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Quantum theory of impact ionization in coherent high-field semiconductor transport
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Generation of carriers in semiconductors by impact ionization is studied under the in8uence of
a constant, arbitrarily high electric 6eld. Using the density-matrix approach a system of equations
for the coherent dynamics of electrons and holes in the presence of impact ionization and Auger
recombination is derived, which extends the semiconductor Bloch equations by the inclusion of
impact-ionization density-correlation functions as additional dynamic variables. From these equa-
tions we recover the pure (Zener) and the photon-induced (Franz-Keldysh) carrier tunneling rate
and derive an expression for the field-assisted impact-ionization scattering rate. DifFerent levels of
approximation of the kinetic equations are discussed. It is shown that in contrast to the semiclassical
treatment in the presence of an electric field, a fixed impact-ionization threshold does no longer exist,
and the impact-ionization scattering rate is drastically enhanced around the semiclassical threshold

by the intracollisional field eKect. The close connection of 6eld-assisted impact ionization to the
Franz-Keldysh e6ect is emphasized.

I. INTRODUCTION

In today's ultrasmall semiconductor devices carriers
are subject to electric fields up to 10 V/cm. In this
Beld regime carrier-generating processes such as impact
ionization and Zener ionization influence the device be-
havior signiBcantly. These processes are normally treated
as independent ones and their relative importance is
sometimes regarded to be distinguishable through a dif-
ferent dependence upon the lattice temperature. In in-

direct semiconductors like silicon, Zener tunneling rates
can often be explained only by considering phonon
assistance which allows for momentum conservation in
an indirect transition &om the valence band maximum to
the conduction band minimum. As was already pointed
out by Keldysh, instead of phonons, also impact ioniza-
tion can assist the Zener tunneling process which may
equally well help to conserve momentum in indirect ma-
terials. His idea has already stimulated the work of Refs.
6—8 and is further developed here.

In an impact ionization process a high-energy conduc-
tion electron collides with a valence electron with the
consequence that this latter electron is lifted kom the
valence to the conduction band. In an electron-hole pic-
ture, this process eventually leaves two electrons in the
conduction band and a hole in the valence band. The role
of impact ionization in semiconductor devices is partic-
ularly pronounced since this process (i) is autocatalytic,
i.e. , represents a positive feedback, and (ii) can be orig-
inated by electrons as well as by holes, which leads to

the eventual destruction of the device by generating a
coupled avalanche of both types of carriers.

The Zener process, on the other hand, describes the
transition of a valence band electron into the conduction
band without participation of other carriers and without
change of momentum (if not assisted by other scattering
processes). In contrast to impact ionization it is caused
only by the external Beld and not by a carrier already in
the conduction band. Zener transitions occur because the
effect of the electric Beld in a semiconductor is composed
of a vacuumlike (acceleration) and an isolated-atomlike
(polarization) behavior. The first phenomenon leads to
the intracollisional Beld eKect for scattering processes.
The second one mixes states of different bands. Both
effects together are involved in real Zener transitions.
The Zener process assisted by photons is called the Pranz-
Keldysh eKect and gives a direct measurable evidence of
the inBuence of an external electric field on the tunneling
of carriers through the forbidden gap.

In general, for all types of scattering processes that
change the number of particles w'ithin one band the in-
tracollisional Beld effect is present as well and can supply
energy to the carriers. This is especially true for impact
ionization and, as we will show, leads to a softening of the
impact-ionization threshold. This softening is of a fun-
damentally different nature than that which arises due to
the band structure and which can be understood already
in terms of semiclassical energy and crystal Inomentum
conservation.

Although the breakdown of the semiclassical theory of
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impact ionization and the need for a full quantum me-

chanical treatment in the regime of ultrashort time and
length scales in modern nanoelectronics is generally ac-
knowledged, it is difficult to verify specific quantum me-

chanical effects directly in semiconductor experiments.
This, for example, is true for effects concerning the role
of energy-time uncertainty in scattering processes, but
also for the effect of an electric Geld on coherent carrier-
generation processes. With the availability of very efIi-

cient tunable femtosecond lasers and experimental setups
such as four-wave mixing the situation has somewhat im-

proved in the 6eld of semiconductor optics.
In this paper, we develop a quantum transport theory

