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A direct general method for deriving effective-mass equations for microstructures with atomically
abrupt boundaries is presented. The principal assumption is that the envelope functions are slowly vary-
ing on the scale of the lattice period. The band-edge Bloch functions are not assumed to be the same on
both sides of an interface and it is shown how the differences can be taken into account perturbatively.
The particle in a box method is known to work well in many situations. To demonstrate why, a deriva-
tion of the effective-mass equation is carried out explicitly for the case of conduction-band states of a
type-I microstructure composed of zinc-blende crystals without spin-orbit interaction. The derivation
provides much insight into why the effective-mass method works so well. The method is illustrated by
applying it to a one-dimensional superlattice problem. For this model problem, the effective-mass ap-
proximation to the wave function is seen to be good even for a quantum well one lattice period wide.

I. INTRODUCTION

The particle in a box model, with various degrees of
refinement (see, e.g., Refs. 1-4, and references therein), is
in extensive use for calculating the energy levels and en-
velope functions of electronic states in semiconductor mi-
crostructures and the justification for its use is an impor-
tant issue. In trying to justify the model, it is usual (see,
e.g., Refs. 1-3) to assume that the corresponding band-
edge Bloch functions in the materials comprising the mi-
crostructure are sufficiently similar for the differences be-
tween them to be neglected. However, it has recently
pointed out’ that for cases of practical interest this is not
a reasonable assumption because it requires the neglect of
terms of the same order of magnitude or even larger than
those retained in conventional derivations. Furthermore,
it has been shown how to rectify the situation by develop-
ing an exact envelope function method>~” for microstruc-
tures and using it to derive an effective-mass equation
without neglecting the above-mentioned differences in the
band-edge Bloch functions.” This exact envelope-
function method has been applied recently® to the prob-
lems of calculating quantum-well valence-band states to
overcome difficulties arising from the use of heuristic
methods. What is clearly desirable is to find a more
direct method for deriving effective-mass equations, one
that avoids the need to formulate an exact envelope-
function method in the first place, and yet still incorpo-
rates the differences between corresponding Bloch func-
tions of the materials of which the microstructure is com-
posed. It is the purpose of this paper to show how this
can be done using an example that adds insight into why
the particle in a box model works so well.

Section II shows how approximate envelope-function
equations can be derived for microstructures using only
the slowly varying nature of the envelope functions. In
Sec. III, the derivation of the effective-mass equation is
carried out explicitly for the case of conduction-band
states of a type-I microstructure composed of zinc-blende
crystals ignoring the spin-orbit interaction. In Sec. IV,
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the method is illustrated using a one-dimensional super-
lattice model composed of ‘“Mathieu” crystals, i.e., those
for which the microscopic potential, apart from a con-
stant, is a cosine. It will be shown that the effective-mass
method works for this model system even for structures
with wells only one lattice period wide. The discussion in
Sec. V adds insight into why the effective-mass method
works so well.

II. DERIVATION OF THE APPROXIMATE
ENVELOPE-FUNCTION EQUATIONS

The problem we consider is as follows. Take a Bravais
lattice with primitive lattice vectors a;, a,, and a; and
denote the position vector r by r=r,a,+r,a,+r;a;.
Define the nth unit cell, n=(n,,n,,n;) where the n; are
integers, as the volume defined by n;=<r,<n;+1,
i=1,2,3. Our idealized microstructure is then defined by
specifying the element or compound occupying the nth
unit cell. For instance, for a microstructure in the
GaAs/Ga,Al;_,As material system one would specify
the value of x (including the possibility x =0) for each
unit cell, i.e., one could regard x as a function x(n) of the
integer variable n. The potential inside the nth unit cell
is just the bulk potential corresponding to the element or
compound occupying that cell with perhaps an additive
constant to take account of band offsets. The potential is,
therefore, piecewise periodic with the discontinuities ap-
pearing at the boundaries of unit cells corresponding to a
change of composition. Returning to the example of the
GaAs/Ga, Al, _, As material system, the potential inside
the nth unit cell of the microstructure is

