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We have studied carrier-carrier scattering in photoexcited electron-hole plasmas in GaAs at

plasma densities from 10'° to 107 cm™3

, using numerical solution of the dynamically screened

Boltzmann equation and classical molecular dynamics. The solution of the dynamically screened
Boltzmann equation indicates that for excited electrons, scattering among the injected carriers is
as important a scattering process as LO-phonon emission at densities greater than about 8 x 10*®
cm™3, and at 10’7 cm ™ the photoexcited electrons are nearly thermalized in 150 fsec. As a result
of weaker screening, the interaction between carriers has a stronger effect in this case than when a
low density of energetic electrons is immersed in a cool background plasma, where previous work
has shown that carrier-carrier scattering becomes as significant as LO-phonon emission at a density
of about 8 x 10'® cm™3. We also find that classical molecular-dynamics calculations are dominated
by nonphysical effects at short times, arising from the pointlike nature of the simulated carriers.

I. INTRODUCTION

Typical photoexcitation experiments use a continuous-
wave or pulsed laser to create a distribution of energetic
carriers having a narrow energy spectrum. These studies
are complicated by the fact that carrier-carrier scatter-
ing (CCS) can rapidly modify the initial narrow distri-
bution. Similar complications can arise in proposed hot
electron transistor structures, which in the absence of
the carrier-carrier interaction would permit quasiballis-
tic transport of high-velocity carriers across a short base
region. Here we consider the effects of CCS on ener-
getic (> 100 meV) I'-valley electrons in a typical polar
semiconductor, GaAs, at carrier densities from 10% to
107 cm™3.

A distribution of energetic electrons undergoes rapid
changes not only because of interactions between carri-
ers but also through the emission of small-wave-vector
LO phonons. (At energies greater than about 300 meV,
electrons can also scatter to the upper valleys of the con-
duction band, but we will not consider this process.) LO-
phonon emission causes discrete energy losses in multi-
ples of the LO-phonon energy Awpo = 37 meV. As a
result, at low densities, where the carrier-carrier interac-
tion is weak, an initially narrow distribution evolves into
a series of peaks separated by Awro.! In bulk GaAs the
LO-phonon emission time is about 150 fsec, relatively
unaffected by electron energy or carrier density at our
densities.? ™

The initial unrelaxed peak (or peaks) in the electron
distribution represents electrons that have not yet emit-
ted a LO phonon. The probability is small that an elec-
tron will be scattered out of this initial energy range
before emitting a LO phonon if, during a LO-phonon
emission time, scattering transfers little energy among
carriers relative to the width of this peak. Thus at
low densities the unrelaxed peak will be unaffected by
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CCS. At higher densities, however, the interactions will
be stronger, and at sufficiently high densities CCS will
reduce the height of the unrelaxed peak. The height of
the unrelaxed peak thus allows us to compare the rela-
tive importance of CCS and LO-phonon emission for the
scattering of energetic electrons.

The case of energetic electrons scattering from a cool
equilibrium or quasiequilibrium background of carriers
has been studied both experimentally and theoretically.
In the presence of a cool background plasma the unre-
laxed peak height is reduced by one-half at a plasma den-
sity of approximately 8 x 10'® cm™3.577 This is therefore
the background density at which CCS begins to com-
pete with LO-phonon emission for the scattering of ener-
getic electrons in bulk GaAs. A very different situation
is one where energetic carriers in a nonequilibrium dis-
tribution scatter only among themselves, with no cool
background present. This corresponds to an experiment
where all the carriers are generated by a laser pulse
of length < 150 fsec (the LO-phonon emission time),
and a time-resolved measurement of the distribution is
made during the first few hundred femtoseconds after
the carriers are generated. This type of experiment is
difficult to perform, since signal-to-noise problems make
time-resolved techniques difficult at carrier densities be-
low about 1017 cm™3. However, experiments have shown
that, in the absence of a cool background in bulk GaAs,
the unrelaxed peak height is reduced by one-half at an
injected pair density of approximately 8 x 10'®* cm™3 2
and at a density of 1.7 x 1017 cm ™3 the photoexcited car-
riers spread out over a wide range of energies within 100
fsec.® These experiments suggest that in the absence of a
cool background CCS begins to compete with LO-phonon
emission at a lower density than when a cool background
is present.

It is reasonable that scattering among carriers will
be stronger in the absence of a cool background, since
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screening is weaker in an energetic nonequilibrium distri-
bution than in a cool thermal one. Early experimental ev-
idence of this fact was provided by time-resolved Raman
spectroscopy of optically pumped GaAs, which showed
that the screening of LO phonons that occurs at high
carrier densities (> 10'® cm™3) does not develop until
the high-energy optically injected screening carriers have
had time to cool and thermalize.? A first estimate of the
screening difference between an energetic nonequilibrium
distribution and a cool thermal one can be obtained by
comparing the electron screening lengths. We model the
photoexcited electron distribution as an isotropic shell in
k space, with density n at energy E = A%k2/2m*. In the
random-phase approximation the static dielectric func-
tion for this distribution is

