
PHYSICAL REVIEW B VOLUME 50, NUMBER 11 15 SEPTEMBER 1994-I

Multiband theory of Bloch-electron dynamics in a homogeneous electric field

Jun He
Department ofElectrical and Computer Engineering, North Carolina State Uniuersity, North Carolina 27695-7911

Gerald J. Iafrate
U.S. Army Research 0+ce, Research Triangle Park, North Carolina 27709 22-11

(Received 24 May 1993;revised manuscript received 20 April 1994)

A multiband theory of Bloch electron dynamics in a uniform electric field of arbitrary strength is

presented. In this formalism, the electric field is described through the use of the vector potential. Mul-

tiband coupling is treated through the use of the Wigner-Weisskopf approximation, thus allowing for a
Bloch-electron transition out of the initial band due to the power absorbed by the electric field; also, the

approximation insures conservation of total transition probability over the complete set of excited bands.

The choice of the vector-potential gauge leads to a natural set of extended time-dependent basis func-

tions for describing Bloch-electron dynamics in a homogeneous electric field; an associated basis set of
localized, electric-field-dependent Wannier and related envelope functions are utilized in the analysis to
demonstrate the inherent localization manifest in Bloch dynamics in the presence of relatively strong

electric fields. From the theory, a generalized Zener tunneling time is derived in terms of the applied

uniform electric field and the relevant band parameters; specific results are derived from the general

theory using a nearest-neighbor tight-binding, multiband model, and are shown to have identical para-

metric dependence on electric field, but different, more realistic dependence on the appropriate band-

structure parameters than those of the well-known Kane and effective-mass two-band model. Further,
the analysis shows an electric-field-enhanced broadening of the excited-state probability amplitudes, thus

resulting in spatial lattice delocalization and the onset of smearing of discrete, Stark-ladder, and band-

to-band transitions due to the presence of the electric field.

I. INTRODUCTION

Bloch-electron dynamics in a homogeneous electric
field has been a subject of great interest dating back to
the earliest applications of quantum mechanics to solid-
state physics. ' Even more recently, as modern fabrica-
tion technologies continue to drive the study of solid-
state transport into the nanometer domain, many in-
teresting questions have emerged concerning the solid-
state dynamics and quantum transport of carriers in
"band-engineered" superlattices and tailored periodic
solids.

Foremost among current questions are the age-old,
controversial issues concerning the existence of Bloch os-
cillations and electric-field-induced Stark-ladder energy
levels. Recent optical experiments, on excitonic emission
from double wells and four-wave mixing from superlat-
tices, ' and optical-absorption studies clearly indicated
oscillatory electron dynamics and the manifestation of
concomitant Stark-ladder transitions when optical prob-
ing is invoked; on the other hand, Bloch oscillations have
been elusive in transport experiments, save for several re-
ports of negative differential resistance observations
ascribed to Bloch oscillatory phase breaking due to the
onset of scattering.

No doubt, there is still work to be done in developing
the ultimate fundamental resolution of issues concerning
the experimental manifestations of Bloch oscillations and
the apparent differences observed in transport versus
optical-absorption experiments. Resolution of these and

other profound issues of quantum transport and optical
absorption in the solid state require a fundamental, first-
principles description of Bloch-electron dynamics in the
presence of homogeneous electric fields of arbitrary
strength. Therefore, the purpose of this paper is to ex-
tend the zero-order theory of Bloch-electron dynamics in
homogeneous electric fields to include implicitly the
effects of real band structure in a multiband analysis; as
such, the theory derives the dependence of the Zener tun-
neling time on real band-structure parameters and
quantum-mechanical initial conditions.

In this paper, a multiband theory of Bloch-electron dy-
namics in homogeneous electric fields of arbitrary
strength is presented. In this formalism, the electric field
is described through the use of the vector potential; in
this regard, this work is a major extension of the metho-
dology previously developed by one of the authors
(G.J.I.) and co-workers' 3 to describe solid-state dynam-
ics and quantum transport for Bloch electrons in an ap-
plied homogeneous electric field of arbitrary strength and
time dependence, including weak scattering from ran-
domly distributed impurities and phonons, and a spatial-
ly localized, inhomogeneous electric field. The present
paper extends the transition rate theory well beyond the
short-time, time-dependent perturbation theory treat-
ment of Krieger and Iafrate' to a long-time, multiband
analysis. The multiband coupling is treated in the
Wigner-Weisskopf (WW) (Ref. 11) approximation, a clas-
sic approach for describing the time decay from an occu-
pied quasistationary state; the WW approximation allows
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for the analysis of the long-time, time-dependent tunnel-
ing characteristics of an electron transition out of an ini-
tially occupied band due to the power absorbed by the
electric field, while preserving the conservation of total
transition probability over the complete set of excited
bands.

The choice of the vector potential gauge leads to a nat-
ural set of basis functions for describing Bloch-electron
dynamics in a homogeneous electric field. As shown in
Sec. II, a basis set of localized, electric-field-dependent
Wannier functions and associated envelope equations are
utilized to accommodate the inherent localization mani-
fest in Bloch dynamics due to a relatively strong electric
field. Further, in Sec. III, the Wannier envelope equa-
tions and functions are analyzed for the case of the one-
band approximation.

In Sec. IV, a multiband analysis is obtained by solving
the coupled set of envelope equations through the use of
the WW approximation. From the formalism, a general-
ized Zener tunneling time is derived for the initial ground
state in terms of the applied electric field and pertinent
band parameters; specific tunneling results from the ap-
plication of the nearest-neighbor tight-binding multiband
model are also derived, and are shown to have a similar
parametric dependence on electric field, but with
difFerent, more realistic band-structure parameter depen-
dence than the familiar Kane two-band model. ' Fur-
ther, the analysis also reveals that the envelope functions
of the excited bands become delocalized in lattice space,
and undergo an electric-field-enhanced broadening in
probability amplitude which eventually results in the
smearing of the discrete, Stark-ladder, and band-to-band
transitions.

P„»(x,t)= pe' 'W„(x —l, t),1

N
(4)

where N is the number of lattice sites, W„(x—1,t) are the
instantaneous Wannier functions for a Bloch electron in a
spatially homogeneous electric field. Equation (4) can be
inverted, so that

W„(x l, t)=— —g e ' '(])„»(x,t) .