Vo(n)+ 3 Vs[x(n)]leCr, (1)
G

where 3 V(x)e’C(G being a reciprocal lattice vector)

G

is the potential for bulk Ga,Al,_,As and V(n) is con-

stant for each unit cell to take account of band offsets.
We start with the Schrodinger equation in the plane-
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wave representation. The wave function is expanded in
plane waves

¢(r)=2$6(k)ei(k+6)~r , 2)
kG

where the wave vector has been expressed as k+G, G be-
ing a reciprocal lattice vector of the underlying Bravais
lattice and k is inside a Brillouin zone defined with
respect to that lattice. (Cyclic boundary conditions are
applied to a large macroscopic volume completely enclos-
ing the microstructure.) The Schrddinger equation in
this representation is

2
—ﬁ—(k+G)2$G(k)+ S (k+G|VIK'+G' ) g(k')
2m ret

=E¢gk), ()

where V is the microscopic potential. Now we are in-
terested in slowly varying solutions, i.e., those for which
¥(k) is only appreciable for small k. For small k and k’
(and indeed for any k and k’ for which k—k’ is within the
Brillouin zone) one can write

(k+G|V|K+G')=V5_g(k—k'), 4)
where the Vg(k) are the plane-wave expansion
coefficients of V(r), i.e.,

V(r)zzi'}G(k)ei(k-f—G)-r . (5)

kG

So our slowly varying solutions of (3) will certainly obey
2

ﬁ—(k+G)2$G(k)+ S Voo (k=K )g (k') =Edg(k)

2m et

(6)

to a high accuracy. If we now transform into real space,
i.e., change to the new dependent variables

bo(1)=3Pgkle'T %)
k

we get
#G?
2m

# 7
—Evzxpg(r)—i;&v%uw ¥g(r)

+3Vg_g(t)Yg(r)=Eyg(r). (8)
G

Of course, in transforming into real space, the sum over k
in (7) and that over k' in (6) must be extended to all wave
vectors, not just those inside the Brillouin zone, but this
introduces little error because we are only interested in
slowly varying solutions ¥g(r) of (8) so that ¥g(k) is only
appreciable for small k. As we will now show, if
Vs_g(k—k’) is approximated by a certain expression
valid for small k—k’, then Vg_g:(r) is just the plane-
wave expansion coefficient (for wave vector G—G’) for
the bulk crystal potential (including the constant part to
take account of band offsets) of the element and/or com-
pound occupying the unit cell contain r. Vg_g(r)
changes abruptly across the boundary between two unit
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cells if the material composition does the same, i.e., it is
piecewise constant because the microscopic potential is
piecewise periodic.

To show how the plane-wave expansion coefficients
Vo_g(k—k’) are approximated, we use a one-
dimensional example in the first instance. We start with
a plane-wave expansion for the microscopic potential ¥

Vix)=3Vg(k)e'k+t6x (9a)
kG
Potk)= [ Vixse~i(k+nax | (9)

where L is the large length over which cyclic boundary
conditions are imposed. Suppose the region x =na to
x=n'a, where a is the lattice period, is occupied by a
“crystal” of one type, i.e., the potential is periodic in that
region and given by 3 5. VY% ’6"*  (The constant po-
tential to take account of the band offsets can be con-
tained in the G"”=0 term.) The contribution to Vg(k)
would be given by

—ikna

e-—xkn a_,

: (crystal)

2V Gk Te—6L 10
where we have used the fact that G and G"' are reciprocal
lattice vectors so that e’®™=1. Now, to evaluate Vg (k)
for small k, we need to retain only the term correspond-
ing to G''=G, i.e.,

- (crystal) € —ikn’a_e —ikna

is a good approximation to (10). But this is just the
plane-wave expansion coefficient for a function that is
constant and equal to V5™ for x between na and n'a
and zero elsewhere. Clearly each crystal layer will con-
tribute a similar term; in each layer the V(x) will just be
the value of V™) appropriate for the crystal occupy-
ing the layer. So, if in the region between x =na and
x =n'a, the microscopic potential is 3. V§4'e¢"* corre-
sponding to material 4, and elsewhere the microscopic

potential is 3 VPe "> corresponding to material B, then
perh

in the region between x =na and x =n’'a V;(x) will be
equal to V57, but equal to VP everywhere else.

