in the course of the corresponding
electron-phonon scattering events is nearly zero. The
hot-electron cooling rate, calculated without taking the
electronic screening into account, displays clearly sharp
maxima at such well widths, at which the resonance con-
dition is fulfilled. For this reason the generation of
long-wavelength optical phonons can be expected to play
an important role in the electrophonon resonance effect.

The question alone of the generation of long-
wavelength optical phonons has not been studied in

su%cient detail as yet, although this question has been
addressed recently in a somewhat different context,
namely in connection with the experimental observation
of the Raman-scattering signal due to the long-
wavelength optical phonons in very thin semiconductor
quantum wells. In these papers the observation of the
nonequilibrium long-wavelength (LW) optical-phonon
population in the very thin quantum wells has been as-
cribed to the inhuence of the excitonic state in GaAs.
Also in these papers, the in6uence of the interface rough-
ness' and the lattice defects have been suggested to be a
possible source of the presence of the long-wavelength
population in the Raman-scattering experimental data.
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In addition to this, the hot-acoustic-phonon fusion"'
and also the collision broadening effect' ' have recently
been considered as a source of the LW optical-phonon
generation. The recent numerical calculation of hot pho-
non generation in Q2D quantum wells, under the condi-
tions when RISOPS is in effect, has revealed that the op-
tical phonons can be intensively generated in the LW
area of the lateral component of the wave vector of the
optical phonons. ' The Raman-scattering detection tech-
nique could be a very suitable tool for the study of the
resonant intersubband optical-phonon scattering in Q2D
quantum wells. It is well known that in the backscatter-
ing configuration of the Raman experiment, used for the
detection of the population of the hot-optical phonons,
only the phonons with a quite small ( (0.07X10 m ')
lateral component of the phonon wave vector can be
detected, ' because of the total-refiectance angle re-
strictions. It is, however, this particular region of the
phonon wave vector, in which hot phonons are expected
to be strongly generated'5 in Q2D quantum wells, when
the resonance condition is fulfilled.

Such physical quantities as electronic mobility, the
electron-scattering rate, and the hot-electron cooling rate
are integral quantities with respect to the generation rate
of the distribution function of the optical phonons. This
is why in corresponding experiments the resonance
features, which are due to the onset of the fulfilment of
the resonance condition, can be expected to make only a
relatively small contribution to a background, which is
due to the dissipative processes of a nonresonant charac-
ter. The direct measurement of the LW optical-phonon
population, as represented by the Raman-scattering tech-
nique, could thus provide a convenient means for the
study of the electrophonon resonance.

One possible interest when studying the electrophonon
resonance may be the suitability of the given detection
technique to distinguish between the lattice-vibrational
bulk, or confined, modes on one hand, and the interface
modes on the other. It may therefore be desirable to test
from this point of view the electrophonon resonance
effect in the case of the hot-electron cooling, as represen-
tative of a technique based on the detection of an integral
quantity, in the above-given sense, and the electrophonon
resonance based on direct detection of the long-
wavelength optical-phonon population.

In this paper the electrophonon resonance is studied
for the hot-electron cooling rate and for long-wavelength
optical-phonon generation. Two mechanisms are con-
sidered to control the onset of the resonant intersubband
optical-phonon scattering, varying either the quantum-
well width or the applied electric field. The calculations
will be restricted to the simple case of an Al„Ga& „As-
GaAs quantum well with the square shape of the well-
patential profi1e. The electron-phonon scattering will be
treated within the Born approximation, neglecting, e.g.,
many-body effects such as the collision broadening of the
electronic energies. The inhuence of holes in the valence
bands will be neglected. The electronic screening will be
treated at the level of approximation of the Debye-
Hiickel formula. Separate contributions of both the bulk
or confined modes, and of the interface modes to the res-

onance pattern of the LW population of the optical pho-
nons will be determined. The physical models of the elec-
tronic structure of the quantum well and the optical lat-
tice vibrations are outlined in Sec. II. The generation
rates of the optical phonons, and the hot-electron cooling
rate, are derived in Sec. III. In Sec. IV the numerical re-
sults are presented and discussed.

II. THE FORMULATION OF THE MODEL

The system of charge carriers is confined to electrons
in the conduction-band states. It is assumed that the elec-
trons move in a Q2D quantum well, the potential of
which has a square profile in the direction normal (z axis)
to the quantum-well interfaces, with the effective mass m

of the I valley of the conduction band of the bulk GaAs
inside the well. For the sake of simplicity it is assumed
that the potential barriers of the well, placed at the planes
z=kdl2 (d is the well width), are infinitely high. The
orbital part of the wave function of a noninteracting elec-
tron is

f„i,(r)=L 'exp(ikr~~)P„(z), (1)

where P„(z) is the wave function of the motion in the nth
subband in the direction normal to the interfaces,

' 1/2

0n(z) = 2
(2)

in the interval of zE[ —(d /2), (d j2)], L = V, V being
the volume of the sample. Here k is the electronic wave
vector parallel to the xy plane, and r= Iri, zI. The elec-
tronic energies corresponding to g„z(r) are

e„(k)=E„+
2m

mn d
sin z+—

H, = g e„(k)c„+z c„i,
n, k, o

(4)

where c„+k is the particle operator of an electron in the
orbital state (1) and with the spin projection o.

Confining the electronic temperatures to T, & SO K, the
electrons are supposed to interact only with the optical
phonons. The lowest value of the quantum-well width, of
the type presently considered at which RISOPS can be
observed, is about 200 A (1 A=10 ' m). At this value
of d the interface phonons, ' ' are usually not very im-
portant, ' and their contributian to the hot electron cool-
ing rate appears to be quite small. This means that to a
certain extent the use of a model of the lattice vibrations,
which ignores the existence of the interface phonon
mades, can be a good approximation. In particular, the
vibrational modes of the quantum-mell system can be ap-

where E„=(fin n l2md ), n =1,2, . . . , are the ener-

gies of the stationary states P„(z). Let us remark that the
choice of d, as the parameter controlling the onset of
RISOPS, allows one to take advantage of the quantum-
well symmetry which remains unchanged upon varying
this control parameter. This allows for a deeper insight
into the role of the individual vibrational modes in the
transport processes considered.

The Hamiltonian of the noninteracting electrons is
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where we write the full three-dimensional phonon wave
vector Q as Q=(q, s }, where the two-dimensional vector
q is the projection of Q onto the xy plane (lateral com-
ponent), while s is the projection of Q on the z axis (nor-
mal component).

In the representation of the wave functions g„i,(r)
given by Eq. (1), the Frohlich couplingz3 H, , of the elec-
trons and the bulk LO phonons is

H;, =
n, n', k, q, s, o.

