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Numerical analysis of electron-wave detection by a wedge-shaped point contact
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To investigate useful properties caused by various interference effects of electron waves in a mesoscop-
ic system, we carry out a numerical analysis of electron-wave propagation by a combination of several
techniques for solving the two-dimensional Schrodinger equation. The techniques provide an accurate
solution for a realistic potential profile in a point-contact structure, and are simple to apply even under
magnetic fields. By using this calculation method, we investigate the detection of the propagation from a
quantum point-contact injector to a point-contact detector under magnetic fields. We calculate
electron-wave propagation and transfer conductance through a wedge-shaped detector, which has a
smaller scattering cross section for injected electron waves than ordinary line-shaped detectors, and ana-
lyze the interference due to the detector as a function of detector parameters. We conclude that a well-
designed wedge-shaped point contact could provide good detection of electron-wave propagation.

I. INTRODUCTION

Mesoscopic systems are interesting from the viewpoint
of electronic transport. Mesoscopic phenomena have
been measured in artificial systems with a variable
confining potential. Recently, many studies have focused
on the ballistic and wavelike behavior of electrons, using
submicrometer lithographic techniques and high-mobility
two-dimensional (2D) electron-gas structures, where the
system dimensions are significantly smaller than the
mean free path and the coherence length at low tempera-
tures. Striking effects in such systems, including conduc-
tance quantization? and magnetic focusing,’ have been
measured on point contacts usually made from split
Schottky-gate structures. Some of us have measured the
transfer conductance across a series of two point contacts
with varying magnetic field and observed the dependence
of the characteristic on the mode number of the injector
contact.* There are also many other experiments with
point contacts in series.’~!! In particular, the interfer-
ence of electron waves has been used to investigate
electron-electron scattering in 2D electron gases,'? and
the control of electron waves by an electrostatic potential
has been investigated for possible device applica-
tions.!3-13

Many theoretical studies have been done on mesoscop-
ic phenomena. Many of the observed phenomena have
been explained by the propagation of wave functions.
Conductance quantization in a point contact, for exam-
ple, can be explained in the adiabatic case.!® In the nona-
diabatic case, the conductance has been calculated for a
quantum wire with an infinite confinement potential
(hard wall) abruptly connected to the wide region, and
this result clearly shows that the conductance strongly
depends on the shape of the system.!”=?° In another case,
a relatively complex shape dependence has been reported
for the transfer conductance of a cross-shaped junction,
and it has been pointed out that the reflected wave in this
structure plays an important role in the electron trans-
port.2! There are also many other numerical analyses for
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crossed-wire structures, which show complicated proper-
ties of the conductance.?*"?® Additionally, it was found
numerically that the conductance has random quantum
properties when the confinement potential has a stadium-
like shape.?

Although it has been made clear that the electronic
transport in the ballistic region has various shape-
dependent features, the transport calculations, to date,
have been for almost ideally shaped structures, since it is
difficult to calculate wave functions in 2D systems with a
general shape, especially under magnetic fields. The
structure of actual electron wave devices, however, has a
complex shape which is neither completely adiabatic nor
perfectly abrupt. To observe and control the useful prop-
erties of the transport, it is necessary to design the device
structure so as to clearly separate desired property from
undesired interference of electron waves, including the
universal conductance fluctuations of mesoscopic sys-
tems. Thus we must find how to enhance the desired
property in an optimized structure where undesired in-
terference is suppressed.

In regard to investigating the desired properties, it is
important to develop a general method of calculating
conductance, which applies to realistic structures. There
are some calculation methods suited for this situation.
The recursive calculation of the Green function within
the framework of a lattice model is one candidate.?' The
coupled-channel method?’ is also useful for such scatter-
ing problems. This method has the advantage of applica-
bility to various potential profiles for the wire, and there-
fore we will use it here. However, this technique must be
extended to more general geometries. In order to apply it
to more general situations, its numerical stability must be
improved. Furthermore, it is important to simplify the
treatment of magnetic fields.

In this paper, we present a numerical study of
electron-wave detection by a wedge-shaped point contact.
We describe our calculation method for the conductance
by solving the Schrédinger equation directly and analyze
mesoscopic phenomena for a line-shaped point-contact
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injector and a wedge-shaped point-contact detector. De-
tails of the calculation method used to obtain the wave
functions are given in Sec. II. This method is successful
due to three essential ingredients: the transformation of a
2D system with a point contact into a quasi-1D system by
using conformal mapping, the calculation of wave func-
tions by the coupled-channel method with the choice of a
suitable gauge, and an iteration technique which com-
pletely suppresses the numerical instability. In Sec. III,
we apply this method to our geometry with a realistic po-
tential profile. In Sec. IV, numerical results on magnetic
steering and detection of electron waves are described.
The effect of the interference due to a wedge-shaped
detector on the conductance is examined through the cal-
culation of transfer conductance from the injector to the
detector. Finally, a summary is given in Sec. V.

