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Phonon properties of KNbOs and KTaoa
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The frequencies of transverse-optical I' phonons in KNb03 and KTa03 are calculated in the
frozen-phonon scheme making use of the full-potential linearized mufBn-tin orbital method. The
calculated frequencies in the cubic phase of KNb03 and in the tetragonal ferroelectric phase are in
good agreement with experimental data. For KTa03, the effect of lattice volume was found to be
substantial on the frequency of the soft mode, but rather small on the relative displacement patterns
of atoms in all three modes of the Tz„symmetry. The TO frequencies in KTa03 are found to be of
the order of, but somehow higher than, the corresponding frequencies in cubic KNb03.

I. INTRODUCTION

Evaluation of vibrational properties within the frozen-
phonon scheme is known to be a hard test on the quality
of full-potential total-energy calculations. The curvature
of the total-energy surface over the manifold of various
atomic displacements is much more sensitive to the de-
tails of the calculation scheme than merely the position
of the total-energy minimum, i.e., the equilibrium ge-
ometry. However, in case of success (that can be easily
checked by comparison with experimentally measurable
phonon frequencies) the calculation provides substantial
information on the microscopic driving forces behind the
specific vibration patterns and may give some insight into
the dynamic properties of the crystal in question. For
ferroelectric materials, the interest in the phonon cal-
culations is motivated by the apparently crucial role of
zone-center phonon softening in the mechanism of ferro-
electric phase transition which is subject to controversial
disc usslons.

An early calculation of phonon dispersion curves
within the empirical shell model has been done for
KNbOs by Fontana et aLs First-principles calculation
of F phonons in BaTiOs which has the same crystal
structure and exhibits the same sequence of ferroelec-
tric transitions as KNb03 have been done by Cohen and
Krakauer. Liechtenstein et aL" analyzed two vibrational
modes (however not related to ferroelectric transition) in
another perovskite —BaBi03. Singh and Boyer calcu-
lated I' and Bphonons in cubic KNbOq. Recently, Zhong
et al. obtained TO and LO I'-phonon &equencies in a
number of cubic perovskite-type ferroelectrics.

ln the present paper, we continue the comparative re-
search of KNb03 and KTa03 initiated in the previous
ab initio study of equilibrium geometry (Ref. 10, referred
to further as I). In the present paper, we concentrate on
phonon &equencies in these compounds making use of the
same calculation scheme (full-potential linear muffin-tin
orbital code by Methfessel ' ) and setup as discussed
in I.

For KNbO3, we performed the I'-phonon calculations
for the nonpolar cubic phase and for the first (as the tem-
perature lowers) ferroelectric phase, i.e., the tetragonal
one. The results are discussed in Secs. II and III. In
Sec. IV, the results for KTa03 in the cubic phase for
two lattice spacings are presented.

II. KNbOs' . CUBIC STRUCTURE

As has been pointed out in I, the calculated (f'rom the
total-energy minimum) equilibrium volume of the cubic
phase of KNbOs turns out to be 95% of the experimen-
tal cell volume (extrapolated to zero temperature). Such
discrepancy is known to be typical for calculations based
on the local density approximation (LDA). The effect of
difFerent volumes on the trends in total energy lower-

ing and related equilibrium displacements is discussed at
length in I. Since the curvature of the total-energy hy-

persurface may be affected by the error of about 5% in
the cell volume, we preferred to perform our phonon cal-
culations for the experimental lattice spacing, in order
to produce results better comparable with experimen-
tally measured phonon f'requencies. Specifically, we took
a=4.00 A. for the cubic phase (extrapolated value on T=O
from lattice constants of the high-temperature phase, ac-
cording to Ref. 13). The measured lattice constant in
the cubic phase which exists above 418'C is about 4.02
A. , slightly increasing with temperature. ~s The variation
of volume over the temperature range is therefore much
smaller than the difFerence between experimental and
theoretical volumes and is ignored in the present study.

As it is known (see, e.g. , Refs. 6 and 14), I'-phonon
vibration modes in the cubic perovskite structure, af-
ter projecting out three translational modes, are split by
symmetry into three Tq„modes and one T2„mode (all of
them are triple degenera:e). We followed essentially the
guidelines of Cohen and Krakauer in projecting out the
translational modes, as well as in the choice of appropri-
ate symmetry coordinates. When constructing the force
constant matrix, we performed about 30 calculations for
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These displacements related to the center of mass
and multiplied by square roots of individual atomic
masses produce the orthogonal eigenvectors of vibra-
tional modes, which are presented, along with the fre-
quencies, in Table I in comparison with some experimen-
tal data.