As shown in Ref. 3, both P„» of Eq. (4) and

W„(x I, t) —of Eq. (5) are complete sets of functions
which can serve as a basis for the general solution to the
Schrodinger equation in this problem. Therefore, the
solution to the time-dependent Schrodinger equation for
the Hamiltonian of Eq. (1) can be expanded as

eEp 5 —(1' l, t)]f„,(—l', t) . (7)

In Eq. (7), e„(l I', t) and h,«—(l 1', t) are g—iven by

and

e (I 1',t)= ——pe ' ' ')e K— A
K

where f„(l,t) is the envelope function in the Wannier
representation. It was shown in previous work that
f„(l,t) obeys the equation

(3f„(l,t)
i R = g g [e„(l' 1,t)5„„—

Bt

II. DYNAMICAL BLOCH
AND WANNIER REPRESENTATION (1 I', t)= ——Q e ' ' ' 'R«K — A()

K Sc

where V, (x) is crystal potential, Ap= cEpt is the vec-
tor potential for the time-independent homogeneous elec-
tric field Eo, turned on at initial time t =0. It is noted
that the basis states are

iK-x

P„»(x, t)=, U„),(,)(x),n t (2)

where U„i,~t~ is the periodic part of the usual Bloch func-
tion with band index "n" and wave vector k(t), given by

eEO
k(t) =K+ t, - (3)

Building on previous methodology, use is made of the
instantaneous eigenstates of the Hamiltonian describing a
Bloch electron in an electric field:

'2

H = P ——A()(t) + V, (x),1 e

2m c

where R„„(K), the interband coupling parameter, is
defined by

R~ (K)=—fdx U„'» V»U„.» .

Using a simple generalization of the well-known Wan-
nier theorem, ' Eq. (7) reduces to the difFerential equation

(3f„(r,t)
i)rt

" =e„iV —A()
—f„(r,t)

Ac

—eEp. gR . iV' —A() f—„(r,t),
n

I Sic

(11)
where "r" represents an arbitrary lattice position within
the crystal. This equation depicts the multiband Wannier
envelope function for a Bloch electron in an electric field.

It is clear that the solution to Eq. (11) for f„(r,t) can
be written as

where K is a constant determined by the periodic bound-
ary conditions in a box of volume Q.

In the %annier representation, the instantaneous
Bloch functions of Eq. (2) are equivalently expressed as

1 —(IAj E„[(»else)Ao]d(

~N»
Xe' 'A„(K,t), (12)



MULTIBAND THEORY OF BLOCH-ELECTRON DYNAMICS IN A. . .

where the expansion coefficients, A„(K,t), satisfy the
equations

number of Bloch periods sr~, where ~z is a Bloch period,
have elapsed, becomes

ii)l—A„(t)=—g B„„.(t)A„.(t),
n'An

(13) (1 1, ) 8
1 ~ (—It))e (Ki)ss~ iKi-(i —t')i

E
e

I

and where "n" and "n"' index the complete set of energy
bands for the crystal. [Note that although A„and 8„„.in
Eq. (13) are K dependent, we use the notation A„(t}for
A„(K,t), and B„„.(t) for 8„„.(K, t) for convenience since
Eq. (13) couples A„and A„ for the same K value. ] In
Eq. (13), the time-dependent interband matrix elements
8„„(t}are given by

=5, , E„(li 1,'—,sos ),x'x

where

~.(K, ) = g e„(J:„,K,),1

(19)

(20)

pt

8„„(t)=eE()R„„K— A() e
C

(14)

where e„and e„.are explicit functions of K—(e/Pic ) A0.
In Sec. III, the properties of f„(r,t) are discussed

within the context of the one-band model, i.e., when

8„„.=0; in Sec. IV, the envelope functions f„(r,t) are ob-
tained in a multiband theory through the use of the
Wigner-Wiesskopf approximation.

fs (l,s~B)= QK„(l, 1,',st—)f„(1„,1),0), (21)

the average value of E„(K) along the K„direction in the
Brillouin zone, is independent of K„. Here the subscript
"x" indicates the direction of the electric field, and the
subscript "l" indicates the direction perpendicular to the
electric field. Therefore, it follows from Eqs. (17) and (19)
that

III. ONE-SAND APPROXIMATION

In the one-band approximation, $„„=0for all "n" and
"n'"; it then follows from Eq. (13) that A„(t) is a con-
stant in time; in this case, A„ is a function of K alone, es-

tablished by the initial state of the system, so that the en-
velope function for a single, uncoupled band (labeled by
the superscript "SB")is

showing that f„{1,t) oscillates with frequency tos, where

c0B =eE0a/R, in the direction of the electric field, and is
diff'usive in the direction perpendicular to the electric
field, as explicitly shown by the example in Eq. (35}.

The oscillatory behavior of f„(l,t) is clearly seen in
the case of one dimension, i.e., Kz ——0; then

fSB(1
—i/S I e„[K (e/t(c) Ao]dt'—

~iv „ where

—(i/S)ee 0)sri)5
(22)

Xe'K iA„(K,O' (15)

A„{K,O)= ge ' ' f„(1',0);
2V t

where it is noted that all of the time dependence of
f„(l,t) is governed by the K-dependent phase factor.
A„(K,O) can be expressed easily in terms of the initial
values of the envelope functions, f„(1,0), as

F„(0)= g e„(K„),1

x
(23)

the average value of e„(K„) over the one-dimensional
Brillouin zone, is independent of E„; in this case, it fol-
lows from Eqs. (17) and (22) that

in using A„(K,O) of Eq. {16)in Eq. (15), it is clear that
fs (I, t) can be written as

so that

(24)

f„'B(l,t)= QE„(l—1', t)f„(1',0), (17)
IfsB(1,st) I

=
If„(1,0)I, (25)

where K„(l 1', t), the time ev—olution kernel, is given by
t—ili) e [K (e/Sc)A ]d—t'

E„( —', t)=— e I K..(l—l')

(18}

The general oscillatory nature of f„(l,t ) in the direc-
tion of electric field (x direction) is delineated explicitly
by invoking the K-space preiodicity of e„(K), namely
e„(K)=e„(K+CD),where the IG~I=j2m/a are the ap-
propriate reciprocal-lattice vectors. Using this periodicity
condition, the time evolution kernel, after an integral

where "s" refers to a positive integer. Further, it follows
from Eq. (24) that, in the single-band, one-dimensional
model, with a given e„(K), the total wave function is
periodic in time with Bloch frequency up to a constant
phase factor in the direction of the field.