II. CONDUCTANCE CALCULATION
IN A TWO-DIMENSIONAL SYSTEM

The transport phenomena in mesoscopic systems can
be investigated using the Landauer formula.?*?* To ob-
tain the conductance, then, we used a numerical calcula-
tion method for easily solving the time-independent 2D
Schrodinger equation in the effective-mass approxima-
tion, where a magnetic field can be included in the calcu-
lation.

A. Transformation for the Hamiltonian

The coordinates as shown in Fig. 1, which we study
here, are useful for calculations on a point contact. The
2D system consists of two outer regions of half an infinite
plane and a finite region I'. T has large enough dimen-
sions to include various structures within the point con-
tact. We consider the following Hamiltonian which de-
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FIG. 1. Schematic drawing of elliptic coordinates for calcu-
lation in a point-contact structure. Shaded regions indicate de-
pletion regions due to the point-contact structure. The 2D sys-
tem is divided into two outer regions of half an infinite plane
and a finite region I" by two half-circle boundaries. The bound-
ary condition is based on the continuity conditions for wave
functions of plane waves and Hankel functions, and their gra-
dients [see Egs. (2.22)-(2.25)].

T. USUKI, M. TAKATSU, R. A. KIEHL, AND N. YOKOYAMA 50

scribes the 2D system under a magnetic field B=(0,0, B, )
in the I region:

2 2
1 ) d
= —ifi—ted, | + |—ifi—+ed
Py [ zhax ed, tﬁay ed,
+V(x,y)—Ep, (2.1

where m* is the effective mass, the vector potential
A=(AX,Ay,0) satisfies B=rot A, and ¥V and E are the
potential and Fermi energy, respectively.

In the T region, elliptic coordinates are used with the
center at the point contact,'®%° i.e., conformal mapping is
done as

x =c coshu cosv ,
(2.2)
y=c sinhu sinv .

By means of the mapping, we transform the 2D electron
system in the I' region into a quasi-1D system, and the
coupled-channel method is applied to the calculation
only for wire structures.?’ For the following calculation,
we choose the gauge as A4,=0. The transformed
pseudo-Hamiltonian is given by

2

e la
A=—" | Q4 | + P, (2.3)
du? dv
with
A=2D"4 and P=2""pv—E,. @4
"—ﬁ p an - # F/> .

where D is Jacobian, c?(sinh?u +sin’v). It is assumed
that ¥ (x,0)= o for |x| >c; in particular, the potential ¥
diverges faster than 1/D at x=xc,y =0. Then V is
infinite at this point, and the confining potential is almost
along the v axis. We take ¢ =3Ap in actual numerical
calculations, where Ay is the Fermi wavelength. This as-
sumption is not inconsistent with actual systems.

B. Calculation for the wave functions

The wave function W(u,v) for the transformed quasi-
ID system in the I' region satisfies the equation
HWY(u,v)=0. This wave function is determined by the
coupled-channel method. This method can be applied to
various potential profiles within the framework of the
quasi-1D system, and is precise for the conservation of
flow. The T region is divided into a sufficiently large
number N of small sections (see Fig. 2), and the u depen-
dence of the potential is neglected in each section. The
variables of the equation can then be separated for each
function as follows:

Y (u,0)=3 xj, (W) for u;<u<u;,,,
n=1

(2.5)

where u; is the boundary between the (j —1)th section
and the jth section, for 1 <j < N. Here, the gauge of the
Jjth section, which is indicated by the superscript (j) in

Eq. (2.5), is chosen as
AV= % fu“ DB,du , (2.6)
J
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FIG. 2. Quasi-1D system transformed by conformal map-
ping. The I region is divided into a sufficiently large number N
of small sections, and the u dependence of the effective poten-
tials including the effective vector potential is neglected in each
section.

where 4 U )(u )=0. Furthermore, the u dependence of
A and V is neglected in each section, and the approxi-
mate pseudopotentials in the jth section are given by