4mne?m* In 2k+q
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where 1/gshen = Ashen = +/€0E/2mne? is the screen-

ing length for the shell distribution, and the approxi-
mation holds in the long-wavelength limit. In the same
limit the static dielectric function of an equilibrium dis-
tribution with average energy E has the same form, but
with a different screening length. For a Fermi distribu-
tion the screening length has the Thomas-Fermi value
AT = \/560E/ 187ne?, where we have used the zero-
temperature relation between the average energy and the
Fermi energy, E = 3Er/5. For a Maxwell-Boltzmann
distribution the screening length has the Debye value
Ap = \/€oE/6mne?, where we have used E = 3kT/2.
The screening lengths of the three distributions exhibit
the same dependence on density and average energy (as
do all isotropic three-dimensional distributions), but dif-
fer by a constant factor that depends weakly on the
shape of the distribution. For a given density and av-
erage energy, the screening lengths for the shell, Fermi
and Maxwell-Boltzmann distributions have the ratios
1.73:1.29:1. (Of course, in a given material a shell distri-
bution and a Maxwell-Boltzmann distribution having the
same density and average energy can be produced, but
not a Fermi distribution.) Calculations using a static
screening model have shown that the thermalization of
a photoexcited distribution proceeds more rapidly when
the calculations use the self-consistent screening length
instead of the smaller Debye length.!® The energy de-
pendence of the screening length is more significant than
the shape dependence, since in typical photoexcitation
experiments the energy of the photoexcited electrons is
much larger than the average electron energy in a back-
ground plasma. For energetic electrons at 150 meV, the
ratio of the two energies can range from about 12 for a
100 K Maxwell-Boltzmann background to more than 250
for a low-density 4 K background. Therefore, in addition
to the weak dependence of screening length on the shape
of the distribution, the energy dependence introduces an
additional factor ranging from about 3 to 15. The com-
bined effect gives a nonequilibrium photoexcited electron
distribution a screening length 5-25 times larger than a
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typical background. (In two dimensions the screening
length depends more strongly on the shape of the carrier
distribution.)

In this paper we will confirm this plausibility argu-
ment for stronger CCS in the absence of a cool carrier
background. We model a typical experiment in which
electron-hole pairs are generated in GaAs by 1.7 eV pho-
tons having an 18 meV full width at half maximum
(FWHM), and measurements are made of the electron
distribution. For initial conditions, the holes are par-
titioned between the valence bands in accordance with
the relative photoexcitation probabilities Py, = 0.7,
Py, = 0.3, with energies Ey;, = 21 meV, Ej, = 86 meV.
The electron distribution has two peaks, at 160 meV and
95 meV, corresponding to electrons promoted from the
heavy-hole and light-hole bands, respectively. The initial
energy width of each peak is determined from the spec-
tral width of the excitation pulse and the shape of the
conduction and valence bands. In our calculations we use
initial widths of 20 meV and 12 meV FWHM for the high-
and low-energy electron peaks, respectively. We calculate
the dynamics of the electrons and holes for 150 fsec, the
LO-phonon emission time. For the dynamics all bands
are treated as parabolic and isotropic, using standard
band-edge effective masses.!! The relative importance of
carrier-carrier interactions compared to LO-phonon emis-
sion for the scattering of the photoexcited electrons is de-
termined by examining the higher-energy unrelaxed peak
in the electron distribution after 150 fsec. We will show
that in the absence of a cool background CCS is as signif-
icant a scattering mechanism as LO-phonon emission at
pair densities greater than approximately 8 x 10*° cm—3,
and at 10'7 cm~3 the photoexcited electrons are nearly
thermalized in 150 fsec. Thus our calculations will con-
firm that CCS is stronger in this case than when a low
density of energetic electrons is immersed in a cool back-
ground.

Previous calculations have not attempted to deter-
mine the density at which scattering among photoex-
cited carriers becomes comparable to LO-phonon emis-
sion. Lugli and Ferry used Monte Carlo calculations to
compare CCS and LO-phonon emission in GaAs at a den-
sity of 107 cm~3, and found that after 200 fsec the ini-
tial electron distribution is spread out over a wide range
of energies, so that all features associated with discrete
LO-phonon emission are swamped out.!? Elsaesser and
co-workers performed similar calculations using Monte
Carlo methods, as well as molecular dynamics, and found
that at a density of 1.7 x 107 cm~3 scattering among
the carriers spreads the initial distribution over a wide
energy range within 100 fsec.? Numerical solution of the
Boltzmann equation by Hunsche and co-workers showed
electron thermalization within 200 fsec at densities from
2% 10'7 to 2 x 10'® cm~3.1® Monte Carlo and molecular-
dynamics calculations by Rota and Lugli yielded similar
results at a density of 10'® cm™2 in InP.}* None of these
studies explored lower densities in order to determine the
density at which scattering among photoexcited carriers
begins to compete with LO-phonon scattering.

Most CCS calculations treat the interaction between
carriers as statically screened using the static dielectric
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function €(q,0) as an approximation to the dynamic di-
electric function e(q,w). That is, the inertia of the
screening carriers is ignored and screening is treated
as instantaneous. This is a commonly used approach
for two-dimensional’>™17 and three-dimensional®25 car-
rier systems. Plasmons are excluded from the static
model, both as a channel for real energy losses and
as a virtual excitation affecting collisions between car-
riers. Sometimes energy loss to plasmons is included
as an additional scattering mechanism, so that CCS is
treated in two parts, one part representing statically
screened binary collisions and the other representing plas-
mon emission.!?1426728 However, this still omits dy-
namic screening of the binary collisions. Static screen-
ing will be a poor approximation for any collision where
the center-of-mass velocity is on the order of, or greater
than, the velocity of the screening carriers.2® Therefore a
static screening model is not expected to yield accurate
results in calculations of scattering among photoexcited
carriers.

In the case of screening by holes, under some conditions
one can justify using the high-frequency limit (rather
than the static limit), simply ignoring the holes and re-
garding them as infinitely sluggish. However, this ap-
proximation does not hold with sufficient generality to
employ it in our calculations. Furthermore, as a rule
the electron screening can be treated in neither a static
nor a high-frequency limit. Therefore we wish to avoid
both the static and high-frequency approximations, and
to treat both electron and hole screening dynamically.