The kernel K„(l—1', t) of Eq. (18) explicitly shows the
tendency for localization to set in as the electric field in-
creases. This can be seen by noting, through the use of
e„(K)=ate' ' s„(l), that the integral in the phase factor
of the time evolution kernel in Eq. (18) can be further
evaluated as
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K+ t' dt'0"
I Cgg]

F„—(Ki)r —g e " "E„(l„',Ki),(e —1) i'„eI„'

ACOE I„'

where

r

E„(l„,Ki)—:g E„(l',li }e
l~

(27)

(26) so that, in the high-field limit, as )rico' »E„(a),
I

—I II)f e[K+(eE /0ll)t ]dt'
e =e

flCOE I»
Z

(28)

Putting Eq. (28) into Eq. (18), and using the completeness relation, we obtain the three-dimensional tiine evolution
kernel for general band e„(K) in the high-field limit as

)
1 (t/S)e„(K) )t iKt'(I I' )t tt x xt2e (I —I' K )

It:„ I —I', r = sin
Ni Kt A0)E (I —I„' )

I

X X I [( tt/2)( I„—I„' )/(2)tet) t ) ]
Cist e

X Z

In the one-dimensional case, Eq. (29) is simplified as (29)

—
( I /tt() e„(0)tI „(1 I', t)=e — "

5II+, sin
B

I —1' i[(m /2) —( l —l') /(2)co~ t )
coBt e (30)

For the familiar nearest-neighbor tight-binding ap-
proximation of a linear-chain model,

e„(K)=e„(0)+%sin

with "a" denoted as the basic lattice vector in a specific
crystallographic direction, and with E„(0) and "W"
denoted as the energy-band minimum and width, respec-
tively. For this model, the time evolution kernel of Eq.
(18) can be evaluated with no approximations to give

—I [c (0)/fi) t —I ( I -1')[(m /2)+ ( 1/2) co& t]E„(l I', t )=e—
XJI ! sin( —,(0)Et)

%COB
(32)

where Jl I is a Bessel function of the first kind. '

k„(1 I', t) of Eq. —(32) reduces to Eq. (30} in the limit of
high electric field. Thus for the one-dimensional,
nearest-neighbor, tight-binding approximation,

I

In the limit of high electric field, that is, for the
~ WlfuoE~ &&1, the absolute value of argument of the
Bessel function in Eq. (33) is much less than 1, and the
Bessel function Jl I tends to be localized about I =1'
since Jl I (g) tends to 5I I as g tends to zero. It is clear
that the single-band model leads to localization of the
electron in high fields, that is fields such that
(I I')ficoE »s„(l —I'—); it is also clear that conduction
occurs through hopping from site to site as evidenced in
Eq. (30).

The time evolution kernel can also be derived exactly
for the three-dimensional (3D) simple cubic lattice in the
nearest-neighbor tight-binding approximation. The
energy-band function for the 3D simple cubic lattice is
given by

E„(K)=s„(0)+2s„(a)[cos(I(.„a )+cos(J ~a )

+cos(E, (2 )], (34)

XJl I ~ sin( '0)Et) f (1'0) .
B

(33) where E„((2) is the nearest-neighbor interaction energy.
The time evolution kernel of Eq. (18) is

—i[e„(0)+(tet) /2)(l —I„')]t tt

X X

XJ
v

2e„(tl )
t J 2ett (a } —i(tt/2)(l +I + I —I —I —I )

e x y z x y z (35}
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IV. MULTISAND ANALYSIS
USING WIGNER-WEISSKOPF APPROXIMATION

In the multiband analysis, the envelope function is
given by Eq. (12), with band-coupling dependence
reflected in the coefficients, A„(K,t), given by Eq. (13).
Since the set of equations given in Eq. (13}is not solvable
exactly with most approximate analytical methads ad-
dressing the short-time behavior, we use the Wigner-
Weisskopf approximation to establish the long-time
behavior of A„(K,t) in Eq. (13). In the Wigner-
Weisskopf approximation, " the equation for the A„ is
written as

i A A„—(t )= —g B„„.(t)A„.(t),
n'An

with all other A„. satisfying the approximate equation

(36)

J,, in Eq. (35) shows clearly the tendency for electron

to localize in the direction of electric field (x direction) in
the high-electric-field limit, since Ji,, tends to 5), as

Z X X Z

the argument of the Bessel function tends to zero. Fur-
ther, the Bessel functions in the "y" and the "z" direc-
tions introduce diffusion in the direction perpendicular to
the electric Seld, since the arguments of the Bessel func-
tions are proportional to the time "t."

approximation couples the state of interest "n" to all oth-
er states of the system "n"' while including only direct
reflective feedback from the states "n"' to the state of in-
terest, thereby ignoring multiple probability reflections.
In addition, the above approximation guarantees conser-
vation of probability, since it can easily be shown that'

IA. I'+ g IA. I'=1
n'Pn

(38)

A„(0)=1, A„.(0)=0, n'An . (39)

In Bloch dynamics, several Bloch periods is the time
scale for very early time development, while Zener tun-
neling times set the scale for the long-time development.
In this analysis, we focus on the long-time temporal
behavior, so that initial transient effects will be ignored
throughout the analysis.

In solving for A„and A„. in Eqs. (36) and (37), subject
to (39), we integrate Eq. (37) and substitute A„. into Eq.
(36) to obtain

—A (t) —,„x=t)„„(&)f B '(t .)A ((„„).d&'„'

for A„and A„.
We solve for the A„and A„. of Eqs. (36) and (37) sub-

ject to the initial band occupation conditions

i% A„.(t)= B„.„(t)A„(t)=— B„'„,(t) A„(t)—;j (37)

both A„(K,t } and B„„,(K, t) are implicit functions of the
same K value, therefore the K dependence in A„and
B„„.is suppressed unless special1y needed. In essence, the

In essence, the Wigner-Weisskopf approximation uncou-
ples the system of equations for the amplitudes I A„ I, re-
sulting in an integrodifferential equation for A„(t) alone.