A VW)= 4 Puj0)+ 4 Pujyp0)], 2.7
and
V(v)=%[l7(uj,v)+V(ujﬂ,v)] . (2.8)
Then, t,b” )(v) must satisfy the equations.
2
—iL 1 290 | +7,0) [$Rw)=¢, 0w ,
dv d
(2.9)
where A j*=—A4 ). The values ¢, are determined

from the above equation, and are equivalent to the values
—(h,,)? of Eq. (10) in Ref. 30. The expression for the
case of a uniform magnetic field is

. 2
4 PDw)= %B,(sinhZuJ. +1—sinh2u; —2Au;cos2v)

with Aw;=u;  —u; . (2.10)
Since the u dependence of the pseudopotentials is neglect-
ed, X;,(u) in Eq. (2.5) is a plane wave and is represented

by

Xjn(w)=aj, explik;,u)+a} 'exp(—ik;,u)
with k;, =V —¢, (2.11)
We also take into account the case where k jn 18 imaginary
(Imkj, >0).

The assumption of a steplike structure for the vector
potential is useful, but it leads to infinite and quasiperiod-
ic magnetic fields. Therefore it is possible that this as-
sumption may result in complex interference of the wave
function due to the quasiperiodicity. We take care to
avoid such effects in our actual numerical calculations by
our consideration of transmission matrices and spatial
distributions of wave functions. We adopt the following
limits as the numerical conditions. For the step length
Auj, we require Au ; <h/(1recszcosh2uj) and
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Au; <Ap/(c coshu;). These inequalities mean that the
step length is smaller than the pseudo-cyclotron-radius
and the pseudo-Fermi-wavelength in the transformed u-v
space. Then, in the case of a I'" region with radius of
40A, the number of divisions N for the u axis must be in
the range of 200-300. Furthermore, we investigate elec-
tronic properties only for |B,| <0.04h /(eA%), that is, in
relatively weak fields. The transmission matrices and
spatial distributions of wave functions were found to be
insensitive to the step length, that is, these values
sufficiently converged while within the above limitations.
The function of v can be expanded by the common
basis ¢, (v) in all sections as
GADE 2 £l

m(v) . (2.12)

The basis function is satisfied by the boundary condition
¢.,,(0)=¢,,(w)=0. This method is characteristic of the
coupled-channel method. When the basis set is
sufficiently large, M ~150 in this calculation, the func-
tion of v can be found for various confining potentials dis-
cussed here. For example, we could choose a sine func-
tion for the mth basis function, given by
¢(v)=V'2/msin(mv), which is useful when the system has
relatively weak asymmetry on the v axis. In another case,
the v axis is divided into widths Av, and the basis func-
tion can be determined by

Av
_\/A__v for Iv—vm|<7 ,

¢m(v)—
0 for |v—v,,]|< sz

This discrete expression further simplifies the eigenvalue
problem of Eq. (2.9). Accordingly, we will use this ex-
pression in the following formulation. Equation (2.9) is
transformed into the eigenvalue problem represented by
the coefficient f J‘,’,,’,, in Eq. (2.12). Actually, to obtain

J(,fn),,, we calculate an eigenvalue problem for the follow-
ing matrix of real numbers:

(2.13)

hy hy 00 - 0 &in &n
hiy hy hy 0 &an &an
0 hy hy 0 8 | T TEjy |83 | »
0 0 0 hMM gMn EMn
(2.14)
with
_ _ 1 [ Av = Av
hmm—ZAv 2+E Vj vm—T +Vj vm+—2—

(2.15)
and
P +1=—B0 7>

Furthermore, we consider the factor for gauge transfor-
mation to be
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U, =exp |—iAv (14 P(v, )+ z A4 Pw,) (2.16)
=1
Then the coefficient £}7), is given by
jon = Un8mn - (2.17)

Note that as long as we use the discrete expression as a
basis, the gauge transformation of the wave function
from (j) to (j +1) becomes the simple expression

. *
fin V= Fin s
where the asterisk means the complex conjugate. When
another function is used as a basis, we have to choose the
phase of each eigenvector to satisfy this relation.
By using continuity conditions for the wave function
and its gradient, we can connect the wave function of a
section to those of adjacent sections as follows:

(2.18)

(+) (+)

v M (2.19)
(—) (=) » :
aj+1 3

where a}i’=T(a]‘-i’M ), and the 2M X2M matrix §; is
given by

s;(+,+) s,.(+,—)‘

5T 8= 4) si(=—) (2.20
and
kjn .
Sjmn(0,0")=— [1+00’ explio'k;, Au;)
2 kj+1m
X3 fER Y as o,0'=%1. (21