In order to include dynamic screening, calculations of
CCS have been performed using the dynamic dielectric
function €(q,w). Most of these studies consider the scat-
tering rate of an energetic carrier immersed in a cool (or
cold) equilibrium background.® 739734 In this case, when
scattering is dominated by an equilibrium distribution,
the fluctuation-dissipation theorem permits the carrier’s
scattering rate to be calculated from Im[e~!(q,w)].3® No
other assumptions are made apart from treating the cou-
pling between the energetic carrier and the background
using the Born approximation, and the assumptions that
enter into the calculation of the dielectric function itself.
These calculations have shown that a dynamic screen-
ing model predicts significantly more scattering than is
predicted by a static screening model.

Unfortunately, this equilibrium method is not appli-
cable to the problem of photoexcited carriers scatter-
ing among themselves. In this case the fluctuation-
dissipation theorem cannot be applied because scatter-
ing is not dominated by an equilibrium distribution.
Nonequilibrium methods of calculation that include dy-
namic screening are required. Molecular dynamics is one
such method; it has been applied to CCS by a number
of researchers.%14:22:36,37 Aq alternative is to numerically
solve the dynamically screened Boltzmann equation; the
first calculations to use this method have represented dy-
namic screening in the simplified form of the plasmon-
pole approximation.!3-38:39

Here we apply these two nonequilibrium methods to
the problem of scattering among photoexcited carriers.
In Sec. II we discuss molecular dynamics and demon-
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strate that this method is contaminated by nonphysical
effects at short times. In Sec. III we describe numer-
ical solution of the Boltzmann equation, with dynamic
screening included in the random-phase approximation.
We show that the latter method successfully reproduces
experimental results and provides insights into carrier-
carrier scattering. In Sec. IV we summarize our results.

II. MOLECULAR-DYNAMICS CALCULATIONS

A. General method

Molecular dynamics (MD) is a numerical method for
studying the behavior of interacting many-body systems.
In MD calculations of CCS the true quantum dynamics is
approximated by following the classical real-space trajec-
tories of a large number of pointlike carriers. Each carrier
interacts with all of the others via a bare Coulomb po-
tential. The primary benefit of MD is that it includes
classical dynamic screening. Screening is not treated ex-
plicitly, but rather arises naturally among the simulated
carriers in a self-consistent manner as they execute their
classical trajectories.

MD calculations of CCS rely on the fact that classi-
cal dynamics, applied to point particles, yields the cor-
rect Rutherford differential cross section for pure 1/r
Coulomb scattering between two carrier plane waves (ne-
glecting exchange).® Then the scattering of one carrier
from all the others is the sum of the individual scat-
tered intensities as long as the other carriers’ positions
are uncorrelated so that scattering amplitudes combine
incoherently. In reality, the positions of the other car-
riers are correlated at long ranges; this screening of the
long-range Coulomb potential is what prevents the total
cross section from becoming infinite. The overall effect
of this deviation from a pure Coulomb potential is that
a classical calculation will slightly overestimate the to-
tal scattering rate. A rough indication of the classical
overestimate can be obtained by considering an approx-
imate expression for the energy loss of an electron with
energy F to statically screened electron collisions in a
cool plasma of density n:4!

4
dE _2mne ln[ A ]’ @)

dz = €E bmin
where ) is the screening length in the plasma, and bmiy, is
the so-called “minimum impact parameter.” Classically
bmin is €2/eE, but quantum mechanically it can be no
smaller than the positional uncertainty in the center-of-
mass frame Az = 2/k, where k is the wave number of the
energetic electron. When E is larger than about 5 meV
(the exciton Rydberg in GaAs), as it is for the cases of
interest, the quantum-mechanical bp,;, exceeds the classi-
cal byin, and the classical model overestimates the energy
loss. The ratio of classical to quantum-mechanical energy
loss is therefore approximately

AeE A [2m*E
In [7] :1ln [—2- 52 } , (3)
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which is less than 1.5 for the cases of interest. Although
this ratio applies to energy loss through collisions with
electrons in a cool plasma, we expect the classical model
in MD to overestimate the effects of scattering among
energetic carriers by roughly the same factor.

MD also treats plasmon scattering properly. Although
plasma wave energies remain unquantized in MD, so
that discrete plasmon emission cannot be reproduced,
the plasmon energy at our densities is less than 15 meV,
much smaller than the energy of the photoexcited elec-
trons. Therefore, by the correspondence principle, the
total energy-loss rate to plasma waves will be approxi-
mately the same with or without energy quantization.

In our MD calculations, care has been taken to avoid
pitfalls that can threaten real-space simulations. We em-
ploy a second-order time integration scheme, and a time
step of 0.2 fsec permits the total energy of the carrier
system to be conserved to an accuracy better than 0.1%
over the simulation period. Periodic boundary conditions
are applied to the potential and the motion of the par-
ticles in order to minimize the effects of the finite sim-
ulation volume. We simulate a total of 2048 electrons
and 2048 holes, so that the simulation volume is at least
several screening lengths on a side. Since the simulation
time is short, problems associated with classical bound
states of electrons and holes do not arise. Electron-hole
pairs are introduced at random positions, with a fixed
electron-hole separation that is small compared to the
average interpair distance. Each carrier thus starts with
a well-defined kinetic and total energy. The MD calcula-
tions are performed on a MasPar MP-1 massively parallel
computer with 4096 processors.

B. Results and problems with molecular dynamics

In our MD calculations the carriers interact for 150
fsec, corresponding to the LO-phonon emission time.
Figure 1 shows the initial and final distribution of elec-
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FIG. 1. The initial and final distribution of electrons in a
photoexcited plasma at pair densities from 10'° to 10'7 cm ™3,
as calculated by molecular-dynamics simulations for 150 fsec.
The two electron peaks represent electrons promoted from
the heavy-hole and light-hole bands. All distributions are
normalized to the total density.
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tron kinetic energies at pair densities from 10% to
107 cm~3. The dependence of the peak-height reduc-
tion on density can be observed in this figure.