of impact ionization which allows for a uni6ed treatment
of coherent high-Geld effects. In the theory we include
the coherence of electron-hole pairs (interband polariza-
tion) and a homogeneous arbitrarily high electric field
with both its polarizing and accelerating effects. We es-
pecially study its effect on the process of impact ioniza-
tion and elaborate its close relation to the Franz-Keldysh
effect. The fundamentals of the density-matrix approach
that we adopt are presented in Sec. II. Here, we introduce
our semiconductor model and derive an equation of mo-
tion for operators which includes the acceleration due to
a homogeneous electric field through a time-dependent
basis (accelerated Bloch waves). Differential equations
for the electron and hole distribution functions, the in-
terband polarization, and the impact-ionization density-
correlation functions are obtained. In Sec. III, this hier-
archy of equations, which couples to other higher-order
correlation functions, is closed by a mean field approx-
imation. By neglecting the impact-ionization density-
correlation functions, in Sec. IIIA the semiconductor
Bloch equations for the electron and hole distribution
functions and for the polarization are obtained in our ac-
celerated basis. The coherent Grst-order contributions of
impact ionization and Auger recombination here appear
through a "self-energy" and an "internal field. " Then
in Sec. IIIB the full system of differential equations is
derived including impact ionization (and Auger recombi-
nation) up to second order.

In the following two sections, the obtained system of
dynamic equations is discussed. In Sec. IVA the semi-
conductor Bloch equations in the accelerated kame are
used to derive the familiar expression for the Zener tun-
neling rate. It is shown in Sec. IVB that the su-
perposition of the constant external electric 6eld and
an oscillating light field leads &om Zener tunneling to
the Franz-Keldysh effect. In Sec. V we examine carrier
generation due to impact ionization and, for nondegen-
erate conditions, derive a formula for the total rate of
change of electron concentration in the conduction band,
which includes tunneling due to the electric field and can
be regarded as an impact-ionization assisted tunneling
or field-assisted impact ionization. This formula gives
direct evidence of the close connection of impact ion-
ization with the Franz-Keldysh effect. This connection
was already noted in Ref. 16 where impact ionization in
the presence of an electric field was called a two-particle
Franz-Keldysh eR'ect.

Finally, in Sec. VI we summarize our results and draw

conclusions. Some technical calculations are given in the
appendix.

II. PHYSICAL SYSTEM AND THEORETICAL
APPROACH

In this section we introduce the Hamiltonian of the
system and the basic quantities such as distribution func-
tions, polarization, and two-particle correlation func-
tions. Then differential equations for those basic quanti-
ties are derived &om the Heisenberg equation of motion.
It is shown that they do not only couple to each other
but also to higher-order correlation functions. The latter
ones are again coupled to correlation functions of even
higher order. This in6nite hierarchy of differential equa-
tions has to be truncated by some suitable approximation
in order to obtain a closed set of equations. Such a pro-
cedure will be used in the following section.

A. The Hamiltenian

Our semiconductor model is given by the following
two-band Hamiltonian:

e = Ho+as+a
where

Hp ——) E,(k) cqcl, + ) E„(k)dsdl,

ac —aii+ 8
where the interband matrix elements Z of H~~ are zero.
As a consequence H~I is diagonal with respect to the
bands and thus describes intraband processes. It can
be written as

H)( = ) Z„(ki, k2) c„cl„
k1,kg

+ ) Z„„(k„k2)d„dl„,
kg, k2

(4)

where

Z;;(ki, kq) = —f d my,'(ki, x)

x
i

— f(t)
i

rp;(k2, ),
t'

describes &ee electrons in the conduction band c and
holes in the valence band v with energy dispersion rela-
tions E,(k) and E„(k), respectively. The mode operators

c&, c~ and dt's, ds are the creation and annihilation oper-
ators of electrons and of holes, respectively, and k is the
wave vector.