(6)

where b, is the annihilation operator of the phonon in
the state (q, s). The coupling constant A, is

1/2

(
—i —i

)
i/2 (7)K~ ICO

%cooA, = —&e
2coV

where Q = lQl and q
= lql. In the last equation we intro-

duce, in an ad hoc way, the screening function f,
which corresponds to the static and long-wavelength lim-
it of the random-phase approximation (RPA) formula,
namely,

q +PH(q)
where P =e nz l(2syc kz T, ) and

d/2 d/2H(q)= f dz, f dzip(z, )p(zz)exp( qlzi zzl)

proximated by the bulk longitudinal-optical (LO)-phonon
modes of GaAs in the sample volume V. Let us note that
there can be some semiconductor structures, in which,
though they are Q2D structures, their deviation from the
homogeneous three-dimensional bulk is not so large as to
cause a mixing of the bulk longitudinal and transverse
optical-phonon branches and to form interface modes.
The 5-doped quantum wells in GaAs (Refs. 21 and 22)
can serve as an example of such a case. In these struc-
tures the approximation of the QW lattice vibrations by
the LO phonons of GaAs can be expected to be a good
approximation. Although the bulk-phonon model does
not provide an electrophonon effect with the interface
modes, the bulk-phonon approximation will be con-
sidered here, in addition to the dielectric continuum
model of the quantum-well optical lattice vibrations.

The two optical-phonon models will now be specified
as follows. Assuming that the energy of the LO phonons
does not depend on the phonon wave vector Q, the Ham-
iltonian of the unperturbed bulk LO phonons is

Hg, =Piccolo b+, b

D„=[E", (cur. i+ co Ti.) +cz(cori+ ~T i )]. .
(ei+s2 }(ei~LI~T2+e2~L2 Tl

)M 2 2 p 2 2 (12)

and Ko are, respectively, the high- and low-frequency
dielectric constants (of GaAs in the case of the present
bulk model), kii is the Boltzmann constant, and T, is the
electronic temperature. In (6), I„„(s)is a form factor:

I„„(s)= f P„'(z)e'"P„.(z)dz . (10)

The theory of the optical lattice vibrations of Q2D
semiconductor quantum wells has been developed along
two main ways, which differ in their complexity. An ac-
count of these theories can be found, for example, in Ref.
27. In the microscopic versions of the theory, the
motion of the individual atoms of the lattice is simulated.
In the macroscopic versions the envelope function of the
atomic displacements is calculated. ' '

In the present paper the dielectric continuum model of
the optical phonons in the formulation of %endler and
Pechstedt' ' is used. From the crystal lattice point of
view, the quantum well presently considered corresponds
to the A1025Ga075As-GaAs structure. The classification
of the phonon modes is as follows: The phonon modes,
which are confined to the GaAs material, are enumerated
by the integer m, m=1, 2, . . . . Correspondingly, the
wavelength of the modulation of the lattice polarization
due to these modes, in the direction normal to the inter-
faces, is A. =2dlm. Consistent with the assumption of
infinitely high barriers of the electronic quantum well, the
electrons do not interact with the confined modes of the
potentia1 barriers of Al„Ga, As in the present model.
There are four interface modes in the heterostructure
considered. Because of the symmetry with the mirror
plane at z =0, these modes are either symmetrical (S) or
antisymmetrical (A), according to the z-refiection sym-

metry of that component of the lattice polarization,
which is parallel to the interfaces. The interface modes
can be classified by the pair (pv) of indexes, with p= A

or S, and with v=+- or —.In the present case it ap-
pears ' that the modes with v=+ have energies close to
the energies of LO and TO (transverse optical) modes of
Aloz5Ga07~As (Al„Ga, „As modes), while the modes
with v= —have energies close to the optical-phonon en-

ergies of the bulk GaAs (GaAs modes).
Alternatively, the interface modes can be identified

unambiguously due to their energies, so that, numbering
the interface modes by the pair index (pv), the interface
phonon frequencies are '

El (~1.1+~T2) s2(1. 2+~T1 + p0 „(q)=pv 2(e", +E~z)

where

For the purpose of a simple determination of the screen-
ing function, we assume all electrons to reside in the
lowest electronic subband with n =1. In the above given
formulas nz is the areal electronic density, e &0 is elec-
tronic charge, so is the permittivity of the free space, ~

Here

i(1—y),
c, ,
"=a.„,( 1 +y ),

Ei=~„2(1+y), —qd

e2" =~„~(1 —y ), (13}

where ~, j=1, and 2, are high-frequency dielectric
constants of GaAs and Al„Ga& As, respectively, while
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coL and coT are the respective bulk frequencies of longi-
J J

tudinal and transverse modes.
The Hamiltonian of the free phonons of the quantum

well is

Hf2=+ AQ, (q)a,.+(q)a,.(q) (14)

in which the index i runs through all of the branches of
the confined and interface phonons of QW, and q is the
two-dimensional wave vector in the xy plane. The opera-
tor a;+(q) is the creation operator of the QW phonon in
branch i, with the wave vector q. The confined and inter-
face modes are coupled to the electrons electrostatically,
via their lattice polarization field. ' The interaction
operator H;z of the electrons with the phonons of the QW
in the dielectric continuum model is

For the case of not too fast changes of the nonequilibri-
um system, which is considered to be the case here, a re-
duced description of the nonequilibrium state is possible,
according to which the nonequilibrium statistical opera-
tor p(t) of the system can be expressed with help of a set

I P), . . . , P„] of operators P, used for the description of
the system, the average values of which, at time t, are

(P }=Tr(p(t)P ) . (19)

p (t)=exp 4(t) g—F (t)P (2O)

An important role in the NSO theory is played by the
auxiliary operator pq ( t }, called the quasiequilibrium
operator, which is ascribed to any nonequilibrium state of
the system. It is defined as

H;2=
Jp 7I, 8,q, k, CT

y,
"'" (q)[a, (q)+a,+( —q)]c„+„+ c„.„

(15)

where F (t) are determined by the equations

(21)

The coupling constant yj'" (q) is

y" " (q) =f dz P„'(z)I J(q,z)$„.(z),

where I J(q, z ) is' (q =
~q~ )

i e so))'t2

I (q, z)= ——
q 2Q (q)A

(16)

1/2

E~~(q, z}f (17)

H =Ho+H1) Ho =He +Hf(& H1 =Hi( (18)

The index /= 1 and 2 refers, respectively, to the case of
the bulk-phonon approximation, and the dielectric con-
tinuum model.

Other interactions, like, e.g., the anharmonic phonon-
phonon interaction" or the coupling of electrons with
other vibrational modes of the crystal lattice, wi11 be
neglected here. The electron-electron electrostatic in-
teraction will be included implicitly by making the as-
sumption that the electronic subsystem is thermalized.

J

In this formula A =L is the area of the interface.
E(~(q,z) is the lateral component of the electric field cor-
responding to the jth vibrational mode, with the wave
vector q. The screening function f is identical to that
used above in the case of the bulk approximation to the
phonons.