I=1

The wave function in I' is obtained by iterating Eq.
(2.19) from the first section to the Nth section. In con-
trast to mode matching, which is only applicable to sim-
ple potential profiles, the wave function in the coupled-
channel method satisfies the conservation of flow correct-
ly because of the orthogonality of the basis. Even under a
magnetic field B perpendicular to a 2D system, the 2D
Schrodinger equation is solved by nearly the same
method as it would be without a magnetic field, by using
the optimized vector potential in each section. To calcu-
late the conductance for a point contact, we have to ob-
tain the wave function in the open system including I
and the two outer regions. Thus it is necessary that the
wave function obtained in I' is connected to the wave
functions of the outer regions by polar coordinates on
boundaries (see Fig. 1). Here, the ingoing (outgoing)
outer region is named section O(N +1), as indicated in
Fig. 2. For example, we could apply the mode-matching
method to the connection.’’ However, the coupled-
channel method is also applied to connecting the two
outer regions with I', when the I' region is sufficiently
large. In this case, i.e., expluy|,expluy 4| >>c /A, ellip-
tic coordinates near the boundaries are nearly polar coor-
dinates. In the outer regions, we assume that the poten-
tial V is proportion to exp(—|u|) and the magnetic field

9=0 and 4 N"1)=0. Then the wave
Under

is zero, ie., 4
function changes adiabatically in these regions.
these conditions the function 1&” )(v) is given by

d? i .
—F+V(v) ;b‘”(v)— j,,;b;{,’(v) as j=0,N+1.
(2.22)
Here, the potentials are defined as
2. %
- -2
Volv)= czrhnz e “"Wluy,v),
and (2.23)
- Im* 2
Vy+i(v)= c2:2 e uNHV(uN+1,U) .

We use a Hankel function of the first kind H'! for the u
axis instead of a plane wave, and the expression for con-
necting the outer region with I' is modified from Eq.

(2.21). The connection from the Oth section to the first
section is given by
(a’)
, 1 o XOn *
sOmn(U’o )ZE é)n ik 2 f(l}r)n fé)}ri ’ (2.24)
1 =1
where Yo' =H'" (2mce ' /Ap)

Xon " =[dH\"(2mce ™" /Ap)/dul, =,

and x5 '=x5"" with v=1/¢,,. Furthermore, the con-
nection from the Nth section to the (N +1)th section is
given by

(—oy _
XN L lm —i0 kX1 m)

SNmn(0,0")=—15 P
XN+1mXN+1m_XN+1mXN+1m
Xexplio'ky,Auy) 3, f I(VN++111,,, D (.25)

=1

X§v+l1n=H(1)(27ceuN+'/k ),

AL, =[dH'Y 2mce /Ap)/du ], - vl
and xWi,=xy%, with v=\/eN+1n. These expres-
sion can be applied to connect the wave functions to the
outer regions.

C. Iteration technique for the conductance calculation

From these equations, the whole wave function from
one outer region to another is simply obtained by the
coupled-channel method, and therefore we can obtain the
transmission probability |7T,,,|> from the incident chan-
nel n the outgoing channel m. In terms of the transmis-
sion probability, the conductance G of the system is ob-
tained by the multichannel version of the Landauer for-
mula,z‘I

G=="— 2 | T, (2.26)

The matrix T of the transmission wave is defined by
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T 1 compared with the Green’s function method in Ref. 21 is

0 =SySy-1"""Sp R (2.27)  that the transfer matrix and electron wave at any point

can be obtained at the same time by means of the linear

Note, however, that numerical calculation for the above
equation is extremely unstable in general. To suppress
the instability, we actually use the following iteration
technique:

gy gy +n Y 1y
0 1 |TS; '0 1 B> (2.28)
with
1 0
P,= Py Pl (2.29)

Here the initial condition of the iteration is t¥'=1,
ry’=0, and the matrix P; is a linear operator to satisfy
the form which is assigned to the matrix at the left side of
Eq. (2.28). Then we treat this linear operator for each
connecting step in the computation. The detailed expres-

sions are given by
Pji=—Pjsi(—,+ iy,

and
Pi2=[8;— i +8;-, 17"

This iteration continues from J =0 to N, and it finally
gives T=t{¥ 1, Additionally, a similar iteration gives
the matrix R of the reflection wave as

(2.30)

(2.31)

1 0 1 O
D gD T ) g P, (2.32)
and
R=rN D)
where the initial condition is t”’=1,r{’=0. In order to

obtain the electron density at an arbitrary point, we
define a row vector and calculate iteratively as follows:

(840, ..., ¢HN=(PW), ..., Pl (), ¥i)W), . . ., Py ()
6 o
Xlo 1 (2.33)
and
(B0, . ¢ P =(80, ..., $%DP,
for i<j<N. (2.34)
Then the electron density is obtained by
M .
n(u;,v)=73 [pNtLI2 (2.35)

=1

This iteration technique is useful for obtaining stable cal-
culations, since its operation cancels divergence factors
which occur due to numerical error in each step. Fur-
thermore, it is applicable not only to the coupled-channel
method but also to the lattice model,*?3? where it can be
used as an alternate method for connecting wave func-
tions in the two regions (see Appendix). The advantage

operator P;.

To study the characteristics at finite temperature, our
calculation method has to be extended. This application
to finite temperature is easily possible with well-known
techniques.!”!® Interference is expected to be reduced at
finite temperatures due to smearing. The numerical
analysis below, however, is done only at zero tempera-
ture, since our main purpose is the investigation of the
enhancement of useful electron-wave propagation proper-
ties and the suppression of unwanted interference.

III. A QUANTUM POINT CONTACT

To date, many calculations for point contacts have
been done, but the structures have been very simplified.
The propagation of a ballistic electron wave in realistic
structures has not been investigated theoretically, al-
though it is sensitive to the shape. In this section, we
consider a point-contact structure with a realistic poten-
tial profile. In addition, preliminary calculations for the
conductance and the angular distribution (collimation
effect) of ballistic electron propagation are given for this
structure. In the following, we measure almost all quan-
tities in units relating to the 2D electron-gas parameters,
i.e., energy is measured in units of the Fermi energy Er
and length in units of the Fermi wavelength A;. Further-
more, the magnetic field is measured in units of 4 / (ek}).
Then the magnetic field units are represented by the ratio
of the Fermi wavelength and the classical cyclotron ra-
dius. The following numerical calculations have been
performed on the Fujitsu VP-2400 Supercomputer.

A hard-wall potential is usually used in the numerical
analysis of mesoscopic systems because the calculation of
wave functions is simple for this potential. However, it
has been reported that the confinement potential of the
quantum wire caused by a split gate has a parabolic
shape.3* Therefore we assume that a point contact’s la-
teral potential profile is composed of a parabola, and it
has symmetry for the x and y axes. When x,y >0, a de-
tailed potential profile is given by the expressions

V(x,p)=(R;+1—y) (3.1a)
when x,y are in region I indicated in Fig. 3(a),

V(x,p)=(R,+1—r) (3.1b)
when x,y are in region II, and

Vix,y)=1— R1~W1—+2—ir (R,—r) (3.1¢)

W,—2x

when x,y are in the region IIL Here,
r=[(W;/2—x)?+p*]"2.  In the other regions,

V(x,y)=0. The potential of a point contact has only two
parameters, R, and W,. As shown in Fig. 3(a), R, is the
half-circle radius of the potential and relates to the width
of the depletion region in the 2D electron gas. We use
W, =14 in this paper. This value is suitable for a device
having about a 0.2 um gate length, 0.4 um gate opening,
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FIG. 3. (a) Schematic picture of Egs. (3.1a)-(3.1c). Note that
only the region of x,y >0 is shown. (b) Top view of a point-
contact potential with R; =6.45. Note that we did not draw
higher potential lines than ¥ =2, since these lines make the
figure complex.

and 40 nm Fermi wavelength. These dimensions are
reasonable for most mesoscopic experiments. For exam-
ple, Fig. 3(b) shows the top view of a point-contact poten-
tial with R;=6.45. The center of the point contact is a
saddle point, and the potential profile along the x axis has
a completely parabolic shape. We think that this poten-
tial is very similar to that in actual devices.

Figure 4 shows the conductance as a function of R, as
calculated by our model. In the following, we use the
specific values R, =6.45 and 6.2, as typical cases for the
first and second conductance plateaus, respectively. The

Conductance (2e2/h)

It

O 1 L 1
68 66 64 62 6 58

R, (Ap)

FIG. 4. Conductance of the point contact with changing R ;.
The conductance of a realistic point-contact structure is clearly
quantized.

figure shows a clearly quantized conductance. The
change of the conductance does not have the complex
structure due to resonance which occurs in the simpler
abrupt point contact.!’-%