The extension to three dimensions is straightforward.
The position vector r is expressed as r,a,+r,a,+r;a;,
where the a; are the primitive lattice vectors of the un-
derlying Bravis lattice. We suppose that in the unit cells
within the parallelepiped defined by n;<r;<nj,
Jj=12,3, the microscopic potential is given by
S Ve, ie., the region is occupied by material A.
The contribution to ¥(k) from this region is

oo .
e xkjn}- —e xkjnj

j=3
ISV , (12)
% ¢ jI;Il(kj-i-Gj—G]f')Lj

k+G is

3 j=1(k;+G;)b; and the b; are the reciprocal lattice vec-
tors. We have made use of the fact that the G,’s are in-
tegers to simplify the arguments of the exponentials. Cy-

wlgere the wave vector written as
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clic boundary conditions are taken over a large paral-
lelepiped of which the jth side is composed of L; unit
cells. J is the Jacobian for the coordinate system, i.e., the
volume element is J dr,dr,dr;. For small k the dom-
inant term in (12) is the one with G'' =G, i.e.,

—1 —ik;n; —ik.n,

j =3 N — i
PIVE E—— (13)
ji=1 J

and it will be a good approximation thereto. The quanti-
ty (13) is equal to the fourier transform of the function
that is equal to V5! in the region defined by n ;<rj<nj,
Jj=1,2,3 and zero elsewhere. It is clear, therefore, that
for a general structure Vg_ g (r) will equal the bulk value
for the material occupying the unit cell in which r is lo-
cated when we use the small wave-vector approximation
(13) for (12). This will hold even if a microstructure is
composed of bulk material in which just one unit cell is
replaced by that of another material.

To proceed with the derivation of the approximate en-
velope function and effective-mass equations, it is now
convenient to change to the envelope-function variables

F,(r)=3 Ul ¥s(r) , (14)
G

where the U, g are orthonormal and complete

EU:GUH'G—_.Sn,n' ’ (15a)
G

2U6Ue=08g - (15b)
n

From (2) and (7), the approximate wave function is given
by

()= Pg(r)e’® =3 F,(r)U,(r) , (16)
G n

where the periodic basis functions U, (r) are given by
U,(r)=3U,ge'°" . 17
G
One choice for the U,(r) could be the zone-center eigen-
functions of one of the constituent materials. Premulti-

plying (8) by U g and summing over all G, and using (14)
and (15b) (completeness) gives

‘hz 2 . A
—_—— _— .o ’ + H ' "
v F"(r) i zn,p"" VFn(r) nE: nn (r)Fn(r)

=EF,(r), (18)

where the p,, are matrix elements of momentum with
respect to the periodic functions U, (r)

pnn'=zU;GﬁGUn'G (19)
G
and the H,,.(r) are the corresponding matrix elements of
the periodic crystal Hamiltonian of the material at r

#G?
H,,(nN=3 Uk |5 866+ Vo-c(1) [Upg - (20)
GG’ 2m

M. G. BURT 50

Clearly H,,(r) will have the same piecewise constant
form as the V5 _g/(r). H,,(r) will equal the value for the
bulk material occupying the unit cell in which r is locat-
ed. The diagonal elements will contain the constant term
that takes the band offsets into account.