However, a fundamental problem exists with the MD
results. For the densities examined here, the calculated
broadening is dominated by large potential fluctuations
arising from the pointlike character of the simulated car-
riers. This breakdown of the classical model can easily
be seen in a simulation using as an initial state the final
10'® cm—3 state from the calculations of Fig. 1, so that
artifacts associated with initial conditions are avoided.
We now continue the MD calculations fcr an additional
150 fsec, but with all carriers fixed except for one moving
electron, so that the total energy of that electron is con-
stant (which we verify). We perform an ensemble of such
static scattering calculations, and compare the results to
MD calculations that use the same initial state but per-
mit all the carriers to move for the additional 150 fsec
simulation. At the end of the calculations we measure
the change in each electron’s kinetic energy AEg during
the additional 150 fsec interval. Figure 2 shows the AEg
distribution for the static and dynamic calculations. The
statically broadened distribution is only slightly narrower
than the distribution obtained using dynamic calcula-
tions, demonstrating that the broadening that occurs in
150 fsec is dominated by static effects. Most of the static
broadening arises from interactions at distances less than
250 A, while all of the carriers in these photoexcitation
experiments must exist as rather large wave packets (at
least 1000 A) to be consistent with the energy width of
the laser pulse.

These observations are consistent with the remarks in
Sec. IT A about the accuracy of the classical model used
in MD, since those statements applied to the asymptotic
behavior of the scattered carriers. The potential energy

Dynamic Broadening
....... Static Broadening

Number of Particles

-100 100
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FIG. 2. The distribution of the change in electron kinetic
energy AEgk after 150 fsec, calculated by molecular dynam-
ics with all particles moving (dynamic broadening), and with
only one particle moving (static broadening). The initial
distribution is the final 10'® cm~3 distribution from Fig. 1.
The statically broadened distribution is only slightly narrower
than the distribution obtained using dynamic calculations,
demonstrating that in molecular dynamics the broadening
that occurs in 150 fsec is dominated by static effects.
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fluctuations created by the classical point particles are
much larger than those generated by large wave pack-
ets. As a result, during an initial time period after pho-
toexcitation, most of the change in the kinetic energy
of pointlike carriers is due not to completed collisions,
but to the spread in kinetic energies that occurs during
collisions. It is only after an initial period, when many
collisions have been completed, that the broadening due
to potential fluctuations saturates, and the spread in ki-
netic energies represents completed energy transfers be-
tween carriers. Then classical dynamics will yield more
accurate results. Our MD calculations show that, in the
first 150 fsec at densities < 107, the spread in kinetic
energies calculated by MD is strongly influenced by the
static component. We conclude that the predictions of
MD are contaminated by nonphysical broadening arising
from treating the carriers as point particles.

Several studies have noted that MD predicts higher
CCS rates at short times than static screening calcu-
lations, and have attributed the difference to the more
accurate dynamic screening included in MD.%22:28 How-
ever, our observations indicate that the differences ob-
served in these studies may partly reflect the nonphysical
broadening that occurs in MD.

It is tempting to graft onto MD a quantum-mechanical
softening of the 1/r potential in order to prevent the
spurious broadening. Effective pair potentials have been
employed in studies of plasmas to eliminate the trou-
blesome classical Coulomb divergence at r = 0,474
and they have been applied to MD by Hansen and co-
workers.%5 However, these formulations assume an equi-
librium electron distribution, so that they are not appli-
cable to our problem. Similar restrictions apply to the ab
initio molecular-dynamics method developed by Car and
Parrinello.%6:47 An alternative approach to softening the
potential that does not assume an equilibrium distribu-
tion has been proposed by Kriman and co-workers.484°
They model the carriers as spherical Gaussian wave pack-
ets with a specified fixed size, and modify the potential
between particle centers so that it represents the inter-
action between two spherical charge clouds. However,
as noted above, our carrier wave packets must be quite
large in order to be consistent with the energy width of
our laser pulse. As a result substantial wave-function
overlap exists, and the interaction between packets can-
not be treated adequately in terms of a classical field
between charge clouds. (If the interaction could be rep-
resented as a classical field, then in the limit of very large
clouds—two plane waves—there would be only ¢ = 0
scattering, whereas the quantum-mechanical interaction
between plane waves has a 1/¢% dependence, permitting
scattering over a range of g values.)

Furthermore, even if a potential could be devised that
correctly represents the interaction between quantum-
mechanical wave packets, point particles moving in well-
defined orbits can be used with a potential representing
wave-packet interactions only if wave-packet dispersion
during scattering can be neglected. The Coulomb scat-
tering of two wave packets can be treated as dispersion-
less only when the classical “minimum impact parame-
ter” e?/2eEcm exceeds the uncertainty in the center-of-
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mass frame Az = 1/kcy.4%5° (Here Ecy is the total
energy in the center-of-mass frame, and kcym is the cor-
responding wave number for a particle with the reduced
mass.) Otherwise wave-packet dispersion during scat-
tering renders orbital pictures inappropriate. In GaAs
this condition is met only for collisions where Ecy is less
than about 5 meV, the exciton Rydberg. Therefore mod-
ification of the 1/r potential is not expected to yield an
accurate differential cross section for most of the carrier-
carrier collisions in a photoexcited plasma.

III. THE BOLTZMANN EQUATION WITH
DYNAMIC SCREENING

A. Dynamic screening and the dielectric function

We have seen that MD calculations of CCS encounter
problems arising from the difficulty of simultaneously (1)
correctly representing the differential scattering cross sec-
tion for a collision between two carriers and (2) correctly
representing the broadening that occurs during collisions.
This is a dilemma arising from the classical model used
in MD, and it can be overcome only by abandoning clas-
sical dispersion-free orbits. An exact solution using time
integration of the many-body Schrédinger equation is the
quantum-mechanical equivalent of classical MD, with dy-
namic screening arising naturally as constructive and de-
structive interference occurs among the scattering ampli-
tudes. However, solving the Schrédinger equation exactly
is intractable for our plasmas.