Our calculations reproduce the measured frequencies
of TO2 - TO4 phonon modes reasonably well, while the
TOq mode frequency is imaginary, as can be expected for
a soft mode at zero temperature. In accordance with our
previous analysis of I and in agreement with the results of
Singh and Boyer, s the eigenvector corresponding to the
soft mode represents roughly a displacement of Nb with
respect to the rest of the crystal. It should be noted that
in I, the ofF-center displacement of Nb was found to be en-

different displacement patterns, in order to provide a
good multidimensional fit for the total-energy hypersur-
face by a fourth-order polynomial, retaining then appro-
priate second derivatives. In such a way, we could obtain
stable and controllable values, e.g. , for oH-'diagonal ele-
ments of the force constant matrix.

The simpli6ed procedure of extracting each of these
elements independently &om a single calculation involv-

ing particular combined displacement has been used by
Cohen and Krakauer and applied to KNbOs by Singh
and Boyer. s In our opinion, this scheme may be not suf-
ficiently reliable in case of an essentially nonquadratic
shape of the total-energy hypersurface, resulting in the
apparent dependence of the calculated force constants on
the particular displacement chosen.

On solving the secular equation of the 3x3 lattice dy-
namics problem (for the Tq„mode),

[GF —u) ]u = 0

(Refs. 15 and 16), with G and F matrices defined as in
Ref. 6, the pattern of Cartesian displacements of individ-
ual atoms is restored by back symmetry transformation.
For the atoms with the fractional coordinates in the cu-
bic perovskite cell K(0, 0, 0); Nb(0 5, 0.5. , 0.5); Qq(0, 0.5,
0.5); Qz(0.5, 0, 0.5); Os(0.5, 0.5, 0), the vibrations, e.g. ,
along the [001] direction are given by

ergetically favorable not only at the experimental cell vol-
ume for a =7.553 a.u. , but also at the somewhat smaller
optimized theoretical volume (a =7.425 a.u.). Therefore,
the soft mode frequency, even if calculated at the latter
volume, is expected to be imaginary. On the contrary,
Singh and Boyer could only obtain the energy lowering
by Nb displacements at a =7.589 a.u. (the value taken in
Ref. 8 for the experimental lattice constant), but not at
their theoretical lattice constant of 7.448 a.u. This dis-
crepancy is probably related to some diff'erences in the
calculation schemes and needs to be further investigated.

Our results indicate a good agreement with the exper-
imental data in determining the frequency of the TQ2
mode, whereas the frequencies of TQs and TQ4 modes
are systematically underestimated in both the present
calculation and that of Singh and Boyer. s The reason
may be that the TO2 mode is essentially the vibration of
K atoms against the rest of crystal. As soon as the poten-
tial well related to individual off'-center displacements of
K is the most parabolic comparing to potentials felt by all
other atoms (it has been discussed at length in I), the har-
monic approximation seems to work best for this kind of
displacement. Additional evidence confirming this point
is that the experimental frequencies measured for this
mode are most stable over a broad temperature range.
The reason why the corresponding frequency is underes-
timated by 15%& in the calculation of Singh and Boyers
may be the inadequacy of their fit for the total-energy
hypersurface which has been constructed only on six dif-
ferent displacement patterns to span all three Tq„-type
modes.

TOs and TO4 modes involve two different kinds of
stretching of the oxygen sublattice which seem to give
rise to a rather unparabolic total-energy surface, so the
accuracy of the phonon description in the harmonic ap-
proximation is not sufficient.

Turning to a more detailed analysis of the eigenvectors,
one may conclude that there is an overall agreement be-
tween the displacement patterns calculated in the present
work and in Ref. 8, for the experimental lattice constant.
(There is also clear similarity with the displacement pat-
terns calculated for Tq„modes of BaTiOs by Cohen and
Krakauer .) However, in our calculation the displace-
ment of K atoms in the soft mode and in the TO3 mode
is more pronounced.

The displacement pattern within the soft mode, al-
though calculated from the second derivatives of the

TABLE I. Calculated I'-TO frequencies and eigenvectors in cubic KNbO&.

Mode symm.