III. DERIVATION
OF THE EFFECTIVE-MASS EQUATION

Now, provided the materials of which the microstruc-
ture is composed are not too disparate, then one can
choose the U,(r) so that the off-diagonal elements of
H,,(r) are small [e.g., U,(r) could be the nth zone-center
Bloch function for the well material in a quantum-well
problem)]. In such cases, it is possible to derive effective-
mass equations from the approximate envelope-function
equations in the usual way’ by eliminating small envelope
functions in favor of the dominant one(s), but being care-
ful® to include the off-diagonal elements H,,(r). At first
sight it would appear that the presence of the off-diagonal
elements in H,,.(r) would prevent one from deriving the
effective-mass equation because of the appearance of
products of H,,-(r) and p,~,. It has been mentioned
elsewhere,’ in general terms, how a combination of time
reversal and space symmetries reduce the importance of
such terms. It is instructive to consider a simple example
that illustrates this point a fortiori. Take a microstruc-
ture composed of direct-gap zinc-blende semiconductors
without spin-orbit interaction and derive the effective-
mass equation for the conduction-band states. To derive
the effective-mass equation we start with (18) with n =c,
the conduction band

ﬁZ

——2;14721«1&)—1i S Do VF,(£)+H,(0)F,(r)

r(Tys)

+ 3 H,(rF,(n=EF,(r), (1)
r(ry)

where the sum over r denotes a sum over ‘“‘remote”
bands, i.e., all bands other than the conduction band. We
have left out the term involving p., because the latter is
zero by symmetry. The sum in the second (momentum)
term on the left-hand side (lhs) of (21) is restricted to
terms corresponding to basis functions U, of I' |5 symme-
try because all the other terms are zero. Similarly the
sum in the last term on the lhs is restricted to basis func-
tions of I'; symmetry. The small envelope functions F,
are found from (18) with n =r
—1 if
F,(r)=[E—H,(r)] [—Zp,c-VFc(r)

+H,(1)F,(r) | . (22)

We only get a nonzero F, for r corresponding to a basis
function of either I'; or I'|5 symmetry. For I'; symmetry
one gets

F.(r)=~[E—H,,(1r)]"'H,.(r)F,(r) (23a)
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and for I' |5 symmetry

F.(r)=<[E—H,(r)]"! l—%p,c-VFc(r) . (23b)

Using (23a) and (23b) in (21) gives

# 1

“om | mEn)

VF.(r) | +H2?(E,r)F.(r)=EF,(r),

(24)

where the energy-dependent effective mass m (E,r) is
given by

m 2 —1
I __=1+= E—H , (25
i~ 2 polEHA) o, 29

with p standing for the component of the momentum
along one of the cubic axes. HZ(E,r) is the
conduction-band edge at r calculated to second order,
i.e.,

H2(E,r)=H.(r)+ 3 H,(1)[E—H,(1)]"'H,(r) .
r(Ty)

(26)

So we see that the symmetry in this case has allowed us
to take into account, via the off-diagonal elements of
H,,.(r), the fact that the zone-center Bloch functions of
the constituent materials are not the same and yet still re-
tain the effective-mass form (24). Note that both m (E,r)
and H?(E,r) are piecewise constant because the H,,,(r)
are piecewise constant for the piecewise-periodic micro-
scopic potential assumed.

At first sight it would appear that in establishing Eq.
(24) with the defining Egs. (25) and (26) much of the sim-
plicity of the effective-mass approach has been lost. In
particular, it would seem that one now needs a plethora
of new parameters to calculate the quantities m (E,r)
and H?(E,r). In practice, however, this is not likely to
be necessary as these quantities are well approximated by
the experimental effective mass and the conduction-band
edge. It is interesting to note that the position depen-
dence of the effective mass defined by m_ (E,r) is deter-
mined entirely by the energy denominator in (25); the
momentum matrix elements are the same throughout the
structure. To include the effect of the dependence of the
interband matrix elements on material one has to carry
out the above perturbation analysis to the next order so
as to include terms of third order in small quantities.
However, when this is done the effective-mass form (24) is
lost.