Various approximations can be applied to the
quantum-mechanical treatment of CCS in order to ren-
der it tractable. In the Hartree and Hartree-Fock ap-
proximations each carrier moves in a mean potential due
to all the others. However, in our plasmas the electron
and hole wave packets are quite large and substantial
overlap exists among them, so that the mean potential
is small and cannot reproduce the binary collisions that
occur between carriers. To confirm this observation, we
have performed many-body time-dependent Hartree cal-
culations of the carrier-carrier dynamics, using as initial
wave functions Gaussian wave packets with sizes consis-
tent with the energy width of the laser pulse. The results
show very weak scattering, confirming that the carrier-
carrier interaction is underestimated in the Hartree ap-
proximation.

The problem with using a classical field operating on
quantum-mechanical wave functions to calculate the ef-
fects of CCS is not the treatment of screening: time-
dependent Hartree screening is equivalent to screening
in the random-phase approximation (RPA),*! but with-
out assumptions concerning linearity and stationarity.
Rather, the problem is that the classical field induced
by the charge density of a smeared-out carrier is weak
within the carrier’s charge cloud. Therefore, as noted
in Sec. II B, when substantial wave-function overlap ex-
ists, as it does here, a classical field cannot adequately
represent the interaction between carriers. (This is par-
ticularly clear in the case of plane waves.) To represent
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the interaction accurately, we return to the bare 4we?/q?
Coulomb interaction between each pair of carrier wave
functions. Because it is impossible to keep track of the
many-body state of the system, dynamic screening is in-
troduced ab ertra using the longitudinal dynamic dielec-
tric function €(q,w).

For a general time-dependent carrier distribution the
dielectric function is nonstationary. If the dielectric func-
tion varies significantly during the time in which a col-
lision takes place, the collision is governed by a time-
dependent Hamiltonian, and calculations are difficult.
For the cases that we are considering, a collision period
is typically 100 fsec or less, and the dielectric function
does not vary strongly during this length of time, i.e., it
is stationary in a first approximation. Indeed, it varies
little over the entire 150 fsec simulation period, so that
it only needs to be calculated at the beginning of the
period. The approximate stationarity of the dielectric
function arises from constraints that exist along both the
frequency axis and the wave-vector axis; that is, €(q, w) is
constrained by requirements on both lim,_,¢ €(q,w) and
€(q,0). Along the frequency axis, the zero at the plasma
frequency does not move significantly as the distribution
evolves in time, because the plasma frequency is primar-
ily a function of the density and effective mass of each car-
rier type. Along the wave-vector axis the static screening
wave number increases by only a small factor as the dis-
tribution evolves, because, as noted in Sec. I, the screen-
ing length depends primarily on the density and average
energy of each carrier type, rather than the shape of the
carrier distributions, but the densities and average ener-
gies vary little in 150 fsec. Energetic electrons can emit
approximately one LLO phonon in 150 fsec; energetic holes
may be able to emit optical phonons faster than this,52
but most of the holes in our plasmas are heavy holes with
less than 25 meV energy, which is below the threshold for
emitting optical phonons.

Using the approximation that the dielectric function is
stationary, it is possible to perform a tractable CCS cal-
culation that includes dynamic screening. For the range
of energies and densities that we consider here, the pho-
toexcited electrons have kinetic energies that far exceed
their average potential energy e2n'/3/¢g, so that they are
weakly coupled to the carrier system, allowing the RPA
dielectric function to be used.3%

The dielectric function is complex, with an imaginary
part that represents energy exchanged with the dielectric
medium through dissipative processes, including plasmon
emission and absorption, as well as LO-phonon scattering
(since the Frohlich lattice susceptibility is also included
in the dielectric function). Since we use the dielectric
function only to provide dynamic screening of the binary
collisions, we do not include these dissipative processes,
which would require separate scattering calculations. It
is reasonable that we ignore the effects of phonon scat-
tering, because we are using the change in peak height
over the 150 fsec simulation period in order to compare
the importance of CCS and LO-phonon scattering. Fur-
thermore, plasmon scattering needs to be considered only
if the energy of the scattered electron is well above the
average energy of the surrounding electrons.53 Otherwise
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the plasmon modes are Landau damped by the surround-
ing electrons in the range of wave vectors in which the
energetic electron is permitted by energy and momentum
conservation to emit plasmons. In the absence of a cool
electron background, this condition is not satisfied, since
none of the electrons have energies significantly higher
than average. Stability theory for isotropic plasmas,345%
as well as Monte Carlo calculations that include plasmon
scattering,'? confirm that this process is not significant
among photoexcited carriers. We are therefore justified
in neglecting plasmon scattering.

B. General method

To calculate scattering probabilities, we apply first-
order time-dependent perturbation theory through the
use of Fermi’s golden rule, with a screened Coulomb po-
tential as the perturbing potential. First-order perturba-
tion theory can be applied to CCS if the classical “mini-
mum impact parameter” e2/2e Ecy is much less than the
uncertainty in the center-of-mass frame Az = 1/kcm,
where Ecym is the total energy in the center-of-mass
frame, and kcym is the corresponding wave number for
a particle with the reduced mass.%:50 (This high-energy
condition is exactly the opposite of the low-energy con-
dition given in Sec. IIB, under which classical, orbital
pictures can be applied to the Coulomb scattering of two
wave packets.) Therefore in GaAs first-order perturba-
tion theory can be applied to collisions where Ecy is
much greater than about 5 meV, the exciton Rydberg.
In most of the carrier-carrier collisions in our plasmas
EcyM is on the order of 150 meV, and this condition is
satisfied.