The scalar-potential Hamiltonian Hs describes the ac-
tion of the applied uniform electric Beld E(t). In a semi-
conductor Hs splits into an accelerating part H~~ and a
polarizing part H~ (Ref. 17)
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(t' = c or i = v). In the above expression rp;(k, z) are
Bloch waves

p;(k, z) = e*"*u;(k,z),
V

with periodic parts u; and V is the volume.
The matrix elements X,~(k, k') of the polarizing part

H~ are zero for k g k'. By absorbing contributions of
the form X;,(k, k) in Ho [renorma1ization of the band
energies E;(k)], H~ can be written as

Hg ——) X„,(k) cf„dt „+) X„',(k) d I,cg,

within the electron-hole picture, into several conceptually
different contributions. Here we will concentrate on the
part that yields impact ionization and its inverse process,
Auger recombination. The corresponding Hamiltonian is
given by

Hi ——) M, (q)cq+ cq, d „,cI,
k, k', q

+M*(q)cqtd g cl, qcg+q

+ ) Mh, (q)d~f+ df„, ct „,dg

k, k', q

+Mi*, (q)dq~c i, dl, qdl, +q (10)

X„,(k) = — d zu,'(k, z)
~

ieE'(t) —
~

u„(k, z), (8)
1 s, (. 8)

Bk)
where

e2 F F 2

and consequently is nondiagonal with respect to the
bands in contrast to H~~ and thus describes interband
processes.

The time evolution of the Bloch waves due to H~~ is
given by

H d s
Hll)(p&(ko, z)= e

' '0 "~~""&pa(ko z)
= p, (k„z),

' ef(r)
Ag=—ko — d~.

tp

H~~ changes the crystal momentum of a Bloch carrier with
time as Hs does for a free carrier in vacuum. In contrast
to H~~ the polarizing part of the electric field H~ mixes
states of different bands with same k (see above). In
terms of transport this means that H~ induces "vertical"
Zener transitions from one band to the other (see Fig. 1).

The perturbation Hamiltonian Hi, in principle, rep-
resents a sum of all interaction mechanisms present in a
semiconductor. Among them carrier-phonon and carrier-
carrier interactions are the most important ones in pure
materials. Carrier-carrier interaction, in turn, splits up,

are the usual Debye-like screened Coulomb matrix ele-
ments. In these expressions A is the inverse screening
length, I";~(k, q) are the overlap (or Bloch) integrals, e,
eo are the relative and absolute permittivity, and V is the
crystal volume. Hq describes impact-ionization processes
and their inverse, Auger recombination initiated by elec-
trons (index e) (see Fig. 2) and by holes (index h). The
matrix elements for the electron and hole processes are
different due to the difFerent overlap integrals involved.
Furthermore, since F„,(k, 0) = 0, we assume throughout
the following M, g(0) = 0.

In the definition of our Hamiltonian we have sup-
pressed the additional dependence on the spin variables.

B. The density-matrix approach

Time-independent solutions of the system Hp + Hj~
form a discrete system of eigenfunctions, the so-called

FIG. 1. Vertical interband process induced by the operator
H~. The conduction band (c) and the valence band (v) are
schematically shown.

FIG. 2. Impact-ionization process. A conduction electron
in state 1 collides with a valence electron in state 2, with
the result that both electrons after the collision are in the
conduction band in states 1' and 2', respectively.
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The dyna/nics of the distribation function

The time evolution of the physical system described
by H is refiected in the time evolution of the associated
density matrix. The diagonal parts of the single-particle
density matrices are given by the electron and hole dis-
tribution functions

)' (kk)—:(cc,cc) acd fc(k, k) = (dtd ), 4 (12)

Wangler-Stark ladder 9 with energy spacing eE'd where
d is the lattice constant. They are used in Ref. 11 to cal-
culate the Zener transition rate. In semiconductor trans-
port experiments a Wannier-Stark ladder in a band can
only form if the total potential drop across the semicon-
ductor exceeds the band width that corresponds to the
possibility for a Bloch oscillation. Furthermore, to per-
form at least one Bloch oscillation (to resolve the energy
spacing eE'd) the carrier must not be scattered within
the corresponding time interval. For electrons in the
conduction band of a nondegenerate bulk semiconduc-
tor this requires an unreasonably high electric field. For
this reason, and because we are explicitly interested in
the time evolution of the system (1), we use a different
(time-dependent) approach which we describe below.

y i = c,+. .
„., -=...,,~,„,„).. .),t t (17)

t tdt
Ie' It: —(Ic+q)

yg4 — d (y/ )
ca (g+ )cI ch

The y,„can be interpreted as the impact-ionization scat-
tering amplitudes. For example, y, q describes the process
where, in the language of second quantization, an elec-
tron is destroyed in state k and created in k+ q thereby
generating an electron-hole pair in k' —q and —k'. This
describes an impact-ionization event (see Fig. 2). The
four contributions on the rhs of (16) refiect the four dif-
ferent impact-ionization processes that change the oc-
cupation of state kq, they are the quantum mechanical
analog of four corresponding transition rates in the semi-
classical Boltzmann equation. z In (16) el, e2, and e3
describe electron impact ionization, while e4 describes
hole impact ionization.