IV. NUMERICAL EXAMPLES

To illustrate the algebraic work in the previous section,
the differences between the effective-mass approximation
to the wave function and the exact wave function will be
computed for a model one-dimensional type-I superlat-
tice. The component crystals of this superlattice have a
microscopic  potential of the ‘“Mathieu” form
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FIG. 1. Band structure of the crystal forming the well of the
model one-dimensional superlattice. Only the second and third
band are shown and these are labeled valence band and conduc-
tion band for convenient nomenclature. The wave vector is in
units of 27 /a, so that 0.5 corresponds to the zone edge. The
plot here covers the inner half of the first Brillouin zone.

Vo+ Vscos(2mx /a) where a is the lattice period. The
same parameters (e.g., a =5.86 A) will be used as used
previously’ to illustrate the exact envelope-function
method. The band structure of the well material
(V3=0.746 eV and Vg=2.7512 eV, band gap 0.750 eV)
is given in Fig. 1. The band structure for the barrier ma-
terial (¥V(;=0.0 eV and V;=5.0596 eV, band gap 2.060
eV) is similar. The conduction-band offset is 230.1 meV.
This relatively small band offset (compared to the band-
gap difference of 1.310 eV) is chosen so that the energy-
dependent effective-mass approximation to the band
structure for both well and barrier crystals is reasonable
for energies between the conduction-band edges. Howev-
er, there is a significant difference between the zero
wave-vector Bloch functions for the well and barrier crys-
tals. This is illustrated in Fig. 2 where the zero wave-
vector conduction-band Bloch functions for the well and
barrier crystals are compared. To quantify the difference,
consider the energy of the barrier-crystal conduction-
band edge expressed as the expectation value (U, |H|U, )
where H and U, are, respectively, the Hamiltonian and
the zero wave-vector conduction-band Bloch function for
the barrier. When U, for the barrier is replaced by the
corresponding quantity for the well in this calculation,
the expectation value falls by 102 meV. Considering that
we need to be able to calculate energies to within a few
meV, it is clear that we cannot, in general, ignore the
difference between the Bloch functions of the well and
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FIG. 3. Microscopic potential for the 10X 10 superlattice.
The origin is taken at the center of the barrier.
-2 L
0 01 02 03 04 05 06 07 08 08 1 stance, at the barrier band edge, m(E,x) is 0.1122 in

x/a

FIG. 2. Zero wave-vector conduction-band Bloch functions
for the well and barrier crystals. They are normalized so that
[ UXU.dx/a=1.

barrier crystals for superlattices constructed from these
crystals.

To construct the effective-mass approximation to the
wave function of the ground state for the conduction
band of the ‘“Mathieu” superlattice described above, one
can use the one-dimensional version of the algebraic re-
sults of the previous section with little modification. Be-
cause the microscopic potential of a “Mathieu” crystal is
symmetric about the center of the unit cell, the zero
wave-vector Bloch functions are either even or odd.
Since the conduction-band state at zero wave vector is
even, we can use (23a) for the envelope functions associat-
ed with even periodic basis functions and (23b) for those
associated with odd periodic basis functions. The solu-
tion of the effective-mass Eq. (24) and use of the auxillary
Eqgs. (23a) and (23b) allow one to construct the wave func-
tion from (16). The exact wave functions have been com-
puted by diagonalizing the plane-wave Hamiltonian (see,
e.g., Eq. (4.8) in Ref. 5) using reciprocal lattice vectors of
magnitude 5 or less in units of 27 /a.

In the calculations described below, the well zero
wave-vector Bloch functions have been chosen as the
periodic basis functions U,. In the well, m (E,x) and
H2(E,x) correspond exactly to the well-bulk effective
mass and the well-bulk conduction-band edge [the off-
diagonal elements of H,,.(x) are all zero]. In the barrier
m(E,x) and H?(E,x) will differ slightly from the bulk-
barrier effective mass and the bulk-barrier conduction-
band edge because the momentum matrix elements in
m (E,x) are those for the well not the barrier and the
off-diagonal elements of H,,(r) are nonzero. For in-

units of the free-electron mass and H2(E,x) is 5.9559
eV. The corresponding values for the effective mass and
the conduction-band edge in the barrier are 0.1285 and
5.9634 eV. Replacing m (E,x) and H?(E,x) in the
barrier by the barrier effective mass and the barrier
band-edge energy makes little difference in the wave func-
tion generated.