TOg Ty„
TOg Ty„
TD3 Ty

TO4 Tg„

Eigenvectors (present work)
K Nb Og 02 03
0.32 —0.67 0.29 0.29 0.53

—0.81 0.12 0.36 0.36 0.27
0.13 —0.14 0.45 0.45 —0.75
0 0 1 —1 0

~ calc. (cm ') ~ expt (cm-')
Present Ref. 8 Ref. 9

203i 115i 143i 96 115' 139"
193 168 188 198 207' 203.5
459 483 506 521 522 511
234 266 280

For a=4.016 A.
In&ared re8ectivity measurements at 710 K, Ref. 14.' In&ared refiectivity measurements at 740 K, Ref. 17.
In&ared re8ectivity measurements at 1180 K, Ref. 14.' Infrared refiectivity measurements at 585 K (in the tetragonal phase), Ref. 14.
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FIG. 1. Relative displacements of atoms in KNb03 along

[001]: from the soft mode eigenvector in the cubic structure

[(a), arbitrary scale]; from neutron diffraction measurements

in the tetragonal structure, Ref. 18 (b); from geometry opti-
mization in the tetragonal structure (c).

total-energy hypersurface in the ideal cubic structure,
contains essential information about relative finite dis-
placements of atoms in the course of cubic to tetragonal
phase transition. This has been shown already by Cohen
and Krakauer for BaTiOs. For KNbOs, the relative dis-
placements corresponding to the eigenvector of the soft
mode in our calculation are presented in Fig. 1(a) in com-
parison with the atomic positions in the tetragonal cell as
determined by neutron diffraction~s [Fig. 1(b)]. Whereas
the experimental coordinates may be interpreted as be-
ing due to opposite movement of Nb and 0 sublattices,
with the K atoms relatively undisplaced kom their po-
sitions in the center-of-mass scale, our calculations show
a pronounced tendency of K atoms to remain stuck to
the oxygen sublattice, so that the ferroelectric transition
may be roughly considered as primarily due to net off-

center Nb displacement versus the rest of the crystal. It
should be noted that the K displacement has been exper-
imentally estimated with the lowest accuracy, compared
to other atoms, as has been pointed out in Ref. 18.

tion of the strain &om first principles is no longer jus-
tified. Instead, we should take the experimental lattice
constants at some temperature as an external constraint.
The choice a=4.00 A. , c/a=1.0165 corresponds to what
is measured at about 250, near the lowest-temperature
range of existence of the tetragonal phase. Within thus
predetermined crystal lattice, associated with any one

type of atom (for instance, Nb), K and two nonequiv-
alent types of 0 are free to relax along the [001] axis
towards equilibrium positions compatible with tetrago-
nal symmetry. Since this equilibrium geometry is not
determined by symmetry as in the cubic phase, it must
be found &om first-principles calculations prior to fur-
ther frozen-phonon analysis. This search for the global
total-energy minimum over three independent parame-
ters has been accomplished by a polynomial fitting and
needed several tens of total-energy calculations to achieve
sufhcient accuracy.

The optimized perturbations of the fractional coordi-
nates of atoms in the cubic perovskite cell, accounting
for the off-center displacements along [001] in the tetrag-
onal structure, are found to be the following: 0.046(K);
0(Nb); 0.034(Oq, 02); 0.047(Os). The arbitrary choice
of unshifted Nb sublattice is taken here in order to en-

able a direct comparison with the experimental data of
Hewat which are correspondingly 0.018; 0; 0.040; and
0.044. The absolute displacements of atoms Rom their
symmetry positions are shown in Fig. 1(c), where the
center of mass has been kept fixed.

As was the case with the soft mode analysis in Sec. II,
K shows, according to our calculation, a pronounced ten-
dency to remain stuck to the oxygen sublattice. This is
identical to what we have found in I for the rhombohedral
phase, when considering the energetics of coupled K and
0 distortions. Otherwise, the main trend in the ferro-
electric transition, namely that the largest displacement
is that of Nb with respect to 03, as well as the magnitude
of this displacement, are in fairly good agreement with
the experiment.

As the crystal space group is reduced &om Pmsm to
P4mm at the ferroelectric phase transition, the vibra-
tions along the [001] direction are no more degenerate;
three corresponding Tq„modes which retain the tetrag-
onal symmetry of the crystal lattice belong now to the
Aq representation, whereas the formerly Tz„mode now

becomes B~. After projecting out the uniform displace-
ment along [001], we arrive at the following symmetry
coordinates (similar to those of Ref. 6):

III. KNbOs.. TETRAGONAL STRUCTURE

For the tetragonal phase, the situation is complicated
by the presence of strain. In I, we have shown that
the tetragonal strain can be optimized, along with the
oK-center displacement of Nb atoms and under the con-
straint of constant (theoretical) cell volume, to be in
fairly good agreement with the experimental estimate of
c/a 1.02. Now that we would like to proceed with the
experimental lattice constant which does not provide the
minimum of the calculated total energy, the optimiza-

3
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Vibrations normal to the tetragonal axis remain dou-

bly degenerate; former Tq„and T2„modes however are
now mixed in the E representation, with the following
symmetry coordinates (along [100]):
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TABLE II. Calculated I'-TO frequencies and eigenvectors
in tetragonal KNb03.