We see that the equations for f, (and f/, ) couple to
the polarization p, i.e., the interband elements of the
one-particle density matrix, and to elements of the two-
particle density matrix. The polarization p and the
impact-ionization scattering amplitudes y,„must be ob-
tained by solving their differential equations which in
turn can be derived from Eq. (A2).

where () denotes the ensemble average. Using time-
dependent Bloch functions (p, (kq, z) from Eq. (9) elim-
inates H(i from the equations of motion for f;(k&, t) [see
Eq. (A2) in Appendix A]. Since Ho commutes with

c& c/„, we obtain f'rom (A2) two contributions for the
total time derivative of f,

d—fe (kg) t) = —f, (k/, t) + —f, (kq, t)

The first term on the right-hand side (rhs) of (13) yields
the interband generation rate

S. The dyna/nics of the polaÃgation

The equation of motion for the polarization reads
d d d—p(kg, t) = —p(kg, t) ~~ + —p(k„ t) ~~

d+
d, p(k~ t)l,

and the three contributions are
1—„p(k„t)i~ = —O~(k, )p(kg, t),

0„(k)-=—[E.(k) + E.(k)], (2O)

1
fe(kg) t)]~ = —„X„e(k/)p'(k/, t) + c.c. , (14)

where p is the interband polarization

p(k, t) = (d /, c),), p*(kt)—:(c)Ch, ) . ,

d 1
fe(kt) t) ~//

= .
& ) Me(q) [ye2 yet + yes]

A/ q

+k)'c(q)p, 4) + c.c. ,

where

(16)

The second term on the right-hand side of Eq. (13) de-
scribes generation due to Coulomb interaction between
carriers in different bands and is given by

d 1—p(k/, t)]//
———. X„(kg)X /, (k/, —kg, t), (21)

(23)
where

where

P; (k, k', t) = [1 —f;(k, t)][1 —f (k', t)]
—f;(k, t)f,.(k', t)

= 1 —f;(k, t) —f/(k', t), i,j e(e, h), (22)
is the filling factor due to the Pauli principle. The last
term on the rhs of Eq. (19) yields

p(k„t)]~ = ——) (M, (q)y" M/, (q)y""—
ah

Q/

+ M, (q)y'~ —M/, (q)y"~)

—.
~ ) (M, (q)y'2 —M/, (q)y~2

A. / q

+M:(q)y,.™~(q)y,".)
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ee hh
y = ck qck, +qck ck, y

dt@pe: d (k) )
Ck Ckl d (k q)

yiqs = (kd —iqd—

t e t td (k )d (k, +)d kd k ) y&~= ck, d kd k, ck q

Qp2 — —k kl+q (k+q) k ) gp2 — k (k/+ ) k+ —k'

h —/a
liqc+ql ciq+qc)cc ) c y 3

—
kkd )qc d l)q+ql ciqi+qcik) .

The polarization thus couples to the distribution func-
tions f„ f/„and to further elements of the two-particle
density matrix associated with electron-electron, hole-
hole, and electron-hole scattering.

where

0.,(t) = -„[E,(k, + q) + E.(k,
' —(I)

+E„(k,') —E.(k, )] . (26)

8. The dynamics of the impact ionis-ation
ecatte~ng amplitude

It is here sufBcient to consider only y, q because the
equations of motion for the other impact-ionization scat-
tering amplitudes can be obtained &om permutations.
The time derivative of y, ~ is determined again with the
aid of Eq. (A2)

The second term obviously leads to the same type of
density matrices as appear in Eq. (23)

t t—y c(» ——X„(kc+ q) d {c,+c~c» d»cc, )
——X„,(k, ) cc c cc, cc cc,)

t

d d d—„,y. =
d, y. I .+ —„,y. I .+

d, ~ I, ~ (24) +—X„,(k, —q) cc~ d tc q)d»cc, )

d

d
yei I//. = »ei(t) yei, (25)