Substituting B„„.given by Eq. (14) inta Eq. (40), we ob-
tain

—A„(t)=—gBt

'2
0 ilt)I (n—„,—n„)dt' t n, i') J (n„,—n„)dt"

0
(41)

where X„„.is the component of R„„.in the direction af the electric field.
In Appendix A of this paper, we show that, for t 10', the integral phase factor in Eq. (41) can be expressed in

terms of time-dependent and time-independent components as

l ~, l
e dt'= — e(K )t+rt (K—),n g n i n (42)

where e„(Ki), the average value of the energy-band function e„(K) in the direction of the electric field, is given by Eq.
(20), and g„(K) is given by

&n(1n&K) ) tx, n),g„(K)= g e
l„%0

and is independent of time.
Using

(43)

X„„(t)=g h„„.(1)e ' = g b,„„(l)e
I I

(44)

where 0)s = eE0a/fi (angular frequency of Bloch oscillation, where "a" is the lattice spacing), and using Eq. (42) in Eq.
(41) while letting to„„.(Ki)=e„„.(Ki)/A, with e„„.(K) )=e„(K))—F„(Ki),we express Eq. (41) in terms of h„„(1)as

2

n'Xn
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Equation (44) may be solved through the use of Laplace transforms. In noting that

a„(s)=f e "A„(t}dt:L—I A„(t)j, (45)

the Laplace transform of (44} is

sa„(s)—A„(0)= —g
n Wn

2
eE0 a„s i—cos(1„—I„')]

(1)ge (Ii }
iK.(!—I')

I, l' [s ic—uzi, +ice„„(KI)]
(46)

The sum on the right-hand side of the equation shows the explicit time dependence on the Stark-ladder spectrum as
indicated in the terms a„[s ic—

oII (I„—I, )]. Separating the summation on the right-hand side of the equation into two
parts, one with I„=I„' terms, and the other with l, @1„'terms, we obtain

sa„(s)—A„(0)=—
'2

eEo
.g g g b,„„(l„l,)b,„„(l„,l,')e

n'Pn I I~

a„(s)
[s Icoii—l, +IeI„„(KI)]

(I g e (II) IK (I I')—a„s i to—II ( I„—I,' )

1 I' [s I eiz—I„+ico„„(KI) ]

t„&I

(47)

Noting that the inverse Laplace transform of a„[s—ia)II(l„—I„' }]is exp[icos(1„I„' )t ] A—„(t),corresponding to rapid-
ly oscillatory terms for I„XI„' and as cist))1, the first summation, contairung l„=l,' terms only, dominates in the
long-time limit. Therefore, as an approximation, we suppress the 1„41„' terms; then the Laplace transform of A„(t),
a„(s), can be expressed explicitly as a function of "s" as

2
eEO 1a„(s)=A„(0) s+ g +ID„„(I„,K, )l'

(r!
I

"" "' s Icosi—„+!eI„„(KI)
X

(48)

where

D„„.(I„,, KI)= gh„„.(l„,li)e
l~

A„(t) is then obtained by the inverse Laplace transform

(49)

E+I oo

A„(t)= f a„(s)e"ds
27Tl E—i ~

A„(0) eEO 1

s+![ eIBIX+a)nn'(KJ)]f s+ g g ~D„„(I„,K))~ e "ds, (50)

where "s" is a complex variable in the integrand, e is a small positive number, and the path of integration is parallel to
the imaginary axis. Setting s =e+iy, the integral is reduced to an integral over the real axis, and A„(t) can be written

as
A„(0)

A„(t)= lim f2&l E~0 —co

y ie—
n'Wn

e Ete lgfdy

I
"" '

y
—cosl +co„„,(KI) ie-g ID„„(I„K,) I'

X

(51)

In ignoring "y" in the sum of the denominator of the integrand, which effectively suppresses the time development of
A„(t) in the first several Bloch periods, "' and using the Poisson sum formula' for the sum while using

lim, 0(1)/(x i e) =P(1/x—)+i m5(x} for the residual portion, the summation in the denominator of the integrand can

be expressed in terms of a real part with the principal value, and an imaginary part with a t) function (see Appendix B),
as

2

lim g g )D„„(I„,KI)~
n n

y„(K) )=hco„(KI}+i
2

(52)

where
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and

bco„(Ki }=
'2

eE()
y y ID„„.(l„,Kl)12&

n'Xn I„

1
—

cot, l„+to„„.(Ki)
(53)

y„(Ki)
2

2
eEO

=77 y ID..(~..(Kg), K~)12.
COg n'Xn

(54)

It is noted in Eq. (54) that l„„(K)) =co„„.(K) ) /cot) =e„„(K)) leEoa. Thus it follows from Eqs. (51) and (52} that

l)/td

A„(K,t)=A„(K,O) f . =A„(K,O)e (55)

Note that bto„and y„are Ki dependent, so that IA„(K,t)l =
I A„(K,O)l exp[ y„(K—))t], IA„(K,t)l decays ex-

ponentially with a decay rate of y„(K) ). Using the result of Eq. (55) in Eq. (12), the envelope function for the initial
band "n" is

i/A—f e„[K (e/—l)c)AO]dt';K. l [imam„(K&) —[y„(K&)/2]]&
n e e' e

N

—i/S j e„[K (e/t—)c) Ao]dt';K. (l l ) [ia~„(K&) [y„—(K&) /2]] i
e

I' ) K
(56)

where the term inside the parentheses of Eq. (56) is the time evolution kernel for the initial band; this kernel difFers from
the single-band kernel of Eq. (18) due to the presence of the Ki-dependent attenuation factor involving leo„(K~) and

y„(K) ). It then follows that for an electron initially placed in a localized Wannier state, i.e., f„(l,o) =St. l, the en-

velope function becomes, after "s"Bloch periods,

[
—(i/S)e„(Ki)+ii)re„(Ki) —y„(Ki)/2]set) iKi (li —li)

x oxN
j.