10X 10 superlattice

The microscopic potential for this superlattice is plot-
ted in Fig. 3 and the wave function for the state in the
lowest conduction subband with zero superlattice wave
vector in Fig. 4. The wave function in the effective-mass
approximation computed as described above is barely dis-
tinguishable from the exact wave function shown in Fig.

06 T

0.2 +

. l\/\[\/\ |

-0.1 1

exact wave function

Mooy
AN

=

b

-

-

—
-

U

0 2 4 6 8 10 12 14 16 18 20

x/a

FIG. 4. Wave function for the lowest conduction-band state
of the %(())X 10 superlattice. The wave function is normalized so
that [ “y*ydx/a=1.

02 +

03 T
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4. It is more informative to plot the deviations of the ap-
proximate wave function from the exact wave function
and this is done in Fig. 5. The differences are remarkably
small, a few percent at most. Indeed, in the well, where
the electron spends most of its time (88%), the error is in
the region of 2%. However, such an accuracy is required
because the energy of the state, in the region of 5 eV, is
large compared to the size quantization energies one is
trying to calculate. A 2% error in the wave function pro-
duces a 0.04% error in the eigenvalue, ie., 2 meV in 5
eV. (The actual error is 2.7 meV. See Ref. 5.) The
differences in the well are somewhat larger than those in
the barrier. The oscillatory behavior of the difference in
the well is very similar to that of the conduction-band
Bloch function (Fig. 2) and suggests that the approximate
conduction-band envelope function is larger than the ex-
act conduction-band envelope in the well region, but
shows a much smaller deviation in the barrier. Examina-
tion of the approximate and exact conduction-band en-
velope functions shows that this is indeed the case. In
Fig. 5 we also demonstrate the error incurred when the
differences between the barrier and well Bloch functions
is ignored. The dashed curve shows the difference in the
effective-mass wave function and the exact wave function
when the barrier Bloch functions are taken to be the
same as the well Bloch functions, i.e., the corrections cor-
responding to Eq. (23a) are ignored. One sees that the er-
rors in the wave function are now an order of magnitude
higher leading to unacceptable errors (the energy is only
62.8 meV above the bulk-well conduction-band edge)
even taking into account that the probability of finding
the electron in the barrier is only 12%.

Figure 6 shows the exact envelope function and the
effective-mass approximation thereto [calculated using
the one-dimensional analogue of (23a)] corresponding to
the lowest band. In the effective-mass approximation,
this envelope function is zero in the well because there

001

Wave-funclion Difference

Ed
-0.06 + H :
07 1
0 2 4 6 8 10 12 14 18 18 20
x/a

FIG. 5. The solid curve shows the difference between the ap-
proximate wave function and the exact wave function for the
lowest conduction-band state of the 10X 10 superlattice. The
dashed curve shows how the approximation deteriorates if the
well conduction-band Bloch function is substituted for that for
the barrier.
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0 : —Ly A\/\/\/A H————+——
-0.005 +
-0.01 -
o} 2 4 6 8 10 12 14 16 18 20

FIG. 6. Exact envelope function (solid curve) corresponding
to the lowest band contribution to the envelope-function expan-
sion (16) of the wave function depicted in Fig. 4. The dashed
curve shows the effective-mass approximation for this envelope
function.

are no off-diagonal elements of the Hamiltonian as the
well zone-center Bloch functions form the basis. In the
barrier, the off-diagonal matrix elements suddenly appear
to take account of the fact that the zone-center Bloch
functions for the barrier are different from those of the
well. There is a corresponding jump in the envelope
function at the interface. However, this discontinuous
behavior is still a remarkably good approximation to the
exact envelope function.