The collimation effect is important for some experi-
ments, for example, steering by magnetic fields,’ and de-
pends on the shape of the point-contact structure. The
hard-wall potential has been used in calculations of col-
limation effects in point contacts.’> In order to clearly il-
lustrate the difference between the collimation effect in a
realistic structure and in a simple structure, Fig. 5 shows
two angular distributions of the injected electron at
infinite distance from a point contact calculated from our
model. One case is a realistic potential with R; =6.45 as
shown in Fig. 3(b). The other case is that of a point con-
tact with both a square potential profile and an abrupt
configuration (see inset in Fig. 5). The parameter values
used in Fig. 5 were chosen to correspond to the center of
the first plateau in both cases, and therefore provide a
good comparison of the structures. The angular distribu-
tions in Fig. 5 and elsewhere in this paper are normalized
such that their angular integral equals the conductance in
units of 2e2/h. As evident from the results, the full
width at half maximum of the angular distribution is
one-half as wide for the realistic point contact as for the
abrupt case. Thus the collimation significantly affects the
propagation of electron waves in actual devices. Further-
more, examination of the results for other points within
the plateau showed that the angular distribution hardly
changes with R, within the limit of a plateau. This
means that the angular distribution should be insensitive
to small ( <0.1 V) variations in bias voltage, in contrast
to what might be expected from previous calculations.*®

Electron density

O 1
0 /2 T

V (rad)

FIG. 5. Angular distribution of the injected electron at
infinite distance from the point contact. A comparison of the
collimation effect for a realistic and an abrupt configuration is
given. Dimensions and conductance of the abrupt configuration
are indicated in the inset. The electron density is normalized so
that its angular integral is equal to the conductance (units of
2e%/h).
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Electron density

0 /2 T
V (rad)

FIG. 6. Angular distribution under a magnetic field. Bold
lines show the case for an applied magnetic field with R, =100
in a circle of radius 40. Narrow lines show the no-magnetic-
field case. The distribution has a clearly single (double) peak
structure in the case of R, =6.45(6.2), and the collimation also
affects the propagation with the double peak.

IV. DETECTION OF ELECTRON WAVES

A. Steering by a magnetic field

Previous numerical studies obtained propagation under
magnetic fields only for a simple structure composed of a
wire and a half plane with hard walls.’”*® The angular
distribution has been studied in the weak-field approxi-
mation, and it was shown that the characteristic distribu-
tion at zero field is still conserved under the weak-field
limit.>¢ In this section, we investigate the magnetic-field
dependence of the injected-electron propagation through
a realistic point-contact structure. Figure 6 shows the
angular distributions under a magnetic field with the cy-
clotron radius R, =100 in the cases of R; =6.45 and 6.2.
To apply our method, we must assume that the area with
magnetic field is finite. Here this area consists of a circle
with a radius of 40A;(~1.8 um in an actual device) at
the center of the point contact as indicated in the inset of
Fig. 6. A previous calculation pointed out that reflection
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occurs at the boundary between regions with an applied
magnetic field and no magnetic field.® Although we
neglect this reflection in our cases, this does not seriously
affect the following investigation, since the reflections of
electron waves at the boundaries, which can hardly
change the total conductance, are very weak.

It is clear from Fig. 6 that both the one-mode and
two-mode cases are well collimated with a magnetic field.
In the case of an applied magnetic field (shown by bold
lines), the distributions shift from the center, and are
slightly distorted by both the point-contact wall and the
deviation due to the magnetic field. However, the distri-
butions keep the characteristic peak structure at zero
field. Figures 7(a) and 7(b) show the spatial distributions
of injected electrons under a magnetic field with R, =50,
when the angular distributions have single and double
peaks, respectively. These electron waves propagate
along classical orbits while keeping the symmetries of
channels in the point contact, as indicated with bold ar-
rows in the figures. As evident from the angular and spa-
tial distributions, the propagation directly depends on the
electron distribution within an actual point contact even
under magnetic fields, thereby illustrating that the inject-
ed electron is useful for probing the quasi-1D channel
states. However, these results are in the case of a point
contact with no detector, and we have to investigate ex-
actly the turbulence of electron-wave propagation by the
detector.