(57)

Further, when the electron is subjected to mixed initial conditions, i.e., a Wannier-like state in the x direction, and
Bloch states in the l direction, then

QN„ J.' Ol x' Ox
(58)

In this case, after "s"Bloch periods, the envelope function of initial state (58}evolves to

—(f'/A)p„(Kpg)+ fkpil (Kpy) —[p„(Kpg)/2] I $Tg EKE lz

Q AVE

(59)

which exhibits the periodicity in the x direction, and ex-
ponential decay out of the initial band at time s~~.

The probability for an electron to be in its initial band
"n" after time "t" is

p„(t)= g lf„(l,t)l
I

Bp (t) (} 2 y„(K,)i-r„(t)=—— = ——g I A„(K,o) I'e
at at

= gy„(K) }IA„(K,O}l e
K

(61)

For y„(K)}t~ 1, the transition rate is approximated by
= y I A„(K,t)l'= y I A„(K.,o)l'e '"

K K
(60) r„(t)=r„(o)= y I A„(K,O) I'y„(K, ) .

K
(62}

where the exponential terms indicate the irreversible de-
cay out of nth band into the upper bands of the crystal
due to the power absorbed by the electric field. Thus the
total transition rate for an electron in initial band "n" is

This transition rate is the total transition probability
per unit time for an electron to tunnel out of state "n"
while coupled to all other bands. Thus the time of Zener
tunneling, v„ is determined by
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1

I „(0)
I „(0)=gy„(K)5:—y„(K ) .

K
(67)

1

y I A„(K.,o) I'y„(K, )
K

2 2

&I A. (K,O)I' y ID..(1;.(K&),K&)l'
n'An

(63)

f„(1,0)=5( (, A„(K,O)= e (64)

It is interesting to note that the total transition rate (or
the Zener tunneling time) depends not only on y„(Ki),
but also on the initial conditions A„(K,O). In the follow-

ing, we examine the dependence of I „(0) on the initial
conditions. First, for initial conditions based on localized
states, i.e., Wannier states,

Finally, for initially mixed states of Eq. (58), the total
transition rate is simply

r„(0)=y. (Koi» (68)

D„„(I„,Ki}= QX„„(K)e
x

(69)

we show in Appendix C, by utilizing the analytic proper-
ties of X«(K), e„(K), and e„.(K) based on the analytic
continuation of energy bands belonging to "n" and "n'"
in the complex E, plane, that

the decay rate for Ki=Koi. In comparing I „(0) from
Eqs. (67) and (68), it is clear that when the initial state in
the direction of the field is a Bloch state, the associated
tunneling times are identical.

Note that D„„(/„,Ki) defined in Eq. (49) can also be
expressed as

so that the total transition rate from Eq. (62) is D„„(l„Ki)=—ae (70)

I „(0)=—g y„(Ki)—: g y„(Ki),1 1

N K 1V~K
(65)

the average value of y„(Ki) over the entire K space of
the Brillouin zone. However, for initial conditions based
on Bloch states, i.e., 7T 2qnn'(Kl)a[a .(Kj )tleEoa I]

n &&i~
8 a (71)

where q„„=I q I, with "q" determined by
e„(q,Ki)=e„.(q, Ki). Therefore, the field dependence of
y„(Ki ) of Eq. (54) is

f„(1,0)= ~ e ', A„(K,O)=5K K

the total transition rate from Eq. (62) is

(66)
so that it follows from Eq. (63) that ~, is generally given
by

'2 —1

2 & ~2 2q (K&)a[E,(K&)/(eEoa(]

K n'Xn
(72)

It is also noted that e„„.(Ki) is the average value of the energy-band difference between states "n" and "n"' taken over
the direction K„[the direction of the electric field, as defined above Eq. (44}] in the Brillouin zone. Since the electric-
field dependence in Eq. (72) appears in the exponent as well as in the prefactor, ~, is very sensitive to the field.

For purposes of illustrating how one proceeds from Eq. (72) for a specific band structure, we consider the familiar
nearest-neighbor tight-binding model for a simple cubic lattice with band dispersion

e„(K)=e„(0)+2le„(a)l[cos(K„a)+cos(K a )+cos(1(.,a )], (73)

q„„.a =cosh —1

Ka K,a
E +4m„„.(a) sin +sin

2E„„(a)

(74)

where "+-"signs corresponds to conduction- or valence-
band alternatives. For the bands of Eq. (73), we find that

The formalism is much more simplified for the one-

dimensional model. Since hen„and y„are K indepen-

dent for the one-dimensional case, the envelope function

for the initial band "n" is related to the single-band result

as

{7&)

where Eg is the energy gap between two bands at
K=O, E„„.(a)=s„.{a)—E„{a),and q„„.is Ki dependent.

Therefore, the probability of the electron at initial
band "n" and site "l" is
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(76)

The probability of the electron remaining in its
initial band after time "t" is then given

by p„(t)=+K~A„(K,t)~ =+&~A„(K,O)~ e " =e
which irreversibly decays into the upper bands of the
crystal with a decay rate of y„, and the Zener tunneling
time is r, =1/y„.

For a general band structure in a one-dimensional
model, the total transition rate for an electron transmit-
ted from initial band "n" of Eq. (71}reduces to

m.eEoa
y„= g exp —2q„„.a

I+ eEoa
(77)

m.eEoa
y„= exp —2q„„.a

Eo
(78)

For the nearest-neighbor tight-binding approximation,
q„„.a=cosh '[1+2E""/(W„+ W„)], where Es" is the

gap at E =0, and W„and 8'„.are respective bandwidths.
It is noted that q„„.a and e„„.can be expressed in terms of
the central and zone boundary band gaps. In general, the
zone boundary band gap c~" can be expressed as
e"" =E""+( W„+W„); for the specific one-dimensional,
nearest-neighbor tight-binding model, e„„.=(E""
+ex" )/2. Thus y„of Eq. (78) can be written in the form

—2C(E /Rcoa j

xn coBe (79)

where C —=CENNTS is expressed as

1+ Ex /e, 1+Eg /sg
(80)

In Eq. (80), CHNNra refers to the coefficient "C" for the
exact nearest-neighbor tight-binding (ENNTB) model.