Using Fermi’s golden rule to calculate scattering rates,
the evolution of the carrier distribution functions can
be followed by numerically integrating the Boltzmann
equation over time. Statically screened Boltzmann equa-
tion calculations of carrier-carrier scattering have been
performed previously, using both Monte Carlo and de-
terministic methods in two-dimensional'> 7 and three-
dimensional*18725 carrier systems. Recently Collet and
co-workers included dynamic screening in the plasmon-
pole approximation in Boltzmann equation calculations
of CCS.13:38:3% Here we employ the full RPA dynamic
dielectric function.

We include electron-electron and electron-hole scatter-
ing processes. The electron-hole scattering includes both
intra-valence- and inter-valence-band scattering. For a
collision that transfers momentum %Aq and energy Aw be-
tween two carriers, the probability of scattering is calcu-
lated from the square of the matrix elenient M(q,w) =
4me?/q%e(g,w).?® This matrix element does not include
exchange effects, which are small at our densities. The
probability of electron-hole scattering must include as an
additional factor the squared overlap integral G;;(k,k')
between the initial hole state k in band 7 and the final
hole state k' in band j. For intra-valence-band scattering
1 = j, and for inter-valence-band scattering i # j. We use

the expressions for two-band overlap integrals obtained
by Wiley,*®
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iy — J3(1+3cos?8), i=j
Gi;(0) = { %sinz 9, i, (4)
where 6 is the angle between k and k'. If the collision
changes the hole momentum by #g, this angle can be
calculated using cos§ = (k? + k'2 — ¢2)/2kk'.

The dielectric function includes contributions from the
dielectric susceptibilities of the carriers, as well as the
frequency-dependent Frohlich lattice susceptibility:
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2
w2 (€g — €
e(q,w) = €x t+ 2TO( D) _00)
wio —w? —iyw

+47FZXi(q7w)a (5)
1
using standard values for the lattice parameters ¢g, €,
w0, and 7.'! The carrier susceptibilities x;(g,w) are cal-
culated from the initial hot carrier distribution using the
Lindhard expression.3” They include the effects of intra-
conduction, intravalence, and intervalence transitions.
The rate at which a carrier scatters out of a state k;
due to each scattering process is

TR = e [kt M@ ) G001 St ~ ()
X 6(k1+k2—k3——k4) (5(E1+E2—E3*E4), (6)

where g = 2 is the degeneracy of the colliding carriers, k;, ka, E;, and E; are the wave vectors and energies of the
initial states of colliding carriers 1 and 2, respectively, and ks, k4, F3, and E4 are the wave vectors and energies of
their final states. The matrix element is evaluated at ¢ = |ks —k;| and w = (E3 — E1)/k. For electron-hole scattering
G;(0) is calculated from Eq. (4), while for electron-electron scattering it is set to unity. An analogous equation
describes the scattering into the state k;. The complete nine-dimensional integral can be simplified considerably by
performing several of the integrals analytically, taking advantage of the fact that we are modeling the distribution

function as isotropic in k space. As shown by Snoke and co-workers,

and converting two of these to energy integrals yields

25,58 only three wave-number integrals remain,

dn(E,) _ 21 g% 167mimamamy o el
S o HE dE, /0 dE, /0 dE;
dmax
x / dq |M (g, w)[? Gs;(8) F (Ex) f (E2)[1 — £(Es)][1 — F(EL)], (7)
9dmin

where n(E;)dE; is the density of carriers between E; and
E, +dEFE;. The initial and final effective masses of carrier
1 are m; and mg3, which are different if this carrier is a
hole undergoing an intervalence transition. Similarly, the
initial and final effective masses of carrier 2 are m, and
my. By energy conservation E} = E; + E, — E3, with k)
the corresponding wave number. The wave-number lim-
its correspond to the minimum and maximum momen-
tum transfers, gmin = max(|k1 —ks|, |k2 —k}|) and gmax =
min(k; + ks, k2 + k). If inter-valence-band scattering is
not considered and a simple static screening model is em-
ployed, G;;(8) can be omitted, and M(g,w) can be set to
4me? [eo(g® + q2), where g, is the screening wave number.
Then the q integration can be performed analytically.2®
However, we must perform the g integration numerically
because of the presence of G;; () for intervalence scatter-
ing, and because M(q,w) = 4me?/q%e(q, w), where €(q, w)
has been evaluated numerically.

The numerical integration of Eq. (7) is performed over
a 250 meV range of electron and hole energies, using an
energy interval of 2 meV, and a wave-number interval of
0.02-0.1 times the inverse static screening length. We
have verified that the energy interval is sufficiently fine
to permit the conductivity sum rule and the f-sum rule
for the free-carrier dielectric function to be satisfied to
an accuracy of better than +10%:

/ dw w Im[e(q,w)] = g w:,
0

[oom@)-te o

where w,, is the plasma frequency, provided that the di-
electric function is damped with a collisional damping
time of 1 psec. Although we find that our results are un-
affected when much longer damping times are used (since
the results depend primarily on the real part of the di-
electric function), we perform all our calculations with 1
psec damping in order to ensure that the sum rules are
satisfied. The time integration is performed with a time
step of 1-50 fsec for each iteration, depending on the
scattering rate, and we verify total energy conservation
as well as electron and hole conservation over the simu-
lation period. A complete 150 fsec calculation requires
from 5 to 50 h on a workstation.