In the last equation the first term on the rhs gives the
energy difference between the initial and the final two-
particle state multiplied by y, ~

——„X„,(kc) c„~,cy, d c, d „,) . (27)t t t t

The third term leads to three-particle density matrices.
For example, the commutator of y, q with the electron
Auger recombination term yields

t t ~t
e (~)ck//~ —k Ck q Ck +q ~ k+ k+q

kl / kill ql

k+, , ~-(k"+q )ck"ck —,—ck -q-q "-(k"+q')'kll 'k+q
k I I q/

+ g . "'e (~ j ck// —l"—(k+q+q/)ck/- ck' — "—(k' —q+q') k+ "—k/ck kll

k I/ ql

+ g lYIq/ (Q) ck+ ckl ckll l ckckl ql ckll d kl 8 (kll+ql )ckll ck+ql
k// ql

The remaining permutations give similar results.
This scheme leads to a system of an infinite number of

coupled differential equations. In order to close it, this
hierarchy must be truncated within some approximation
scheme which we will present in the next section.

tering amplitudes y, i, y, 2, y,s, and y, 4 [Eq. (24)]. All

other n-particle density matrices will be split into sums
of all possible products of those principal variables. This
amounts to a mean Geld approximation. For example,
the first term on the rhs of Eq. (23) is approximated by
a sum of two products of two distribution functions

III. SYSTEM OF KINETIC EQUATIONS ctk, ctk, +,ck ck = b, ,. cktck ctk, ,k

In this section we want to close the previously obtained
hierarchy of difFerential equations for our principal vari-
ables: the distribution functions f, and fi, [Eq. (13)],the
polarization p [Eq. (19)],and the impact-ionization scat-

—Bk k/+q CkCk Ck Ck q . 29

In this case the above decoupling coincides with the usual
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Hartree-Fock approximation where the first and the sec-
ond term correspond to the direct Coulomb and the ex-
change interaction, respectively. Other terms of the rhs
of Eq. (23) decouple into products of a distribution func-

tion and a polarization. In the same manner we treat
the three-particle density matrices with six mode opera-
tors. For example, the third term on the rhs of Eq. (28)
decouples into the following products:

cI /g+ /d (g+q qr)cI / d I g cgcA))& 1 g k ~ k q ~ k bicir Icr qbqr

[1 fk( k )]f (k )f (k)bq, Obq, k+

p(k—)p (k )f (k —q)bz &bk k &
—y~l(k, k, q, t)p(k+ q —q )bk k+q q

(30)

All terms containing b~ s or bq) 0 can be neglected because
M, (0) and Mk(0) are zero (due to vanishing overlap in-
tegrals for q ~ 0).

The situation of the y, terms is more complicated.
They already contain contributions that are products of
distribution functions and of polarizations. This is seen
by applying the Hartree-Fock approximation to y, l as a
first-order approximation

A. The semiconductor Bloch equations
in the accelerated frame

We obtain for Eq. (16)

d
f, (kg, t) ~~

———. A„(kg)p'(kg, t)
1

1+ . ) (Me(q) [se2 sel + se3]
ch

Ql

-s„,,, (c)c.) (c(„,d („„))
= b, , f.(k, t) p'(k', t) —bk+, ,k f.(k, t) p'(k+ q, t),

(31)

+Mk(q)s, 4)+ c.c. , (37)

and, using the Hartree-Fock approximation (29), for
Eq. (23)

where the first term on the right-hand side due to q = 0
can be neglected.

In a systematic expansion of the hierarchy of corre-
lations we shall now consider the deviation from the
Hartree-Fock factorized form as a second-order contri-
bution

—p'(kg) t)i~ —Zp(kg)p'(kg, t)

+—6'(kg) P,k(k„—kg, t),

where we have introduced the self-energy Zz

(38)

s.,(t) —= y.,(t) + bk+, k f.(k, t) p'(k + q, t) . (32)

This is a measure for the two-particle correlation in the
impact-ionization process, and will be denoted as impact-
ionization density-correlation function. If we limit the in-
fiuence of IIl to its first-order coherent contribution we
must neglect s,l. Otherwise we must consider an addi-
tional difFerential equation for s,l. According to Eq. (32),
we have to evaluate