In order to compare the nearest-neighbor tight-binding
results to those of other well-known models, we calculate
the Zener tunneling transition rate y„of Eq. (78) for the
effective-mass limit of nearest-neighbor tight-binding
theory; y„ for Kane's two-band model' is also presented
for comparison purposes. In effective-mass theory, the
dispersion curves for e„and e„.are given by

Since the average band gap e„„.increases as the band
"n"' increases from initial band "n," the maximum con-
tribution arises from the nearest band "n '= n + 1";if the
other bands are far away from the initial band, then the
decay rate can be approximated by a two-band model,
which is

q
=i(+2E m„/A'), then y„ in Eq. (78) becomes

„+—2m„E,e„„,
Bexp —2

B
(82)

where m„ is the reduced mass defined by
(1/m„)=(1/m„)+(1/m„) and, Eg is the band gap at
E =0.

In the effective-mass limit of nearest-neighbor tight
binding, it is observed that (A' /2m„) = (a /4) W„,
where "a" is the one-dimensional lattice constant, and
W„ is the bandwidth for band "n" T.hus (1/m„)
=

—,'(a/R) ( W„+W„)=——,'(a/R) (eg" —E"" ), so that

E /s
(83)

1 Es-
L

CEMNNTB

where CEMNNT8 refers to the coeScient "C" for the
effecitve-mass limit of the nearest-neighbor tight-binding
(EMNNTB) model.

In applying the k P method in the two-band model,
Kane obtains'

fi Ke„(K)= +++
2 2 2m

Eg A'x. '
e„(K)= —++

2 2 2m

(84)

where ri=+E +(E /m„)A' E . Solving e„(q)=e„,(q)
for q results in q =i(QE m„/fi}; using an analysis based
on the Golden rule, Kane obtains

Qm„Es—Es-
cog exp 2

'RNB
(85a)

which is significantly different in both exponential and
preexponential factors from the results obtained for the
exact nearest-neighbor tight-binding model and the
effective-mass limit of the nearest-neighbor tight-binding
model as indicated in Eqs. (79), (80), and (83). Aside from
the differing prefactor of ~4 in Eq. (85a), the results for
Kane's two-band model also fit into the form of Eq. (79),
where Cis given by

T

(85b)

E./"C
V8 1 —E/

' 1/2

(85c)

If m, is chosen to be identical to that of the EMNNTB
reduced mass value, i.e., Qm„=&2(R/a )(1/Qsg Eg ), —
then C~,„,in Eq. (85b) becomes

so that from e„(q)=e„(q},

e„(K)=e„(0)— K
2mn

g2
e„,(K)=e„.(0)+ E

2mn~

(81)

we see that

A comparison of y„ for the ENNTB, EMNNTB, and
Kane models is instructive in showing the significant
variation in the exponential dependence of Eg /eg for the
three cases, and how the variation in band-structure pa-
rameters markedly effects the magnitude of the transition
rate y„ for each case. As observed in Fig. 1, in general,
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0.4 O. s

-3--

3
-4--

C4

(a) Egua = 0.2

y„ /(ircos /8) varies exponentially with the ratio
(Es /fico& ); for (E /eicos ) ~ 0. 1, the tunneling rates for all
models are within the same order of magnitude and slow-
ly vary with Es/es', for (E /Acus ) ~0.3, the exponential
dependence on Es/Es is significant in determining the
value of y „. For small Es /Es, the ENNTB and
EMNNTB results coalesce, whereas the Kane result
significantly departs from the ENNTB and the
EMNNTB results in magnitude and slope due to the
inappropriate application of the k P perturbation theory
in this band parameter regime; for Esle increasing to-

ward unity, the EMNNTB and Kane models coalesce,
whereas the ENNTB result tends to the same limit at a
different rate. In comparing the ENNTB and EMNNTB
results, it is clear that when E /e is small, the exact and
effective-mass limits coalesce; tlute similarity in the two re-
sults in this limit is reflective of strong tunneling rates for
the band gap near K-0. On the other hand, as Eg/E'g
approaches unity for this comparison, the degree of non-
parabolicity decreases in the nearest-neighbor tight-
binding model, and the tunneling rate is high for many E
values in the Brillouin zone due to a somewhat uniform
band-gap; the difference in the ENNTB and EMNNTB
results in this limit is reflective of the effective-mass limit
favoring the dependence of band structure near K-O,
whereas the exact analysis reflects the global average in
the E space of the energy-band difference.

Having illustrated the sensitivity analysis of the
ENNTB, EMNNTB, and Kane models in Fig. 1, we now

show in Fig. 2 the dependence of y„on fico~ specifically

for bulk GaAs (Ref. 17) (Es = 1.5 eV,
E =E +W +W2=10 eV, and a=5 6 A), and a

g g i 2

GaAs/A1As superlattice (E =0.207 eV,
s =E + Wi+ W2=0. 252 eV, and a=85 A). As ob-

served, for both bulk and superlattice cases, the ENNTB

(E/e )

OO -3--

3
-4--t

C4

(b) Ega) = 0.5

OO

OQ
4

GaAs

OO -3--

3
—4--

a

txt3

(c}E+4as = ~'0

OO 4 j/
(b)superlat tice GaAs/Alhs

FIG. l. Plot of log, o[y„/(ircos/8)] of Eq. (79) vs (E~/eg)
comparing CEN&TB (solid line), CEMNNTB (dashed line), and

Cic,„, (gray solid line) defined by Eqs. (80), (83), and (85c); (a),
(b), and (c) show relative variations of Eg /Aced&.

FIG. 2. Plot of logio[y„/(ir/8fi)] vs (ficos ) (ficos in eV) coni-

paring CENNTz (solid line), CEMNNTz (dashed line), and CK»e
(gray solid line); (a) bulk GaAs (Eg =1.5 eV, cg =10 eV, and
a=5.6 A), and (b) superlattice GaAs/AlAs (Eg =0.207 eV,
c.g =0.252 eV, and a = 85 A).
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and EMNNTB models are within the same order of mag-
nitude, whereas the Kane model significantly differs rela-
tive to the ENNTB and EMNNTB results except for the
bulk case in very high electric fields. It is interesting to
note that, in general, (Eg )sulk -10(Eg )sL,
(E /ag )z„ik—(1/10)(Eg /ag )sL, and therefore

g~B ]B lk (~~B )SL[Eg/~B ]SL/(~B )Bulk

order-of-magnitude scaling rules with regard to observing
the variation in y„with each model in Fig. 1 for a range
of bulk and superlattice band-structure parameters.