C. Results
1. Electron scattering in a photoezcited plasma

Dynamically screened Boltzmann calculations were
performed for electrons in a photoexcited plasma, with
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FIG. 3. The initial and final distribution of electrons in a
photoexcited plasma at pair densities from 10'® to 107 cm™3,
as calculated by integrating the dynamically screened Boltz-
mann equation for 150 fsec. The calculation includes in-
tra-conduction-, intra-valence-, and inter-valence-band tran-
sitions. All distributions are normalized to the total density,
and the baseline for each plot can be determined from the
left-hand edge of the figure. The higher-energy electron peak
height is reduced by one-half at a density of approximately
8 x 10'® cm ™3, and at 10'” cm ™3 the final distribution is ap-
proaching but has not reached a hot Maxwell-Boltzmann.

the evolution of the electron distribution followed for 150
fsec, the LO-phonon emission time. Figure 3 shows the
initial and final electron distribution at pair densities
from 10'° to 107 cm™3. (Because of the large spread
of the final distribution at 107 cm~3, the calculation
was performed over a 500 meV energy range, of which
only the lower half is shown.) The rate at which elec-
trons are scattered out of the unrelaxed peak is equal to
the LO-phonon scattering rate if CCS reduces the height
of the initial distribution by one-half. By performing
calculations at densities between those shown in Fig. 3,
we find that for the higher-energy peak this occurs at
a pair density of 8 x 10*® cm™3. At 10" cm™3 the fi-
nal distribution is approaching but has not reached a hot
Maxwell-Boltzmann, as can be seen from the fact that
the peak of the distribution is at 125 meV, which is close
to its average energy E = 130 meV, but if the distri-
bution were completely thermalized its peak would lie at
1/3 of the average energy, or 43 meV. These results agree
with experimental results showing that, in the absence of
a cool background, scattering among photoexcited carri-
ers reduces the peak height by one-half at 8 x 10 cm—3
(£50%),8 and at 1.7 x 10*7 cm™3 (£50%) the photoex-
cited electrons spread out over a wide range of energies
within 100 fsec.®

Additional calculations were performed to determine
the relative importance of the different hole scattering
mechanisms. We find that scattering of electrons from
the heavy holes is negligible because of the large mass
difference. However, the light holes account for approxi-
mately 15% of the CCS, since their mass is slightly mis-
matched from the electron mass, and the light-hole den-
sity is 30% of the total pair density. [Light holes will be
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less important in an equilibrium plasma, where the frac-
tion of light holes is determined by the ratio between the
light-hole and heavy-hole density of states, so that the
density of light holes is only mi’h/ 2 / (mi{l2 + mf}{ 2) = 6%
of the total pair density.] We find that inter-valence-band
scattering is unimportant, because there is little hole oc-
cupation at the center of the Brillouin zone, where the
heavy-hole and light-hole bands are degenerate. Since
the overlap integral between the two valence bands, given
in Eq. (4), introduces a sin® @ factor into the scattering
probability (where 6 is the scattering angle of the hole
that changes bands),%® inter-valence-band transitions in-
volve large wave-vector changes, which are suppressed by
the 1/q? factor in the Coulomb matrix element; they also
require large energy changes (tens of meV), so that they
do not contribute to the dielectric function in the range
of typical collisional energy transfers. Inter-valence-band
scattering is more important in a cool plasma, as con-
firmed in calculations by Young and co-workers,®?! be-
cause the presence of holes at the zone center enhances
the intervalence scattering rate, while stronger screening
reduces the rate of intra-conduction-band scattering.

The dependence of CCS on the energy of the pho-
toexcited electrons was also examined. The scattering
rate increases sublinearly with increasing electron energy,
due primarily to the increased screening length at higher
energies. The effects of the scattering also depend on
the initial energy width of the unrelaxed peak, since the
wider the initial peak, the more slowly electrons are scat-
tered out this energy window, and the more slowly the
peak height drops.

2. Electron scattering in a cool plasma

For comparison, dynamically screened Boltzmann cal-
culations were performed for the case of a low den-
sity of energetic carriers immersed in a 100 K Maxwell-
Boltzmann plasma. The photoexcited carriers have the
same initial conditions as for the former calculations, but
they comprise only 1% of the total carrier density. Fig-
ure 4 shows the initial and final electron distribution at
pair densities from 10'® to 107 cm™3. Calculations at
densities between those in Fig. 4 show that electrons are
scattered out of the higher-energy peak at a rate equal
to the LO-phonon scattering rate at a pair density of
4 x 10'® cm~3. This result falls at the lower end of
the experimental range of 8 x 10'® cm—3 +50% obtained
by Kash.® One reason for the lower density obtained in
our calculations is that we use an electron energy of 160
meV, while in Kash’s experiment the energy is about
300 meV. We have performed additional calculations us-
ing a 300 meV electron energy in order to duplicate the
parameters of Kash’s experiment, and we find that the
density at which carrier-carrier scattering is as signifi-
cant as LO-phonon scattering is increased about 25%,
to 5 x 10'® cm~3. Thus the scattering rate has a weak
inverse dependence on the electron energy when ener-
getic electrons scatter in a cool plasma. In addition, we
believe that our calculations of electron scattering in a
cool plasma slightly underestimate the density at which
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FIG. 4. The initial and final distribution of photoexcited
electrons immersed in a 100 K Maxwell-Boltzmann plasma,
calculated in the same manner as in Fig. 3. The photoexcited
density is 1% of the total carrier density. The baseline for each
plot can be determined from the right-hand edge of the figure.
The peak height is reduced by one-half at a pair density of
approximately 4 x 10 cm™3.

CCS becomes significant because the calculations use the
band-edge electron effective mass. By neglecting conduc-
tion band nonparabolicity, the calculations fail to take
into account the mass mismatch between the energetic
electrons and the electrons in the cool plasma, and as a
result they overestimate the scattering of the energetic
electrons. The mass mismatch is expected to be signifi-
cant in the experiment by Kash, where the electron en-
ergy is 300 meV, and the “slope” effective mass at this
energy is approximately 1.3 times the band-edge effective
mass.!! Our results in Sec. IIIC 1 do not require correc-
tion for the use of the band-edge mass, since no significant
mass mismatch exists among the photoexcited electrons.