B. Detection by a wedge-shaped point contact

We now calculate the propagation and the transfer
conductance from an injector to a detector under mag-
netic fields. The configuration of the device, which con-
sists of two point contacts, a line-shaped injector and a
wedge-shaped detector, is shown as Fig. 8(a). The detec-
tor makes an angle with the injector so as to minimize its
cross section. Furthermore, its orifice is wider than the
injector, since the transfer conductance depends on the
mode number of the detector as mentioned in Ref. 21.
Here, the transfer conductance is determined by the
scattering probability to the detector region, which is one
of three regions, as shown in Fig. 8(b), and the eigenvalue
problem for Eq. (2.14) is also divided into three parts.
The basis-set number for the function of v has to be

Y (4g)

FIG. 7. Spatial distributions of the injected
electrons under a magnetic field with R_=50.
Bold arrows are classical cyclotron orbits. (a)
R,=6.45, (b) R, =6.2. The shaded regions in-
dicate an electron density greater than 0.02,
since the contours would make the figure com-
plex.
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FIG. 8. Configuration of the device which consists of two
point contacts as an injector and a detector. (a) Parameters of
the detector are indicated. L is the distance between the
detector’s orifice and the injector. (b) Schematic picture illus-
trating the method of calculation of transfer conductance.

sufficiently large in order to keep accuracy of transfer
conductance. These numerical calculations require
M =300.

Figures 9(a) and 9(b) show typical spatial distributions
for the structure under a magnetic field with R, =50 cor-
responding to the cases in Figs. 7(a) and 7(b), ie.,
R,=6.45 and 6.2. The detector in Fig. 9 has W, =6 and
R,=1. The distance between the detector’s orifice and
the injector is L =30. In comparison with the cases with
no detector in Fig. 7, there is much scattering by the
detector and complicated interference exists, especially
near the detector’s orifice. It may be inferred from the
distributions that this scattering and interference may
seriously affect the detection. However, the transfer con-
ductance maintains the character of injected-electron
propagation without a detector, as is evident from the nu-
merical results in Fig. 10. This figure shows the
magnetic-field dependence of the transfer conductance
for the same devices as Fig. 9. The magnetic-field depen-

Y(4p)
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FIG. 10. Typical magnetic-field dependence of the transfer
conductance in the cases that one mode and two modes exist in
the injector with R =6.45, 6.2. Other parameters are the same
as in Fig. 9.

dence with two (one) modes in the injector has a clear
double (single) peak due to the symmetry of a second
(first) electron-wave mode similar to Fig. 6, and small dis-
tortions by scatterings and interferences also occur in
both the one- and two-mode cases.

To investigate the dependence of the transfer conduc-
tance on detector shape in detail, we focus on the
double-peak structure for the two-mode case in the fol-
lowing. Figure 11 shows several plots with varying
orifice parameter W,. The detector’s resolving power ob-
viously becomes better with the narrowing of the orifice.
In the narrowest case W, =4, however, the detector has
only three occupied modes at its orifice, and therefore the
transfer conductance is more distorted than in the wider

FIG. 9. Spatial distributions
of the injected electron under a
magnetic field with R, =50 with
a wedge-shaped detector. (a)
R;=6.45, (b) R,=6.2. The
detector’s parameters are
L =30,R,=1,and W,=6.
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FIG. 11. Magnetic-field dependence of the transfer conduc-
tance as R,=6.2 with varying orifice parameter W, of the
detector.

cases. Figure 12(a) shows the transfer conductance with
varying detector gate length R,. With increasing length,
the transfer conductance decreases, since the scattering
cross section for electron-wave propagation increases.
Furthermore, the distortion of the peak structure in-
creases due to the scatterings and the interferences. In
Figs. 12(b) and 12(c), we compare transfer conductances
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for two different values of L. The parameters are L =30,
W,=8, and R,=0,1,2 in Fig. 12(b), and the device scale
for these parameters in Fig. 12(c) is half that in Fig. 12(b).
In spite of increasing multiple scattering between the in-
jector and the detector, the results in Fig. 12(c) have simi-
lar values and characteristics as in Fig. 12(b). Note that
the scale for the magnetic field in Fig. 12(c) is twice that
of Fig. 12(b). Comparison of Figs. 12(b) and 12(c) shows
that scaling approximately holds for the detector’s simple
parameters and the magnetic field even when the
injector’s parameters and detailed potential profile keep
the same values. Consequently, present electron-beam
lithography and a high-mobility 2D system are sufficient
for realizing such devices as shown in Fig. 8(a) for de-
tailed investigation of electron-wave properties in 2D
electron gases. Furthermore, according to the above
scaling rule, a finer structure for the detector is made un-
necessary by increasing the distance L.