1X 19 superlattice

In this case the electron, as we shall see, spends most of
its time in the barrier crystal. The periodic basis func-
tions are still chosen as the zero wave-vector Bloch func-
tions for the wells so as to provide an extreme test of the
approximation developed in this paper. One period of
the microscopic potential is shown in Fig. 7 and the exact

6 —

Potential (V)

T T T T U T T T T 1
-2

[ 2 4 6 8 10 12 14 18 18 20
x/a
FIG. 7. Microscopic potential for the 1X19 superlattice.
The origin is taken at the center of the barrier.
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FIG. 8. Wave function for the lowest conduction-band state
of the %03( 19 superlattice. The wave function is normalized so
that [ “Y*ydx /a=1.

wave function in Fig. 8. Again the errors in the
effective-mass approximation to the wave function are
too small to show the exact and approximate wave func-
tion clearly on the same graph so, in Fig. 9, the deviation
of the approximate wave function from the exact wave
function only are shown. Again the error in the wave
function is remarkably small, and this is reflected in the
approximate binding energy of 17.6 meV (relative to the
barrier conduction-band edge) compared with the exact
value of 15.1 meV. The comments made concerning the
relative size of the errors in the well and barrier regions
in Fig. 5 also apply in this case. Also shown is the error
one would get in the wave function if the barrier Bloch

006
0.04

0.02 +

-0.02

-0.04

Wave-function Difference

-0.06 -

-0.08

FIG. 9. The solid curve shows the difference between the ap-
proximate wave function and the exact wave function for the
lowest conduction-band state of the 1X19 superlattice. The
dashed curve shows how the approximation deteriorates if the
well conduction-band Bloch function is substituted for that for
the barrier.
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functions are replaced by the well Bloch functions, i.e.,
the corrections corresponding to Eq. (23a) are ignored.
Again the errors in the barrier region become unaccept-
ably large.

Of course, if one wanted to get an approximation to
the state shown in Fig. 8 using the hypothesis that the
well and barrier zero wave-vector Bloch functions were
interchangeable one would not use the well Bloch func-
tions as a basis as was done here. One would clearly elect
to take the barrier Bloch functions for the basis to mini-
mize the error on the grounds that the electron spends
most of its time in the barrier. The reason the above cal-
culation was done the “hard” way was to magnify any
shortcomings and hence emphasize how well the method
copes with sudden changes in material composition; the
fact that some of the envelope functions, albeit small
ones, in the expansion (16) are discontinuous has not been
a problem.

V. DISCUSSION AND SUMMARY

A feature of the derivation is that the order of the
differential operators in the kinetic energy term arises
naturally as part of the derivation and there has been no
need to invoke heuristic ad hoc symmetrization pro-
cedures, which can lead to unphysical solutions for
valence-band problems.® This ordering of the differential
operators predicts that there will be a discontinuity in the
derivative of the envelope function at an interface at
which there is a discontinuity in the effective mass, the
well-known effective-mass related kink in the envelope
function. We can deduce this because we have estab-
lished that (24) holds everywhere including boundaries.
As demonstrated both algebraically'® and numerically,’
this kink approximates a real feature of the exact en-
velope function, namely a rapid change in the derivative
in the neighborhood of the interface and that this feature
is also manifest in the wave function.’

The main assumption in the derivation presented here
is that the envelope functions are all slowly varying on
the scale of the lattice period. However, the effective-
mass equation obtained requires the principal envelope
function to have a kink at an effective-mass discontinuity.
Further, the small envelope functions are discontinuous
at band-edge discontinuities. This would appear to create
a problem because the approximate envelope functions do
not have the fundamental property assumed. However,
what is important to the derivation is that the dominant
components in the plane-wave expansion of an envelope
function have a small wave vector. The presence of a
kink or discontinuity does not necessarily mean that this
condition is violated. A discontinuity leads to plane-
wave expansion coefficients varying as k' at large k
while a kink leads to terms varying as k 2.