Symm Frequency
(cm ')

167
Ag 330

607
248
166i

E ii [100j 188
234
456

K
—0.88
—0.08
—0.09

0
—0.35
—0.80
—0.00

0.13

Eigenvectors
Nb Og Og
0.45 0.12 0.12

—0.49 0.61 0.61
—0.20 —0.16 —0.16

0 1 —1
0.67 —0.52 —0.34
0.10 0.28 0.40
0.06 —0.02 0.64

—0.14 —0.75 0.48

03
0.05
0.09
0.95
0

—0.21
0.34

—0.76
0.41

transi.

(~x )
S2
Ss

(1 0 0 0 —1 ) it'zg)
0 1 0 0 —1 z2
0 0 1 0 —1 z3
0 0 0 1 —1 z4
1 1 1 1 1 3 (&s)

TABLE III. Calculated and measured frequencies of I'-TO
phonons in tetragonal KNb03.

Mode 8ymm.

TOg

TO2

TO3

TO4

Ag

E
Ag

E
Ag

Bg

Calculated
frequency (cm )

166i
330
188
167
456
607
234
248

Expt. Expt. Expt. '

78
295
199
190
518
600
280

53
275
193

280
190
200
590
600
285
290

Infrared spectroscopy at 585 K; Ref. 14.
Neutron spectroscopy at 518 K (Ref. 19); numerical

values cited in Ref. 20.' Raman spectroscopy at 543 K; Ref. 20.

and analogously along [010].
Calculated phonon frequencies and restored orthogo-

nal eigenvectors (individual atomic displacements, mul-

tiplied by square roots of masses) are presented in Table
II; a comparison with the experimentally determined &e-
quencies is shown in Table III. With the exception of the
soft TOq mode, experimental frequencies are fairly sta-
ble within the temperature range of the tetragonal phase,
and calculated frequencies are in all cases in reasonable
agreement with them. The best agreement is obtained
for the modes involving a relatively small amount of Nb
vibration, which is known from our previous analysis in
I to be essentially anharmonic. The most parabolic po-
tential well, as has been already emphasized in Sec. II,
is that related to the K atom; as a result, the harmonic
frequency of the TO2-E mode, which represents roughly
the vibrations of K against the rest of crystal, is in fairly
good agreement with experixnent. The same applies to
the TO3-Aq mode which is essentially the vibration of
the basal 0 atom against all others. Consistent with this
point of view, the experimental frequencies for these par-
ticular modes are the most stable over the temperature.
Other modes either include a considerable contribution of

the Nb displacement (two lowest Aq modes), or represent
essentially the stretching of the oxygen cage (Bq and two
highest E modes), in which case the harmonic approxi-
mation is less accurate, and the temperature dependence
of frequencies should be noticeable.

The double degenerate soft mode exhibits the tendency
of atoms to shift from their positions, which were opti-
mized with respect to displacements along [001],but cor-
respond to a saddle point of more general total-energy
hypersurface (see I) in one or another orthogonal direc-
tion, compatible with orthorombic crystal structure. The
eigenvector of the soft mode indicates that such transfor-
mation involves primarily the displacement of Nb sub-
lattice against the rest of crystal, as was the case in the
cubic to tetragonal phase transition.

IV. KTaOs

KTa03, in contrast to KNb03, does not undergo a
ferroelectric phase transition, remainiag in the cubic per-
ovskite structure over the whole temperature range. This
crystal seems to be however at the very threshold to a
ferroelectric phase traasition, as is indicated by consider-
able softening of its TOq mode at low temperatures (see,
e.g. , Refs. 21 and 22) and by the fact that this transi-
tion can be induced by applied uniaxial stress. zs In I,
we studied the energetics of ofF-center displacements of
difFerent atoms in KTaQs and fouad the corresponding
potential well to be the most anharmonic and volume de-
pendent for Ta. We found the cubic phase to be stable at
the theoretical (i.e., uaderestimated by 5' as is typical
with the LDA) volume, but unstable towards ofF-center
Ta displacements at the experimental volume. In order
to study in more detail the efFect of combined atomic
displacements near the ferroelectric threshold, we calcu-
lated the phonoa frequencies and eigenvectors at both
theoretical (a=3.928 A) and experimental (a=3.983 A)
values of the lattice coastant. The calculation setup (ba-
sis set, choice of radii) was the same as described in I;
the symmetry analysis for phonons is identical to that in
the cubic phase of KNbOs.