Our calculations do not consider the plasmon scatter-
ing that can occur when an energetic carrier is immersed
in a cool plasma. However, an analysis of egpa(q,w) by
Sato and Hori showed that at a density of 108 cm ™3 the
plasmon modes in a 300 K Maxwell-Boltzmann plasma
are strongly damped, and energetic electrons lose much
less energy through plasmon emission than through bi-
nary collisions with electrons.3? Since plasmon scattering
becomes less important as the plasma density is reduced,
we expect plasmon scattering to be even less significant
at densities of 101® to 1017 cm ™3, in spite of the reduced
plasmon damping in a 100 K plasma compared to a 300 K
plasma. The importance of plasmon scattering is further
reduced if Landau damping of the plasmon by interva-
lence transitions is considered.3*

3. Dynamic vs static screening

For comparison, calculations were also performed using
the static dielectric function ¢(q, 0), obtained by setting
w = 0 in Eq. (5). Results for scattering without and
with a 100 K background plasma are shown in Figs. 5
and 6, respectively. Figures 3 and 5 permit a compari-
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FIG. 5. The initial and final distribution of photoexcited
electrons, calculated as in Fig. 3, but with static screening.

son of dynamic and static models for scattering among
photoexcited carriers, and Figs. 4 and 6 permit a com-
parison for scattering in a cool background. The static
model underestimates the effects of CCS on the pho-
toexcited electrons, particularly at higher densities. The
underestimate does not arise as a result of the lattice
being treated statically; since the carrier-carrier inter-
actions at our densities involve energy exchanges much
lower than the LO-phonon energy, there is no effect if the
frequency-dependent lattice dielectric function compris-
ing the first two terms in Eq. (5) is replaced by ¢, its
static limit. Rather, the reason the static dielectric func-
tion €(q,0) causes CCS to be underestimated is the way
it treats screening by the carriers. We noted in Sec. I that
static screening will be a poor approximation for any col-
lision where the center-of-mass velocity is on the order of,
or greater than, the velocity of the screening carriers.??
When an energetic electron scatters from another carrier,
the surrounding holes usually have a lower velocity than
the center of mass of the two colliding carriers. Therefore
we find that static screening by holes is a poor approxi-
mation, whether the holes are photoinjected or are part
of a cool plasma. Similarly, we observe that static screen-

Static Screening

initial

Normalized Density

0o 50 100 150 200 250
Energy (meV)
FIG. 6. The initial and final distribution of photoexcited

electrons immersed in a 100 K Maxwell-Boltzmann plasma,
calculated as in Fig. 3, but with static screening.
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ing by electrons is a poor approximation when the elec-
trons are part of a cool plasma. In both cases the static
model overestimates the screening and therefore causes
the effects of the scattering to be underestimated. How-
ever, for scattering among photoexcited carriers in the
absence of a cool plasma, treating the screening by the
excited electrons statically causes the effects of CCS to
be overestimated. The overestimate arises because, un-
like an equilibrium distribution, a shell-like distribution
has a susceptibility x(q,w) whose maximum magnitude
(maximum screening) does not occur at w = 0 but at
0 < w < wp. For the electron susceptibility, the max-
imum occurs at an energy Aw in the range of frequent
collisional energy transfers between electrons. (In this
respect the RPA dielectric function is qualitatively differ-
ent from the less accurate plasmon-pole dielectric func-
tion used in previous dynamically screened Boltzmann
calculations.!3:38:39)

Therefore when a static screening model is applied to
scattering among photoexcited carriers, the scattering is
underestimated because of the static treatment of screen-
ing by holes, but this is partially compensated by the
static treatment of screening by electrons. For the case
of an energetic electron in a cool plasma, the scattering
rate is underestimated as a result of statically treating
the screening by both carrier types.

IV. CONCLUSION

In conclusion, we have studied carrier-carrier scat-
tering in photoexcited electron-hole plasmas using two
nonequilibrium methods that include dynamic screening:
numerical solution of the dynamically screened Boltz-
mann equation and molecular dynamics. We have found
that molecular dynamics is dominated by nonphysical ef-
fects at short times, arising from the pointlike nature of
the simulated carriers. Solution of the Boltzmann equa-
tion with dynamic screening, however, indicates that in
the absence of a cool background carrier-carrier scatter-
ing is as significant as LO-phonon emission for the scat-
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tering of energetic electrons at pair densities greater than
about 8 x 10!® cm ™3, and at 10'7 cm~3 the photoexcited
electrons are nearly thermalized in 150 fsec. These re-
sults are in agreement with previous experimental data.
The interaction between carriers has a stronger effect in
this case than when a low density of energetic electrons
is immersed in a cool background, where previous work
has shown that carrier-carrier scattering is not significant
until a plasma density of approximately 8 x 10'® cm™3
is reached. We attribute the stronger effect of carrier-
carrier scattering in the absence of a cool background
to the fact that screening is weaker in an energetic pho-
toexcited distribution than in a cool thermal one. This
conclusion could be tested with a pump-probe experi-
ment in which a low density of electrons generated by
a probe pulse scatters from the plasma generated by a
pump pulse, as in Ref. 5, but using pulse lengths < 150
fsec, with a variable time delay between pump and probe
to adjust the time available for thermalization (and there-
fore the average energy) of the plasma experienced by
the probe carriers. In addition, a two-color femtosecond
pump-probe experiment would allow the distribution of
the pump plasma to have its average energy and its shape
varied independently. This would permit the dependence
of screening on the average energy of the screening dis-
tribution to be evaluated separately from its dependence
on the shape of the screening distribution.
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