For the purpose of further reference, let us write down
the full Hamiltonian H of the system under study, in the
form of a sum of the unperturbed Hamiltonian Ho and
the perturbation H, :

where

(P )' =Tr(p~(t)P ) .

4(t) is given by the normalization condition

Tr(p, (t) )=1 .

(22)

(23)

(P }—S(o)+S())+S'(2)d
t

where

(24)

S' '= . ([P H ]), S'"= . ([P,H, ])' (25)

and

S'"=—', f' dt, e''([K, (t, ), [H„P ]])', ,

in which

s =0+, (26)

The generalized kinetic equation in the NSO theory is the
average of the corresponding Heisenberg equation, per-
formed with the statistical operator p(t). For weakly in-
teracting systems a well-known expansion of p(t} exists,
in powers of the interaction H, . Neglecting certain
memory terms and keeping the leading terms of the ex-
pansion of the collision integral, the kinetic equation giv-
ing the evolution of the mean value (P }is

H, (t) =exp(iHt/A')H, exp( iHt/R) . — (27)
III. RATE EQUATIONS

In a process during which the hot phonons are pro-
duced in the course of the hot-electron cooling, the whole
system is out of thermodynamic equilibrium. Such a pro-
cess can be appropriately described by a theory of the
nonequilibrium transport, as, for example, by the non-
equilibrium Green-function theory, ' or by the non-
equilibrium statistical operator (NSO) theory. The
NSO theory will be used in this work.

The approximation of the full Hamiltonian H in the
latter equation, by the unperturbed Hamiltonian Ho of
free electrons and phonons, gives the Born approxima-
tion to the collision term S' ' on the right-hand side of
the kinetic equation (24}. Later in this section, the first
two terms on the right-hand side of Eq. (24) will be
shown to be zero in the cases presently considered. Then
performing the integration over t1 in the term S' ', one
obtains (e=0+ )
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n, n', k, o,q, q

( [b c„„c„k,[H„P ]])'
A I„„,(q, )

e„(k) —e„(k —q) —fin)0 —i E

([b+ c„+k c„k,[H„P ]])'
e„(k)—e„(k—q)+%coo —i s

In the remaining part of this section the rate equations will be treated separately for the case of the bulk-phonon model
and for the case of the dielectric continuum model.

A. Bulk-phonon model

In the case of an inhomogeneous space distribution of hot LO phonons, the state of the phonon system can be de-
scribed by the single-phonon density matrix (b, b, ). In order to obtain the kinetic equation for this density ma-

trix, it is suitable to include the operators b, b, among the operators of the set IP(, . . . , P„J. Assuming the LO
phonons are dispersionless, the term S' ' is zero. The term S"' is found to be a mean value of a product of particle
operators, among which one, and only one, of the operators is a phonon operator. These terms will be set equal to zero.
In the term S' ', given by the right-hand side of Eq. (26), the commutators can be calculated and the resulting mean
values decomposed with the help of the generalized Bloch —de Dominicis theorem. In this procedure only terms like
(bq ~ b, ) and (b~ ~

b+, ) are considered nonzero for arbitrary q, and q,'. Introducing the notation
q q q, q qq

q, q, q q qz q, q
(29)

and

+fn~k~cr
= ( Cn, k, ocn~k~o ) (30)

we arrive at the following equation for the evolution in time of the single-phonon density matrix:

I„„,(q, }I„.„(—s, )
~p, q ~p, s& (k) (k ) ~ Ifn, k, o(1 fn', k p, )fios —q(+(fn, k, o fn', k p, )opV, s—q)]2 E'~ 6~s Q)0 EE

In n (S( )I„.„(—q, )

~'~ e„(k)—e„(k—p) —fico +is

X[f„k (1 f„.k p
)5—, +(f„k f„.k rr )V&—q, ] . (31)

Assuming that the thermalization process within the electronic subsystem is fast enough, functions (30) are approximat-
ed by the Fermi-Dirac distribution function.

It is rather suitable to work with a more tractable concept than the matrix v, , Recently, the generation of hot

LO phonons was studied within the approximation of the bulk LO-phonon modes, basing on the concept of the phonon
wave packet. ' Equation (31) was obtained in Refs. 37 and 38 with the use of the method of Ref. 39. In the present
paper the concept of the phonon wave packet mill not be used; rather, the single-phonon density matrix will be ex-
pressed in terms of the Wigner distribution function.

In the Q2D quantum well it is appropriate to introduce the function N (p, q, z), defined as

l ISZN(p, q, z) =—g vp q+(s/z) Q (s/i)
S

(32)

This function has the properties of a Wigner function; that is, it has the meaning of the number of the phonons in the
vibrational mode (p, q) having the momentum component p parallel to the xy plane and the perpendicular momentum
component q, in the unit volume of the coordinate space, placed at a distance z from the z =0 plane. Because of the
discretization of the vector (p, q }which corresponds to the whole volume V of the sample, only the quantity VN(p, q, z)
remains finite when V—+ 00. Obviously, at the thermal equilibrium of the phonon system at the lattice temperature Tl,
it holds that

1

exp[ficoo/(ks TI )]—1
(33)

For the purpose of the present paper it is suitable to introduce the nonequilibrium part g (p, q, z) of VN(p, q, z), i.e.,

g(p, q, z)= VN(p, q, z) vt, — (34)

and call it simply the Wigner function. When expressed in terms of the Wigner function, the rate equation (31) reads
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g(p, q, z)= — g A +~,&z~ A ~,&z~I„„[q+(s/2})I„.„[—q+(sl2)]e
t A'

X [f„z (1 f„—. z )+vL (f„z —f„z )]5[e„(k)—e„.(k —p) —)}Itoo]+2ReM(p, q, z),
(35)

where

iL L/2
M(p, q, z)= g dz, A~ s A~ q (,zz~I„„.(q, )I„,„[—q+(s/2)]

fl „„i —L/2
n, n, q, s

itq —
q +(s/2)]z&

Xe '"e '
g p,

q+q. +-'
(36)

in which

e„(k) e„—(k p)—duo—o i s— (37)

Formula (35) is the second-order (in H „(=1) expression for the generation rate of the LO phonons at a nonequilibrium

state of the LO-phonon system, expressed by means of the Wigner function g (p, q, z). The term M(p, q, z) contributes to
the generation rate of the hot-phonon population when the state of the phonon system differs from the equilibrium state
vL . The hot-phonon effect is neglected in the present work upon taking the term M (p, q, z) as zero.