y„ in Eqs. (79) and (80) derived from the ENNTB
two-band model consideration is also estimated for some
values of field; the explicit known band-parameter depen-
dence therein serves to easily illustrate the sensitive
dependence of y„on electric field. We note that when a
field strength of EO=10 V/cm is employed for GaAs
(Ref. 17) (a=5.6 A, E =1.5 eV, and s =10 eV),
we obtain a Zener tunneling time r, = 1046

rg —h leEoa =0.74 X 10 ' sec, and therefore
r, =2X10 years, so that the Zener tunneling time is so

long that it can be ignored. However, when the field
strength is increased by just one order of magnitude to
ED=10 V/cm, the Zener tunneling probability is in-
creased significantly; here the Zener tunneling time
r, =3.7X10 rz, with r~ =0.74X10 ' sec, and

r, =2.7 X 10 sec, so that it still takes many Bloch oscil-
lations to Zener tunnel out of the band, i.e., r, &&rz, but
with a relatively short Zener time. In noting that the
Zener tunneling probability is very sensitive to the field
strength and the band gap, appreciable Zener tunneling
can be expected in superlattices, for which the band gap
is 1-2 orders of magnitude smaller than a typical bulk
crystalline solid, in moderately high field.

Finally, we examine the properties of the excited-state
envelope functions in the Wigner-Weisskopf approxima-
tion. In this regard, since A„(K,t) has been found in Eq.
(55), we can then determine A„(K,t} from Eq. (37},and
then f„(l,t) from Eq. (12). Integrating Eq. (37), while
using A„(K,O) of Eq. (55) on the right-hand side, we find
that,

eE i[—lx~g+nn'(Kl)+ha)n(Kg)]t [~n KJ )/2]t

A ~

e —Br„at„e "B "" ' " ' " ' —1„(K t)=A {K0)
~ QD„(1 K),.

[ 1 + (K )+~ (K )] (K ) 2
X

(86)

where the summation over "1„"refiects interactions with all possible lattice sites. It then follows from f„.(l, t), as given
by using Eq. {86}in Eq. (12), that

(87)

where

and

pt

K
(88)

i [—1 a)B +nni(K&)+ he@„(K&)]t—[yz (K&)/2]t

to(l„,Ki, t) =
y„(Ki)

i [ l„toB+to„„—(Ki}+b,to„(Ki)]—
2

For an electron initially in band "n,"with a mixed initial condition [Eq. (58}],

(89)

( l' /A)F ( Ko~ )S%~ t'Koj (I I )~

x'x ux
(90)

Therefore, after "s"Bloch period of time, the n'th band envelope function is

eEo

QNi
and the probability for an electron at band "n'" and site "l"is

{91)

if„(l,st)i = 1
'2

Eo
iD„„.(1„—10„,Koi)i ic0(l„10„,Koi,s~B)i— (92)

Then the total probability for an electron to be in band "n'" and located at sites with same position "l,"a condition
resembling the situation in a one-dimensional superlattice, is
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2
eED

~D„„(l„—lo, Ko, )i ~co(1, —lo„,Koi, sr')I

eE0 [ 1+e " ' —2e " ' cos[(co«.(Koj )+
waco„(Koz))s~~

] ] ID«(1„—10» Koi) I'

[
—(1„—lo„)cos+co„„(Koi)+bco„(Koi)]+y„(Kog)/4

(93)

which is spatially broadened, even when the electron is initially localized in the direction of the electric field. It is not-
ed that in the limit of s ~~, p„.(l„s~s ) reduces to

p„.(l„oo ) =
eEO D„„(l„10,) K—oi) ~

[ (1 10 )cos+co '(Koi)+bco (Koi)] +y (Koi)/4
2 n' Oi'i'x '0 i

COg e

[(1„—10, )cos+co„„(Koi)+Aco„(Koi)] +y„(Koi)/4
(94)

V. DISCUSSION AND SUMMARY

A multiband theory of Bloch-electron dynamics in a
homogeneous electric field of arbitrary strength has been
presented. The analysis was developed in terms of Wan-
nier envelope functions to accommodate the inherent lo-
calization manifest for Bloch dynamics in strong electric
fields. The rnultiband coupling was treated using the
Wigner-Weisskopf approximation; from this approxima-
tion, a generalized Zener tunneling time is derived in
terms of explicit band-coupling parameters, and excited-
state envelope functions were derived showing spatial
delocalization and probability amplitude broadening as
tunneling to the upper states occurs.

The combined use of the vector potential gauge, and
therefore the concomitant use of time-dependent ac-
celerated states, and the Wigner-Weisskopf approxima-
tion have allowed for the temporal analysis of Bloch-
electron dynamics covering a time span from several
Bloch oscillations to times well beyond the Zener tunnel-
ing time. In particular, a general three-dimensional time
evolution kernel and envelope function was derived for
single-band dynamics in electric fields of arbitrary
strength. Use was made of familiar, analytic models in
both one and three dimensions to illustrate and confirm
the utility of the result. The general result can be incor-
porated into simulations and numerical modeling codes
to include, in a user friendly way, the e5'ects of the elec-
tric field with realistic band structures.

In using the Wigner-Weisskopf approximation in a
multiband analysis, a general three-dimensional envelope
function was derived which describes band dynamics in-
cluding the effects of Zener tunneling, excited-state
broadening due to the presence of the electric field, and
dependence on the initial conditions. With regard to
Zener tunneling times, a general three-dimensional ex-
pression for the Zener tunneling time was derived which
shows the correct explicit dependence on quantum-
mechanical initial conditions and the real band-structure

This work was supported by OfBce of Naval Research
and U.S. Army Research OfBce. The authors thank J. B.
Krieger for critical comments and suggestions.