V. SUMMARY

We have described a calculation method for electron-
wave propagation in 2D systems which can be applied to
devices with any shape by means of both appropriate
conformal mapping and the coupled-channel method.
This method can be applied to an arbitrary potential and
allows the wave functions to be simply obtained even un-
der a magnetic field by choosing a suitable gauge. Fur-
thermore, the iteration technique can realize stable nu-
merical calculations and can maintain the conservation of
flow; the most important condition for conductance cal-
culation.
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Numerical results presented for several devices show
that our simulation is useful for investigating the propa-
gation in 2D systems and in designing mesoscopic de-
vices. The point-contact injector examined in this paper
corresponds to that used in many experiments. As evi-
dent from the angular distribution in Fig. 5, the round-
ness of the corners in an actual injector has a significant
effect on the collimation of the electron-wave propaga-
tion. Results under a magnetic field in Figs. 6 and 7
confirm that the steering by magnetic fields does not dis-
turb the modal nature of the propagation.

The numerical results for the transfer conductance,
i.e., detection of a ballistic electron wave, are the most
important in this paper, since point contacts in series are
of interest for many basic and applied studies. Our re-
sults show that the transfer-conductance characteristic of
a wedge-shaped detector with optimized spacing exhibits
some distortion, but is clearly related to the symmetry of
the injected waves. In particular, our results for two-
mode injection R,=6.2 show that good detector charac-
teristics are obtained for W, <10, which ensures a small
enough orifice to resolve the spatial distribution, and for
W, >4, which ensures an adequate number of detector
modes to represent the distribution. In addition, by using
the scaling rule of the detector, good characteristics can
be observed in a device with large dimension when a
high-mobility sample is used.** The parameters L =30
and W, =6 used in the calculations correspond to about
1.2 and 0.25 pm in actual devices. Hence, these results
could be realized by using the present high-mobility 2D
systems and electron-beam lithography.

The numerical results presented in this paper demon-
strate the feasibility of studying ballistic electron-wave
properties using optimized injector and detector
geometries. By further developing the numerical
analysis, for example, by coupling the present method
with Poisson’s equation to obtain a more realistic poten-
tial, we could more quantitatively predict electron-wave
properties in mesoscopic devices.
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APPENDIX

The following shows that the iteration technique based
on Eqgs. (2.28)-(2.32) is also applicable to a lattice model.
The Hamiltonian of the lattice model is given by

S aj(H,—Epa;+aH;;a;, +aH
J

Ji—13j—1>

where a; is a column vector which consists of annihila-
tion operators in the jth column as a; = Ta @)
The states of the 2M channels (for right- and left-going
electrons) in ideal wires, which include j=1,2 and
N —1, N, respectively, are expressed by using two M XM

matrices as
U(L)=(uy(x),...,uy(x)).

Thus the phase factors of the 2M channels from one
column to the next in the wires are given by

A(£)=diag[A,(£), ..., Ay ()] .

By using these expressions, the matrices of Eq. (2.20) are
defined as

U(+) u(—)
So= |U(+)A(+) U(-—))L(—)]’
0 1
5= l_HL‘lﬂH/‘,rl s+ Ep—H;)
for ISjSN—1,
and
Sy=S,!.

By applying the S; in the lattice model to the iteration of
Eqgs. (2.28)-(2.32), one can stably obtain a transmission
matrix and electron density.
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FIG. 5. Angular distribution of the injected electron at
infinite distance from the point contact. A comparison of the
collimation effect for a realistic and an abrupt configuration is
given. Dimensions and conductance of the abrupt configuration
are indicated in the inset. The electron density is normalized so
that its angular integral is equal to the conductance (units of
2e/h).
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FIG. 6. Angular distribution under a magnetic field. Bold
lines show the case for an applied magnetic field with R, =100
in a circle of radius 40. Narrow lines show the no-magnetic-
field case. The distribution has a clearly single (double) peak
structure in the case of R;=6.45(6.2), and the collimation also
affects the propagation with the double peak.



FIG. 7. Spatial distributions of the injected
electrons under a magnetic field with R,=50.
Bold arrows are classical cyclotron orbits. (a)
R ,=6.45, (b) R;=6.2. The shaded regions in-
dicate an electron density greater than 0.02,
since the contours would make the figure com-
plex.
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FIG. 8. Configuration of the device which consists of two
point contacts as an injector and a detector. (a) Parameters of
the detector are indicated. L is the distance between the
detector’s orifice and the injector. (b) Schematic picture illus-
trating the method of calculation of transfer conductance.




FIG. 9. Spatial distributions
of the injected electron under a
magnetic field with R, =50 with
a wedge-shaped detector. (a)
R,=6.45, (b) R,=6.2. The
detector’s parameters are
L =30,R,=1, and W,=6.