In a completely analogical way the rate of the change of the total electronic energy (H, ) can be obtained from Eq.
(28). The result is

, , I'I ..(q, )l'[f.,~, ( —f. ~,.)+ t, (f.,~,.—f. ,~,.)] [ .( }—e. ( —q) — 0]
n, n', k, q, q, 0

I

+ z J dz A~ A,1„„.(q,')I„, „(—q, )e
I

k, q, q, q

q, +q,'
Xg q, ,z (f„q —f„q ~ )5[e„(k)—e„(k—q) —%coo] . (38)

This is the second-order (in H„/= 1) formula for the rate of change of the mean electronic energy, expressed in terms
of the Wigner function, valid for a nonequilibrium state of the phonon system. It is straightforward to see that

p qz

Let us define the zeroth moment go(p, q, ) of the Wigner distribution function g(p, q„z) as

l L/2
go(p, q, )=— g(p, q„z)dz,—L/2

(39)

(40)

which is related to the diagonal part of the single-phonon density matrix (29}.~ At least in sufficientl broad quantum
wells the nonzero values of the Wigner function are confined roughly to the interval —d /2 & z & d /2, which appears to
be supported by additional numerical computations. The function go(p, q, ) then has the meaning of an average of the
Wigner function g(p, q„z) in the area of the quantum well. The rate of change of the mean electronic energy is then
given in fact by the rate of change of the zeroth moment of the Wigner function,

ficottd
(H, )=— g go(p, q, ) .

p, q

(41)

The hot-phonon population of a semiconductor quantum well can be conveniently monitored with help of the
Raman-scattering experiment. The signal which is measured in this experiment is, in general, given by the full single-
phonon density matrix or by the corresponding Wigner distribution function. It is, however, reasonable to expect that
the leading contribution to the Raman signal, due to the nonequilibrium phonon population, will be given by the zeroth
moment go(p, q) of the Wigner function g(p, q, z) at the quantum-well widths considered here.

Under the condition that the electrons are at equilibrium at the temperature T„while the phonons are at equilibrium
at the temperature Tz, it is obtained from Eq. (35}that the generation rate of the zeroth moment of the Wigner func-
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tion reads

—„go(p q. }= g l~, , I' ll. .(q, )l'g [f., g, (1—f. ,~-,,.)+vt(f. j,. f—.~-,.)]5[e.(k) —e..(k —p}—&~0] .
n, n' k, a

The rates of change of the zeroth moment of the phonon %'igner function and of the mean electronic energy, given by
Eqs. (42) and (41), respectively, will be evaluated numerically later in this paper.

B. Dielectric continuum model

Similarly to the case of the bulk approximation to the optical phonons, we confine ourselves to the Born approxima-
tion to the collision integral S' '. At a nonequilibrium, the state of the phonon system can be described by the single-
phonon density matrix 4 I(q),

@,,(q)=(uJ+(q)tt (q)) . (43)

Generally, the hot-phonon signal, detected in the Raman-scattering experiment, will be determined by the matrix
4 I(q). It is assumed here that, to a good approximation, the detected signal is determined by the diagonal terms
4&(q) =4&&(q) of the full density matrix 4J&(q}. In the kinetic equation for the diagonal term 4I(q) the term S' ' is ob-
viously zero. The term S"' is set equal to zero, using argumentation analogical to that used in Sec. III A. With Hamil-
tonian (18), where /=2, it is obtained that

dc'l(q)
dt

l jl& n, p+q, cr & n', p, cr lj q & n p+q, cr J n', p, cr

AQ, (q) —e„(p+q)+e„.(p)+is

l
4

nn' n'n jl&np+qcr &n'po jl q &np+qcr &n'po(1 f, )+—(P. (q)(f f, )—
q p

' q
fiQ, ( q) —e„(p—+q)+ e„(p) .i e— (44)

When the phonon system is at equilibrium, then 4 I(q) on the right-hand side of the latter equation, in which it may
represent the hot-phonon efFect, is diagonal and the generation rate reduces to terms proportional to the energy-
conserving 5 function, which have the meaning of the phonon generation due to the hot-electron cooling. When C&~I(q}
is not diagonal, then Eq. (42) also contains terms, the meanings of which are a redistribution of the hot phonons in
space.

Restricting ourselves to considering the phonon generation rate in the state at which the electrons have the tempera-
ture T, and the phonons have the temperature TL, the generation rate d 4 (q)/dt is then

2~
dt fi, ~yj"'" (q) ~ 5[4'QJ(q) —e„(p+q)+s„(p)]

X [f„,+,.(1—f„,.}[1+~,.(q)]—f„,.(1—f„,+,. (45)

while the rate of change of the electronic energy at this
state of the whole system is

I

performed using the material parameters taken over from
Refs. 41, 42, and 43. In particular, in GaAs we take

d&H, & d4 (q)= —g AQ, (q)
dt

I
= 10 90 Cg)L) =5 496X 10 s

mz-, =5.057 X 10' s

The latter two formulas will be evaluated numerically.

IV. NUMERICAL RESULTS AND DISCUSSION

The electrophonon resonance effect wi11 be analyzed
numerically assuming that the electron-phonon system is
prepared at a state at which the electrons have a tempera-
ture T, and a (three-dimensional) density n„while the
lattice vibrational modes have a temperature Tz, TL & T„
by the action of a short laser pulse at some instant of
time. In Sec. IV A the electrophonon resonance based on
the phonon generation rate is evaluated. The hot-
electron cooling rate electrophonon resonance is con-
sidered in Sec. IVB. The numerical computations are

while for Alo. 25Ga0. 75

2= 10.22, coL,2=6.979 X 10' s

co~2=6.731 X 10' s

A. L%'-phonon generation

1. Bulk-phonon model

Because of the isotropy of the generation rate with
respect to the direction of the lateral component of the
wave vector p, this rate is computed for p=(p, O) and is
denoted as dgo(p, q)ldt. Five electronic subbands are
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taken into account. The lattice temperature is TL =10
K. The hot-phonon generation rate dgo(p, q)/dt is given
in Fig. 1 as a function of the lateral component of the
wave vector p and the normal component q of the LO
phonon. This generation rate is computed at such a well

width (150 A), at which no pair of the subband energies
E„ is at resonance with the energy of the LO phonons.
This can be verified upon inspection of Table I. In this
table those well widths are given at which the resonance
conditions

E„—E„.=Ra)p (47)

is fulfilled by a pair of electronic subband energies E„and
E„.. The squares of the absolute values of the form fac-
tors, ~1„„(q)~,are also given in Table I, computed for
q=q, =0.7X10 m '. The reason for this choice of
wave vector q will become clear below. Thus, as can be
seen in Fig. 1, below about p =0.25X10 m ', the hot
phonons are not generated, consistently with the fact that
the resonance condition is not fulfilled.

In Fig. 2 the phonon generation rate is computed at
the well width of d =216 A, at which the resonance be-
tween the second and first electronic subbands occurs (see
Table I). At this situation the phonons with a small la-
teral component of the wave vector are strongly generat-
ed. This is manifested by the presence of a narrow ridge
in Fig. 2 at about p =0.05 X 10 m '. Detailed computa-
tions show that when the resonance condition is fulfilled,
the ridge is very narrow, and is found very close to the

p =0 plane. The ridge moves away from the p =0 plane,
and becomes broader, subsequently, as the well width in-
creases.