The calculated results are shown in Table IV in com-
parisoa with the frequencies measured by several tech-
niques. Some more experimental data, which however
fall within the same limits, may be found ia Refs. 21 and
27. The above-mentioned tendency of Ta to go ofF center,
as found in the calculations perforxned for the experixnen-
tal lattice constant, results in imaginary frequency of the
soft mode, the displacexnent pattern of which is essen-
tially the xnovexnent of Ta against the rest of crystal. At
the theoretical volume, which is smaller, the soft mode
frequency was found to be real, nuxnerically close to the
data experimentally measured at about 200 K, aad con-
sequently higher than the experixnental results obtained
at lowest temperatures. The real behavior of the soft
mode seems to fall within the limits provided by these
two cases.

In spite of the difFerences in the calculated soft mode
frequency, the corresponding relative displacements of
atoms determined for both lattice constants are very
close. One can note however the difFerence in the vi-
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TABLE IV. TO frequencies and eigenvectors in KTa03.

Symm.

Tlu
Tlu
Tlu
T2u

Tlu
Tlu
Tlu
~2u

0.68
—0.62

0.12
0

0.57
—0.72

0.14
0

—0.57
—0.02
—0.04

0

Eigenvectors (calculated)
Ta Og Og 03

a=3.928 A
—0.56 0.28 0.28 0.27
—0.10 0.51 0.51 0.29

0.02 0.32 0.32 —0.89
0 1 —1 0

a=3.983 A.

0.31 0.40
0.45 0.29
0.38 —0.83

—1 0

Calc.

71
227
566
294

61i
205
504
330

25 —106
196—199
551—550

81
199
546
279

85
198
556

~ (cm ')
Expt. Expt. Expt. '

Infrared re6ectivity measurements at 12—463 K, Ref. 24.
Hyper-Raman scattering measurements at room temperature, Ref. 25.' Raman scattering measurements at room temperature {soft mode) and at 10 K, Ref. 26.

bration of the oxygen sublattice. At the theoretical lat-
tice constant, i.e., for the case of a nonpolar phase and
real frequency, the oxygen cage remains rigid on the vi-

brations; as the volume increases and the ferroelectric
transition develops, Os atoms shift further towards Ta
iona than Ot q atoms do. The resulting slight distortion
of the oxygen cage is typical for ferroelectric KNbOs ac-
cording to our calculation {Table I) and for BaTi03.
Similar trends are seen in the calculation by Singh and
Boyer for tv' lattice constants of KNb03.

The volume dependence of the frequencies of two
higher Tt„modes, although much less dramatic than it
was for the soft mode, is nevertheless noticeable. The
reason for the fact that frequencies at larger volume are
systematically lower is that the potential wells related to
ofF-center displacements of all constituent atoms become
broader as volume increases, with smaller curvature at
the equilibrium, as has been studied in I.

We cannot provide an explanation for the opposite ten-
dency found for the Tz„mode. It seems not to be an
artifact of our calculation because Singh and Boyers ob-
tained the same trends in their calculations for two lattice
constants in KNb03.

The whole set of calculated frequencies lies slightly
but systematically higher than those in KNbOs. KTa03
therefore can be regarded to be the stifFer crystal as is
also evident from its higher bulk modulus {calculated in
I).

V. SUMMARY

We calculated frequencies and eigenvectors of TO I'
phonons in cubic and tetragonal KNb03 and in cubic

KTa03. For cubic KNb03, the soft Tq„mode is charac-
terized by an atomic displacement pattern which is close
to the pattern of the ofF-center displacements in the ferro-
electric tetragonal phase, as determined by explicit struc-
ture optimization. The frequencies of the other two Tt„
modes and the T2„mode are in good agreement with ex-
perimental data. In the tetragonal phase, the softening of
an E mode indicates an instability towards the transition
to the orthorombic ferroelectric phase. The &equencies
of the other six A1, Bt, and E modes are found from the
calculation to be in reasonable agreement with experi-
ment —especially for modes whose atomic displacements
mostly lie in quasi-harmonic regions of the energy hyper-
space. In KTa03, the TO frequencies and eigenvectors
have been calculated for two values of the lattice constant
in the cubic phase. Although the tendency for the fer-
roelectric transition and correspondingly the calculated
frequency of the soft mode are found to be quite sensitive
to the volume, the displacement patterns within the soft
mode and other T1„and T2„modes are not. The frequen-
cies are found to be close to, but systematically slightly
higher than, the corresponding frequencies in KNb03.
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