APPENDIX A: INTEGRATION OF THE
TIME-DEPENDENT ENERGY-BAND FUNCTION

The integral of the time-dependent energy-band func-
tion

I„= e„E— 30 dt'
0

(Al)

appears frequently as an exponent in the text of this pa-
per. This existence of the electric field destroys the linear
time dependence of the integral I„. In this appendix, we
study this integral for a general energy-band function
e„(K) under the influence of a homogeneous electric field

Eo.
Since the energy-band function e„(K)can be expressed

in a Fourier series expansion,

e„(K)= g E„(1)e'
I

(A2)

parameters. Although the field dependence of the Zener
tunneling time is identical to that of previous
researches, ' ' our result shows the importance of the
average value of the band difference over the Brillouin
zone rather than simply the gap itself. We demonstrate
this important difference using the well-known nearest-
neighbor tight binding model, and show the distinct
difference in band parameter dependence compared with
other well-known models.

In future work, we will be using the results to develop
further the theory of Bloch-electron dynamics to include
the effects of electric fields on scattering from defects,
barriers, and phonons.

ACKNOWLEDGMENTS
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where e,„(l) are the Fourier transform of e„(K) with

respect to the lattice site of the crystal potential, the titne
dependence of the energy-band function in {Al) is exhib-
ited explicitly through the exponent of the Fourier series

I COg IB Z

toalx

1 +i rr5(o)s 1„}s x

for t ) 10~&, Eq. (A5) reduces to

(A7}

iK I+i{eEO l)/{A)te„K— Ao = c.„ 1 e
I

(A3)

s„(l„,Ki )I„=e„(Kl)t —g e
I ~0Z

(A8)

If the electric field is in the x direction, then Eq. (A3)
becomes

(A4)

Thus the first term on the right-hand side of Eq. (A8) is
linearly dependent on time, and the second term is in-
dependent of time; also the second term tends to be small
in high electric field when I„ is evalauted as a phase term.

APPENDIX B: DERIVATION OF EQUATION (52)

where 1, takes on the values 0, +1,k2, . . . .
Integrating Eq. (A4) term by term with time ranging

from zero to "t,"we obtain

8 ZECO I

I„= g a„(l)e'K't+ g e,„(1)e'K'
i, l =P l, !„AP

l COg I

=e„(Kl)t+ g s„(l„,Ki)e
I %0 l&B x
Z

(A5)

s„(l„,K2)= g e„(l„,li )e
li

where F„(Ki) is given by Eq. (20), the average value of
energy-band function e„(K)along the K„direction in the
Brillouin zone, and

n = xe' "x.
n= —00 m= —00

(81)

The identity in Eq. (Bl) can be validated through a
straightforward manipulation of the sum over e' " by
the use of

00 2 00

e iaxm

m= —00 a I = —00

2r
1

a
(82)

When the Poisson sum formula is applied to the sum in
Eq. (52), the sum can be written as,

I D„.(1„,K, ) I'

o, ( toe 1„+conn—. ie)—
Z

A sum can always be equivalently represented by a
series of Fourier integrals through the use of the "Poisson
sum formula"'

g e„(K„,Ki )e
x K

(A6)
ao ID (X K }I2ei2 mxn

lim f dx, (83)
m= —m ' " { toax+tpnn «)

As "t" tends to become greater than 10rs, the phase
Ihip(factor e " in Eq. (A5) becomes a rapidly oscillatory

function of F02)l„; thus, in treating the sum over 1„%0in
Eq. (AS) as a Poisson sum (Ref. 16; also see Appendix 8),
while noting that

where to„„.=to„„.(Ki) as denoted in the text. Using
lim, p(1/x ie)=P(—1/x)+in5(x) for the integrand of
Eq. (83) in the limit of e~0, we can separate the right-
hand side of Eq. (83) into real part and imaginary parts
as

lim
0m=—

ID .{X,Ki)I2e'2~mx

—~ ( —coax+conn. ie)—
1 00 im ~nn'

ID ( K ) I2 y i2wmx+
~nn' ~a~ m =—~ Cg& CO&

2
g 2mn (co„„,/co~ )

e "" . 84

Using Eq. (82) for the summations on the right-hand side of Eq. (84), we obtain

ID„„.(1„,K, ) I2

P l ( —C&l +0oxitnen) i (~nn —&2)1 ) . S
Z Z

g 5(to„„—tps 1„),
I„

(85)
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which is essentially Eq. (52) after the sum over the band
index is performed. Specially, b co„and y„/2 in Eq. (52)
become

D„„(l,Ki) = g b,„„(l)e
I~

b,to„(Ki)=
'2

eE0
(B6)

g X„„.(K)e
K

(C 1)

and
where X„„(K)is the x component of the interband cou-
pling parameter R„„.(K),

y„(Ki)
2

2
eE0 ~nn'D„„,Ki

n~n
R„„,(K }=—Idx U„'~ V IK U„ it . (C2}

X g 5(co„„—l„toit }
The summation in Eq. (C 1) can be converted into an

integral over E„ from 0 to 2 n/ ttas

2
eE0 +nn'

D„„. , Ki
n~n

2

(B7)
D„„(I„,Ki)= J X„„(K)e " "dE, .
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Krieger has shown that near the connection point of
bands "n" and "n',"

In Eq. (B7), it is noted that the density of states for a
Bloch electron implicitly includes the Stark-ladder spec-
trum in the electric field, so that

X„„,(I(..„,K, )l, =+
4(K„—q )

(C4)

=Ap(e}, (B8)

g 5(co„„—l„tos ) =ttt' g 5[e„(Ki)—e„(Ki)—l„trtcos ]

where the connection point of the bands, "q," is deter-
mined by e„(q,Ei)=e„(q,Ki). The connection point is,
in fact, the pole of the integrand in Eq. (C3) with residue
+2rri/4 for X„„.(K„Ki) at K„=q. The integral of Eq.
(C3) can be converted to a complex contour integral and
be evaluated by residue theorem to give

where p(e) is the density of the states given by
( I/g )

20, 21 D„„(I„,K~) =+i e-
nn x& (C5)

APPENDIX C: CALCULATION OF D„„(I„,Kg )

Since y„(Ki), the exponential decay rate of A„(K,t),
is dictated by the value of D„„.(I„Ki) at I„=l„„(Ki)as
indicated in Eq. (54), it is necessary to calculate
D„„(I„,Ki) for given bands of e„(K) and e„(K).

„D„.(I„K )iis defined in the text as nn x& l —
4

(C6)

For a fixed K~, the value of "q" depends on specific
band functions of e„(K) and e„(K), where "q" is gen-
erally a purely imaginary number. For q =+itI„„(Ki),it
follows that
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