In the current applications of the Raman-scattering
technique, for the study of the hot-phonon population in
quantum wells, the geometry of the possible experimental
setup, as determined by the Brewster angle restrictions, is
reported to be such that the momentum of the detect-
ed nonequilibrium phonons is about p, =0.05 X 10 m
in the lateral direction, while in the direction normal to
the quantum-well interfaces the phonon momentum com-

TABLE I. Resonance well widths (in 10 ' m) and form fac-
tors.

216
279
330
353
374
414
432
450
483
483
499

n' ll„„,(q, }I'

0.07
0.12
0.17
0.01
0.20
0.23
0.03
0.25
0.27

5X10-'
0.06

ponent is about q, =0.7X10 m ' (backward scattering).
Assuming, as was done already above, that the intensity
of the Raman signal is basically determined by the zeroth
moment of the Wigner function, we shall analyze further
the generation rate dgo(p„q, )/dt. From this reason the
form factor in Table I is computed at the value of q =q, .
The generation rate dgo(p„q, )/dt will be computed as
dependent on the well width and on a homogeneous elec-
tric field applied in the direction normal to the interfaces
of the well. The occurrence of the Raman signal is then
expected to mark the onset of the intersubband optical-
phonon scattering between a pair of subbands.

In Figs. 3—5 the generation rate dgo(p„q, )/dt is com-
puted at the values of p, and q, given above. In Fig. 3
the generation rate is presented as a function of the width
d of the quantum well. Comparing the resonance well
widths, at which the generation rate achieves the maxi-
ma, with the well widths given in Table I, it can be seen
that the positions of the resonance maxima of the genera-
tion rate correspond practically exactly with the well
widths given in Table I. It appears that the observation
of the resonance at p =p„ instead at p =0, causes an er-
ror in the determination of the resonance well width,
which is not larger than about 10 ' m, in the range of
the well widths of Fig. 3.

O

0

0
& o-
& O~

C&
Q7

c7

0
0

0
0-

& O~
a)
CP

FIG. 1. Generation rate do(p, q)/dt as a function of the la-
teral component p and normal component q of phonon wave
vector (u =10 m ')y Te 1000 Ky Tl 10 K, and n, =10
m . The well width is 150 A.

FIG. 2. Generation rate dgo(p, q)dt at the well width of 216
A. See the caption to Fig. 1 for other data.
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FIG. 3. Generation rate dgo(p„q, )/dt as a function of the
well width, atp, =0.05X10 m ' and q, =0.7X10 m '. Solid
lines: T, =1000 K and TL =10 K. The electronic densities n,
are 10 ' m ' (curve 1), 10 m ' (curve 2), and 10 m ' (curve
3). These lines conserve their mutual ordering throughout the
graph. Dashed line T, =300K, TL=10K, and n, =10 m '.

0 1 2

0. 1

0
O

~ 0.0
200 220 240 260

well width d (1 0 m )

FIG. 4. Generation rate dgo(p„q, )/dt as a function of the
weH width, T, =600K, TI =10 K, and n, =10 m . Electric-
field intensity F in units of 10 V/m: 0 (curve 0), 0.1 (curve 1),
0.2 (curve 2), and 0.3 (curve 3).

In Fig. 3 the d dependence of the generation rate
dgo(p„q, )ldt is displayed for three values of the elec-
tronic density n, From. the point of view of the magni-
tude of the generation rate, or the nonequilibrium pho-
non population, there appears to be an optimal value of
the electronic density. The decrease of the computed
population at the density roughly above 10 m can be
explained by the increase of the influence of the static
screening with the increase of the electronic density.

The width of the resonant peaks, displayed in Fig. 3,
appears to depend on the temperature T, of the electron-
ic system. With decreasing T, the width of the resonance
peak decreases, together with the generation rate. It is
observed that there is a correlation between the values of
~I„„(q)~, corresponding to a given resonance, as given in
Table I, with the strength of the corresponding peak in
Fig. 3.

The high sensitivity of the LO-phonon generation rate
dgo(p„q, )ldt to the variation of the well width allows

FIG. 5. Generation rate dgo(p„q, )/dt as a function of the
electric-field intensity F, at the well width d=225 A and

TL = 10 K. Curve 1, T, =400 K; curve 2, T, =300 K.

one to expect that the sensitivity of the same quantity to
a homogeneous and constant electric field, applied in the
normal direction, will be similarly high. For the sake of
simplicity, the influence of the electric field on the elec-
tronic energies and electronic wave functions in the quan-
tum well is taken into account only by means of the stan-
dard perturbation theory calculation. Because of the
restrictions imposed by the limits of validity of the per-
turbation theory, the influence of the electric field is

displayed only for a restricted range of well widths. The
numerical results are illustrated in Fig. 4. The resonance
maximum, which is located at d =216 A at the zero elec-
tric field, shifts toward higher values of d with increasing
electric-field strength. The magnitude of the shift in d
appears to be roughly quadratic in the electric-field
strength I', as expected in the quantum well considered,
with the potential profile being symmetrical with respect
to the reflection in the z =0 plane.

The modulation of the generation rate with the varia-
tion of the electric-field intensity is shown in Fig. 5. In
this figure the phonon generation rate dgo(p„q, ) ldt is

plotted against the electric-field intensity F, at a well

width of 225 A. A comparison of the two curves in Fig.
5, computed at difFerent temperatures of the electronic
subsystem, shows again that the width of the resonance
pattern decreases with decreasing T„ together with the
overall decrease of the generation rate. The data present-
ed in both Figs. 5 and 3 show that the modulation of the
long wavelength population in the electrophonon reso-
nance effect, controlled by varying either the well width
or the electric Seld, may be rather strong.

2. Dielectric continuum model

Similarly to the case of the bulk-phonon model, the
phonon distribution function is considered dependent
only on the magnitude q of the wave vector q. In Fig. 6
the generation rate d@1(q)/dt, computed at the fixed

value of q =0.05 X 10 I ', the choice of which is based
on similar argumentation to that given in the Sec. IV A 1,
displays a strong modulation with respect to the variation
of the we11 width for both the interface and the confined
modes. Seven electronic subbands are taken into account
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in the numerical calculation. In this section the compu-
tations are carried out at n, =10 m and T& =4.2 K.
In Fig. 6(a) the generation rate is displayed for the
confined modes. In the presently used theory of optical
phonons, the frequencies of the confined modes are iden-
tical to the frequencies of the LO modes of bulk GaAs,
0 (q)=coo, for m =1,2, . . . . The well widths at which
it holds that

0.2

0

(D

(D

0..0 I I I I I I I I I f I ~ I I I I ~ ~ I'
/

I

'l50 250 350
well width (10 m)

A'0 (q) =E„E„—,
for a pair of electron subbands n and n', are identical
with those given in Table I. Similarly to the case of the
bulk-phonon model, it holds here that the positions of the
resonance maxiina in Fig. 6(a) agree with high accuracy
(less than 1 A) with the resonant well widths given in
Table I. Restricting ourselves to the first five well widths
given in Table I, in agreement with the symmetry restric-
tions, the rn =2 and 4 confined modes give the reso-
nances at these well widths, with the exception of the res-
onance at d =353 A. At this particular well width only,
the symmetrical phonon modes with m =1, 3, and 5 pro-
vide the resonant spikes.