A major step in the derivation is the approximation of
the matrix elements of the microscopic potential with ex-
pressions that are valid for a small wave vector. Because
of the abrupt nature of the boundaries the matrix ele-
ments vary, apart from phase factors, as the reciprocal of
the wave vector. Hence, in taking the small wave-vector
approximation, one is also retaining the dominant terms
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in the Hamiltonian matrix regardless of whether the en-
velope functions are slowly varying or not. This is not to
say that the effective-mass approximation will work no
matter how rapid the envelope-function variation is, that
is clearly not the case, but it does suggest that the ap-
proximation will not break down as quickly as one might
expect as one considers situations in which the envelope
functions vary more rapidly.

Another distinctive feature of this derivation of the
effective-mass equation is that it provides a means of es-
timating the errors incurred by its use. The exact
Schrodinger equation (3) has been approximated by omit-
ting terms in the matrix element of the potential that
have large wave-vector denominators. The error in-
curred could be estimated via perturbation theory if the
ground-state wave function is known approximately. The
latter can be calculated using the envelope-function ex-
pansion (16), the small envelope functions being generat-
ed by the auxillary equations (23a) and (23b).

In summary, an effective-mass equation, along with ap-
proximate envelope-function equations, has been derived
for a microstructure with atomically abrupt interfaces
without assuming that the difference between correspond-
ing Bloch functions of the constituent materials can be
neglected. The treatment also encompasses slowly grad-
ed crystals because the change in chemical composition
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from one atomic layer to the next must be abrupt, albeit
small, in practice. The only assumptions made are that
the envelope functions vary sufficiently slowly and, in the
example treated explicitly, that one envelope function is
dominant. Within these constraints there has been no re-
striction on the size of the constituent parts, e.g., the
widths of the layers in a multilayer structure or the diam-
eter of a quantum dot. The case of states in a
conduction-band quantum well for a zinc-blende struc-
ture has been highlighted to emphasize the role of sym-
metry in the success of the particle in box method. The
approximate effective-mass wave function has been com-
puted for a one-dimensional model to demonstrate how
the method can account for the difference in the Bloch
functions of the component crystals even for quantum
wells of monolayer dimensions.

ACKNOWLEDGMENT

The author would like to thank Dr. R. A. Abram for
some helpful discussions. This paper arose out of an ear-
lier manuscript largely based on Secs. I-III. The author
would like to thank Witold Trzeciakowski for much per-
ceptive and thought provoking comment on the earlier
manuscript that resulted in the numerical work presented
in Sec. IV and some of the comments made in Sec. V.

1G. Bastard, Wave Mechanics Applied to Semiconductor Hetero-
structures (Halstead, New York, 1988).

2G. Bastard, J. A. Brum, and R. Ferreira, Solid State Physics:
Advances in Research and Applications, edited by D. Turnbull
and H. Ehrenreich (Academic, New York, 1991), Vol. 44, p.
229.

3M. Altarelli, in Heterojunctions and Semiconductor Superlat-
tices, edited by G. Allan, G. Bastard, N. Boccara, M. Lannoo,
and M. Voos (Springer, Berlin, 1986), p. 12.

4G. A. Baraff and D. Gershoni, Phys. Rev. B 43, 4011 (1991).

5M. G. Burt, J. Phys. Condens. Matter 4, 6651 (1992).

6M. G. Burt, Semicond. Sci. Technol. 3, 739 (1988).

™. G. Burt, in Bandstructure Engineering in Semiconductor
Microstructures, Vol. 189 of NATO Advanced Study Institute,
Series B: Physics, edited by R. A. Abram and M. Jaros (Ple-
num, New York, 1989).

8B. A. Foreman, Phys. Rev. B 48, 4964 (1993).

9See, e.g., Ref. 5 and 6. This method is just a variant of
Lowdin’s method as applied to renormalize k-p band-
structure matrices; see, e.g., E. O. Kane, in Semiconductors
and Semimetals, edited by R. K. Willardson and A. C. Beer
(Academic, New York, 1966), Vol. 1, p. 75.

10M. G. Burt, Semicond. Sci. Technol. 3, 1224 (1988).