Z„(k) = —) ([M~(q') —Mk(q')] p'(k + q')

d d fd
sel

d
yel + bk+q, k'

~ d
f.(k, t)

~

p'(k + q, t)
dt dt '

I, dt j
+f.(k t)

I

»'(k+ q t)
I

—
~

(d
)

Analogously, we define

s 2(t) = y,2(t) + bk k+~ f (k —q, t) p'(k, t),
s~3(t)—:y,s(t) + bk+~ k~ f, (k, t) p'(k + q, t),
s 4(t) —= y. (t) —bk+, k' fk(k+ q t) p (k t).

(33)

(34)

(»)
(36)

In a consistent scheme, besides f, k and p, the pure two-
particle correlations s, rather than y, must be used
as additional dynamic variables.

+[M.(q') —Mk(q')]'» (k + q')) (39)

and the internal field Az

&~(k) =——).(M.(q') f.(k —q')

-Mk(q ) fk[-(k - q')]) . (4o)

Equation (37) is exact, while in (38) we have neglected
the two-particle correlations associated with carrier-
carrier scattering processes. This is justified for not too
large carrier densities (weak carrier-carrier scattering).
The self-energy Zz is real and expresses the first-order
coherent contribution of impact ionization and Auger re-
combination to the polarization. It can also be inter-
preted as a renormalization of the electron and hole band
energies E,(k) and Ek(k) in (20) due to impact ionization
and Auger recombination induced polarization according
to
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E,(k) —) (M, (q') p (k+ q') + M*(q') p(k+ q')},

(4i)

E-(k) + ).(M~(q) p'(k+ q) + M~(q) p(k+ q)} (42)

E,(k) and E„(k) are shifted in difFerent "directions, " such
that the eKect on the band gap may partially cancel.
The internal 6eld A„can be interpreted as a Coulomb
enhancement of the interband matrix element X„, thus
renormalizing the external 6eld E'.

If we neglect in Eq. (37) the impact-ionization density-
correlation contribution then we obtain a closed system of
equations for the distribution functions f, and fh and for
the polarization p. Without the explicit time dependence
of the wave vectors due to H~~ this system would coincide
with the semiconductor Bloch equations. ' They de-
scribe a set of two-level systems modi6ed by the presence
of additional scattering processes (contained in Hq) 2s

1—f,y„(k, t) „=—. [(X„,(k ) + A„(k )}p*(k„t)

—(X„,(kg) +6p(k, )}'p(k„ t)],

p" (kg, t) ~~„,„——i (A„(k,) +Zp(k, )/5}p*(k„t)

+ bA, ,+~ ~ W, x—(k„k~ + q)

+—W, g(kg, k,', q), (45)

where

M;(q):—M, (q) —2M, (k' —q
—k), ie(e, h}

and

(46)

E,z(t) = f, (k, t) [1 —f, (k + q, t)] [1 —fh (—k', t)]

x [S —f.(k' —q, t)] —[i —f.(k, t)]

x f, (k+ q, t) fh( k', t) f,—(k' —q, t) (47)

assures that in the impact ionization (first part) and the
Auger recombination (second part) transitions the Pauli
principle is always fulfilled. The real self-energy

E.p(k, k', q) =——) (M; (q') [p(k + q + q')

tions s,„. This is obtained by taking into account the
various s,„ terms in the equations for the distribution
functions and by deriving additional equations of motion
for the s, terms themselves. According to Eq. (33), the
derivatives of f, and p* are needed. In order to be con-
sistent with our approximation scheme, here these time
derivatives are given by the Bloch equations Eq. (43) and
Eq. (44). Therefore, we are left with the determination of
the last commutator in Eq. (24), which after mean field
approximation reads

d—„y„=—M,'(q)P, g(t) + —„y,& Z, &(kp, k,', q)dt' I A,

xP,g(k„—kg, t)] . (44)
+p(k' —q+ q') —J (k+ q')]

M„'(q')p(k—'+ q') + c.c.} (4S)

It is seen that the importance of impact ionization for the
total self-energy and internal field depends on the differ-
ence of the overlap integrals within di8'erent bands. The
internal Geld contribution, on the other hand, depends
also on the difFerence of the electron and hole distribu-
tion functions.