Note the similarity between this figure and Fig. 3 con-
taining the electrophonon resonance pattern calculated in

the bulk-phonon model. The dielectric continuum model
allows for a more detailed classification of the peaks in

the resonance pattern. The intensities of the resonant
maxima calculated within the two phonon models are
rather close to each other for the confined modes with
even m, while the resonance feature at 1=353 A, corre-
sponding to the odd values of m, comes out rather weak
in the bulk-phonon model calculation.

The resonance pattern due to the interface modes of
14&(q)/dt plotted against the well width, is displayed in

Fig. 6(b). It appears that the strongest phonon genera-
tion rate can be expected for the mode ( A —). The posi-
tions of the resonant peaks practically agree with those of
the antisymmetrical confined modes (rn =2 and 4), which
is due to the fact that the energy of the ( A —) phonon is
close to the energy of the confined phonon. The intensity
of the resonant maxima due to the (A —) mode coines
out as comparable to the intensity of the confined modes.
Generally speaking, when using a resonant condition of
the type of Eq. (48) in the case of the interface modes, one
should be aware of the wave-vector dependence of the in-
terface phonon energy. Nevertheless, one can argue that
because the energy of the ( A + ) mode appears to be
larger ' than fuuo, the resonance maxima of this an-

tisymmetrical interface mode come out systematically at
lower values of the well width. The generation rate due
to this Al„oa, „As mode is smaller than the rate due to
the (A —

) mode, however. The resonance peaks due to
the symmetrical interface modes, expected at about 353
A, between the electronic subbands n =3 and n'=1, are
very weak and could thus not be shown in this figure.

The generation rates of the distribution functions, plot-
ted against the wave vector q, are displayed for several
significant phonon modes and well widths in Fig. 7.
Curves 1-4 show the generation rates of the respective
modes at such well widths, at which the resonance condi-
tion (48) for the intersubband scattering is fulfilled. All
these curves have their maxima at low values of q, and
decrease quickly with increasing q. Figure 7, together
with Figs. 1 and 2, show that at long wavelengths the

(b)

~ 0.2-
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0
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FIG. 6. Generation rate d@I(q)/dt as a function of the well
width, at q=0.OSX10 m ', T, =1000 K, Tz, =4.2 K, and
n, =10 m . (a) Confined modes. Circles: m =1; full line:
m =2; squares: m =3; dashed line: m =4; crosses: m =5. (b)
Interface modes. Full line: mode (A —); dashed line: mode
(A+).
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FIG. 7. Generation rate d@I(q)jdt as a function of the wave
vector q, at T, =1000 K, for the following modes and well
widths: curve 1: interface ( A —), d =217 A; curve 2: confined

0 0
m =2, d=217 A; curve 3:confined m =3,d =353 A; curve 4: in-
terface ( A + ), d = 194 A, curve 5; confined m = 1, d =217 A.
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generation rates of the interface modes, and therefore
also the hot-phonon populations of the interface modes,
can be expected to be comparable to those of the confined
(or bulk) modes, even at well widths of about 200 A or
larger. The decrease of the generation rate of the ( A + )

mode, with increasing q, is relatively slow. This is due to
the fact that the wave-vector dependence of the frequen-
cy of this mode is an increasing function of a q. ' This
property influences the resonance condition in such a way
that the range of the wave vector q, for which the reso-
nance condition is fulfilled, tends to broaden. It is ob-
served that the overall trend of the LO-phonon genera-
tion rate, observed in the above-considered bulk-phonon
model, namely to give a strong generation in the long-
wavelength area under resonant conditions, is repeated
here, even in the case of the interface modes.

For the purpose of comparison, the generation rate of
the confined mode with m =1 (curve 5) at d =217 A is
shown. At this well width, this mode takes part only in
the intraband optical-phonon scattering processes of a
nonresonant nature. The energy and momentum conser-
vation laws, which restrict the intraband scattering, to-
gether with the form of the electronic distribution func-
tion, lead to the appearance of the usual maximum of the
generation rate at about q =10 m ' and to the absence
of the phonon generation in the region q (0.3 X 10 m
of the phonon wave vector.

A static and homogeneous electric field, applied to the
quantum-well system with the intensity F normal to the
interfaces, causes changes in the energy levels and wave
functions of the electronic motion in the normal direc-
tion. Because of the limited validity of the standard per-
turbation theory, ~ used in the present case, the electro-
phonon resonance effect is considered only in such cases
in which the phonon energy comes into resonance with
the lowest two electronic subband energies E, and E2.
As was shown above in the case of the bulk-phonon mod-
el, under the influence of the electric field the resonant
peaks move toward larger values of the well widths in
plots of the generation rate such as those in Figs. 6(a) and
6(b). In order that a low enough electric field be sufficient
for the demonstration of the electrophonon resonance
e6'ect, a suitable choice of well width is again necessary.
In Fig. 8(a), the latter effect is demonstrated for the case
of the confined phonon mode with m =2, choosing a well
width equal to 235 A. The plot of d4&(q)/dt at

q =0.05X10 m ' against the electric-field intensity I'
shows that a distinct resonance pattern with a well-

defined maximum and with the generation rate decreas-
ing sharply toward zero at both the high- and low-field
sides of the resonance peak can already be observed in
the field range up to 0.5X10 V/m. This result is sup-
ported by the bulk model calculation of Sec. IVA1,
which leads to a similar conclusion. Similarly, a decrease
of the electronic temperature leads to a narrowing of the
electrophonon resonance maximum; however, the overall
intensity of the generation rate decreases as well.

In the same Fig. 8(a) a plot is displayed of the electro-
phonon resonance between the electronic levels E, and

E2 and the energy of the interface mode ( A —) at a well
width of 235 A. Because of the close values of the ener-

B. Hot-electron cooling rate

The electrophonon resonance based on the hot-electron
cooling rate is evaluated numerically under similar condi-
tions as assumed in previous sections; that is at the initial
instant of time of the process of the hot-electron relaxa-
tion, at which the electron subsystem is prepared at the
state with temperature T„while the phonons are at equi-
librium at the temperature of the ambient lattice TL.
The three-dimensional electronic density n, is kept con-

0.20 ~-——
~ (~)

, :G. l5 ~
/

o~ o

o/

/

( o/
'

/ ry ~ o

o
/

O. OO ~=

( 'I () V,/'

0.00='~—

O. QDO—
0.0 0. "-'

(1 iJ V/n-i)

0

FIG. 8. Generation rate d@I(q)/dt as a function of electric
field F, at q =0.05X10 m '. (a) Well width of 235 A.
Confined mode with m =2 at T, =1000 {circles) and 500 K
(squares); interface mode {A —) at T, =1000 (fu11 line) and 500
K (dashed). (b) Well width of 205 A, interface mode (A +).
Curve 1: T, = 1000 K; curve 2: T, =500 K.

gies of the confined phonon and the interface phonon
( A —), these two modes cannot be practically dis-
tinguished according to the position of the resonant max-
imum on the field axis. However, the intensity of the rate
due to the interface mode ( A —

) is expected to be as
strong as that due to the confined modes, at this well
width. In Fig. 8(b) the same plot of the generation rate of
the ( A + ) mode, taken at a well width of 205 A, shows
similar characteristics, as far as the field dependence of
the generation rate is concerned. A nonperturbative
treatment of the electric field would be suitable in order
that the electrophonon resonance be demonstrated
theoretically in more detail at larger well widths and/or
stronger electric fields.
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FIG. 9. Power loss per electron r as a function of well width
d in Al„Ga& „As-GaAs quantum well. Five lowest electronic
subbands, five confined modes and all interface modes are in-
cluded (full line). Dashed line, without screening.

stant throughout the calculation and equal to 10 m
The teinperature Tt of the phonon system is set equal to
4.2 K. Both the dielectric continuum model and the
bulk-phonon model are used in this section. The number
of the electronic subbands taken into account is five in
the present section. The first five modes of the confined
phonons are included. The power loss r per one electron
can be expressed as r =—( Vn, ) '(d (II, ) ddt ).

In Figs. 9 and 10 the d dependence of the power loss is
presented, calculated within the dielectric continuum
model. The cooling rate computed at T, =50 K is given
in Fig. 9. The power loss per electron r, expressed in p%
per electron, appears to reach a broad maximum at about
70—80 A (1 A=10 '0 m). The presence of this max-
imum, which is a nonresonance one, however, is linked to
the interplay between the increasing efficiency of the cou-
pling between electrons and confined phonons on one
side, and the decrease of the electron population of the
lowest subband on the other side, when d is increased.
The maximum at about 220-240 A corresponds to elec-
trophonon resonance of the two lowest electronic sub-
bands with the optical phonons. This maximum does not
reveal any structure due to the difference between
confined and interface phonons. Another resonance is
seen at a range of well widths of 350-360 A. At this res-
onance, the first and third electronic subbands are at res-
onance with the single-phonon energies. Additional com-
putation shows that this resonance feature, together with
a number of others, appear to be systematically weaker
than the feature at 220 —240 A and will thus not be dis-
cussed in detail. In particular, the interface modes play a
negligible role at these resonances.

The resonance curve of r as a function of the well
width d, computed with the electronic screening includ-
ed, shows that the screening provides not only an overall
decrease of the hot-electron rate, but also that it makes
the resonance maxima less pronounced. The latter effect
is caused by the fact that the processes of the generation
of the long-wavelength optical phonons, which become

1000

0
0

500—

CL

I

100 200
I

300 400

d (10 rn)

effective upon the onset of the RISOPS between the two
subbands, and which lead to the well-developed spikes at
the resonances, are suppressed by the screening. The un-
screened power loss in Fig. 9 should be compared with
the cooling rate given recently in Ref. 6, computed within
the bulk-phonon model. On comparison one can see that
the appearance of well-developed spikes in the cooling
rate is connected with the absence of the electronic
screening of Frohlich interaction at long phonon wave-
lengths. Let us remark that the resonance pattern of the
d dependence of electron mobility in the Al„Ga, „As-
GaAs quantum well, given in Refs. 4 and 5, which is re-
ported to be calculated without electronic screening, does
not reveal a sharp-peak structure. Similarly, the d depen-
dence of the electron mobility in a GaAs slab, calculat-
ed with the use of bulk phonons, without electronic
screening, does not possess a sharp-spike structure at
comparable electronic densities and lattice temperature.
This may lead to a conclusion that the electron mobility
resonance pattern can be expected to be less pronounced
than the hot-electron cooling rate resonance pattern.

The structure of the cooling rate resonance pattern is
further analyzed in Fig. 10, in which the individual
optical-phonon mode contributions are identified. The
interface phonons clearly have a dominating role at
d =20 A. Their contribution to the hot-electron cooling
rate prevails over that of the confined phonons until
about d =50 A. This appears to be in accord with recent
experimental findings' for GaAs-AlAs quantum wells.
The contribution of the interface phonons decreases with
increasing d, while the contribution of the confined
modes increases. The position of the cooling rate max-

0
imum at 70—80 A is influenced by both interface modes
and one (m =1) confined mode. At 200 A the contribu-
tion of the interface modes is about 10% of the total cool-
ing rate due to all phonon modes taken into account.

The resonant feature at about 230 A, at which the two
lowest electronic subbands are at resonance with the

FIG. 10. Separate contributions of the interface modes

(S—), (S+ ), ( A —), and ( A + ) to the power loss per electron.
Number n at the curves means the separate contribution due to
first n confined modes only. T, =100 K. All vibrational modes
are included (five confined modes) in the total curve.



7652 K. KRAL 50

optical-phonon energies, is due mostly to m =2 confined
mode. The two antisymmetrical interface modes which
contribute to this resonance are ( A + ) and ( A —). The
energy of ( A —

) mode appears to be quite close to the en-
ergy of LO phonons of bulk GaAs. This is why the reso-
nance contribution due to this mode is positioned quite
close to that of the confined mode. Although this mode
is the one which is more strongly coupled, out of the two
antisymmetrical confined modes the resonance maximum
due to this mode remains hidden on the background of
the m =2 confined mode. The contribution of the
Al„Ga, „As interface mode ( A + ) at 190 A is separated
enough on a scale of d to be distinguished from the main
feature at 230 A; however, it comes out to be very weak.

Besides Fig. 9, in which the effect of the electronic
screening is computed with the use of the dielectric con-
tinuum model, this effect is also displayed in Fig. 11,
computed with the use of the bulk-phonon model. In
Fig. 11 the power loss per electron is plotted as a function
of the well width. Similarly to the case of the dielectric
continuum model (Fig. 9), the introduction of the static
screening leads not only to an overall decrease of the
hot-electron cooling rate, but also to a loss of the sharp-
ness of the resonance spikes with respect to the resonance
pattern computed without the electronic screening.
Curves 1, 2, and 3 in Fig. 11 shows the effect of the elec-
tric field on the hot-electron cooling rate resonance pat-
tern. The peak, which is positioned at 216 A in the ab-
sence of the field, shifts toward higher values of d, and
the high-d shoulder of it increases with the increase of
the field intensity. This behavior can be understood upon
realizing that, besides the electronic energies, the elec-
tronic wave functions also are influenced by the electric
field, which in turn has an impact on the electron-phonon
scattering via the form factors (10). Also, the applied
electric field influences the nonresonant background in
the resonant pattern displayed in Fig. 11. A more de-
tailed quantitative analysis of the influence of the electric
field on the hot-electron cooling rate would require a

nonperturbative treatment of the electric field, although
it is quite obvious that the electrophonon resonance effect
based on the hot-electron cooling rate, controlled by the
normal electric field, is likely to be less pronounced than
that based on the direct long-wavelength optical-phonon
detection.

As we have seen, the interface phonons are not likely
to be easily distinguished in both hot-electron cooling
rate and electronic mobility resonance patterns in the
rectangular Al„Ga& „As-GaAs quantum wells presently
considered. The main reason for this is the large well
width d at which the resonance separation of the elec-
tronic subbands is achieved, at which the contributions of
the interface modes are already relatively weak. An oth-
erwise sufficiently simple quantum-well structure, at
which at least one of the subband electronic wave func-
tions P„(z) overlaps sufficiently with the interface modes,
would be more favorable for an observation of interface
modes.

Increasing the electronic temperature causes a subse-
quent deterioration of the modulation of the resonance
pattern, as is seen in Fig. 12, computed within the dielec-
tric continuum model. This trend is in agreement with
the results of the mobility calculations, ~'5 indicating that
the modulation of the cooling rate curve should be
highest at the low-temperature edge of the range of valid-

ity of the present model. The low-d nonresonance max-
imum, observed at T =50 K near d =75 A, subsequently
shifts to lower values of d with increasing temperature.
As stated above, the position of this maximum is the re-
sult of combination of several factors which show the
dependence of r on the well width and on T, . The tem-

perature dependence of the low-d part of r can be partly
understood when a different plot of the data contained in

Fig. 12 is performed. The result is presented in Fig. 13.
Here the cooling rate is plotted against the inverse elec-
tronic temperature 1/T, . The curves obtained are nearly

linear. Ignoring the fact that the temperature of the pho-
non modes is not zero, the curves are fitted to the ex-

ponential dependence of the cooling rate'
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FIG. 11. Power loss per electron, r, as a function of the well
width, at T, =100 K, TL =4.2 K, and n, =10 m . Curve S,
static screening included; curve U, without screening. Curves 1,
2, and 3 are computed with the screening included, at the
electric-field intensity F equal to 0.1, 0.2, and 0.3, respectively,
in units of 10 V/m.
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FIG. 12. Dependence of the power losN per electron on elec-
tronic temperature T, .
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modes contribute to the hot-electron cooling, is not negli-

gible, so that the fitting of the data to a simple formula
like (49}does not allow for a detailed insight into the role
of the individual interface modes. Nevertheless, although
the positions of the resonance maxima in the hot-electron
cooling rate resonance pattern are not likely to allow easy
distinguishing between the confined and interface modes,
the variation with the electronic temperature of the slope
of the logarithmic plot of the cooling rate against I lT„
in narrow wells, should allow us to demonstrate the parti-
cipation of the interface-phonon branches on the hot-
electron cooling rate in narrow wells.

V. CONCLUSIONS

FIG. 13. Semilosarithmic plot of power loss per electron for
d =20 (dashed), 100 (dotted), and 230 A (full).

Qr -exp
k~T,

(49}

in which 0 should correspond to the phonon frequency
in the case of a single-phonon frequency model. The fit
was performed for the 20-A curve at T, =50 and 200 K.
At the low temperature of 50 K we get Q=5.484X10'
s '. This frequency is only slightly larger than the fre-
quencies Qz (q) (see Ref. 31 for a graphical presentation
of the q dependence of the interface mode frequencies for
the presently considered quantum-well structure with
d=20 A). At the higher temperature of T, =200 K the
fit gives Q=5.8214X10' s '. This increase of the
efFective phon on frequency can be ascribed to the
infiuence of the (S+ } interface mode coming into play at
the increased temperature. The latter frequency of
Q=5.8214X10' s ' is found to be roughly in between
the frequencies of (S —) and (S+) modes, ' but it is
larger than the confined mode frequency of GaAs. This
is why the cooling rate at d =20 A tends to increase fas-
ter with increasing temperature than the cooling rate at
larger well widths, and why the nonresonant maximum
moves toward a lower d with increasing T, .

The other two curves in Fig. 13, corresponding to
d =100 and 230 A, are practically indistinguishable. The
fit was done for the d =230-A curve at the electronic
temperature of 100 K. The frequency Q=5.248 X 10's, obtained by the fitting, is quite close to the frequency
of coL ]=5.496 X 10' s ' of the confined GaAs mode ex-
pected to determine the temperature dependence of the
cooling rate in the case of larger well widths. The
difference between the latter fitting frequency of
Q=5.248 X10' s ' and that of ~L &

can be ascribed to a
certain role which is still played by the interface low-
frequency mode (S —) at d =230 A. The slight bending
of the curves at temperatures of about 400 K can be as-
cribed to a beginning of an insuSciency of confining the
number of the subbands, and of the number of the
confined modes, to five only.

The variations of the interface mode frequencies, in
that range of the phonon wave vector at which these

The electrophonon resonance in the Al„Ga, „As-
GaAs Q2D quantum wells has been studied for the long-
wavelength optical-phonon generation and for the hot-
electron cooling rate. As parameters controlling the on-
set of the electrophonon resonance, the quantum-well
width and the electric field norinal to the interfaces have
been considered. The efFect has been studied in quantum
wells having a square-shaped potential profile, using two
models of the optical lattice vibrations, namely the bulk-
phonon model and the dielectric continuum model.

It has been found that the long-wavelength optical-
phonon generation rate gives a resonance pattern with a
very distinct modulation for both the quantum-well
width and the electric-field control of the onset of the res-
onance. The very strong modulation of the resonance
pattern concerns both the confined, or bulk, phonons and
the interface phonons. The intensity of the resonance
maxima of the LW generation rate for the interface
modes is found to be comparable to that of the confined
modes, in the range of 200-400 A of the well width.

The modulation of the hot-electron cooling rate reso-
nance pattern is found to be less pronounced than that of
the LW-phonon generation, for both the well width and
electric-field control of the resonance. In particular the
hot-electron cooling rate electrophonon resonance is not
likely to allow for easy distinguishing between confined
and interface modes, although the temperature depen-
dence of the hot-electron cooling rate in the narrow wells

appears to provide a possibility of observing the
difFerence between the energies of the confined and inter-
face modes of the lattice vibrations.

The comparison of the two presently considered ver-
sions of the electrophonon resonance seems to indicate
that an electrophonon resonance based on a quantity
which is integral with respect to the optical-phonon gen-
eration rate is less pronounced because of a relatively
high contribution of the signal, which comes from the
processes of a nonresonant nature. On the other hand,
the resonance signal of the LW-phonon generation rate
appears to be more directly related to the phenomenon of
the resonance intersubband optical-phonon scattering.
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