B. A quantum kinetic equation for impact
ionization

We will now extend the above system of semiconduc-
tor Bloch equations by including in our set of kinetic
variables the impact-ionization density-correlation func-

corrects the band energy of the four states here in the
same way as we have already seen for the polarization.
The next term

A', z(k, k+ q) = p*(k+ q) p*(k) Az(k) —A*(k) p(k)
—6„'(k + q) f.(k) P,h(k + q, k+ q)

(49)

describes virtual impact-ionization transitions in which
energy cannot be conserved. The last term, anally, de-
scribes how polarization due to the Coulomb interaction
can result in real impact ionization or Auger recombina-
tion according to the occupation of the electron or hole
states

W., (k, k', q) = M:(q) p(k)p'(k')X, .(k + q, k' —q) —M„'(q) p(k) p*(k + q)&,h(k' —q, —k')

—M„*(q)p(k)p (k' —q)X.&(k+ q, k') + M„(q) p'(k+ —q)p*(k' —q)X'„(k, k')—
—M, (q) p'(k')p*(k' —q)X„(k, k + q) —M, (q) p*(k')p" (k+ q)X„(k,k' —q) . (50)
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Here we have additionally introduced

P; (k, k') = f;(k)[1 —f~(k')] —f~(k')[I —f (k)]

ionization density-correlation functions both are of the

type

—a(t) = iO(t) a(t) + I'(t),
dt

i, je{e,k}. (51)
which can formally be integrated yielding

Setting up the equations for the a,„we see that the W,„
terms cancel completely d.ue to the last term of Eq. (33)
and due to the mean field approximation for Eq. (27).
Since Z„(k + q) and Z, q (k, k + q, q) coincide we obtain
for aeq

t

a(t) = a(te) exp Ii tt( )dc)c
to

t t
+ exp i tt(e)tte) p(t')ttt'.

to tl
(57)

dt
'—a, ~ = i {Q,g(t) + Z, q( kq, k,', q) /h} a,g

+—„M.(q)X.,(t) + —„W.,(k„k,', q) . (52)

1
fe(kit t—) = —. [{X„,(kq) + A„(k,)}p'(k„ t) —c.c.]

1+ . ) Me(q) (ae2 —ael + aes)
zh

Apl

ea

+Me(q) 4.4)
—c.c. , (53)

The W terms, in general, oscillate since they contain
products of the polarization, and their integral contri-
bution to the 8 „ terms should be small compared to
the M, (q) P,„(t) terms for those (k, k', q) which approx-
imately conserve energy. Especially for the first term on
the rhs of Eq. (50) this assumption may not always be
justified.

Putting all together, our closed system for the dis-
tribution functions, the polarization, and the impact-
ionization density-correlation functions becomes

If we neglect self-energy corrections and W,„, the equa-
tions for the polarization and for the impact-ionization
density-correlation functions are not directly coupled. So
with the above formal integration p(k, t) and a,„(t) can
be eliminated resulting in equations only for the distribu-
tion functions. As we will show in the next two sections,
for the polarization this will lead to the well-known Zener

efFect, and for the impact-ionization density-correlation
functions to 6eld-assisted impact-ionization scattering.

IV. POLARIZATION-INDUCED CARRIER
GENERATION

In the last section, we have derived a differential equa-
tion for f„with two generation terms, generation by
polarization and by impact ionization. In this section,
we will deal with the first one. We show that both the
Zener effect and the Franz-Keldysh efFect can be obtained
straightforwardly from the semiconductor Bloch equa-
tions in the accelerated frame.

an analogous equation for fh, , A. The Zener effect

—p'(kg, t) = i {Q~(kg) + Z~(kg)/5} p'(kg, t)

+—{X„,(kg) + b,„(kg)}'P,h(kg, kg, t), —

(54)

and four equations (j = 1,2, 3, 4) of the form

—a„.(t) =i {O„(t)+ Z„(k~, k,', q)/h} a„.

+— M . (q)X., (t) + W„(kit k,', q)

In the last term we have additionally used e~ = e(j =
1,2, 3) and e4 ——h. The equations for the distribution
functions are coupled for the same k through H~ and
through the internal 6eld due to the 6rst-order coherent
contribution of impact ionization and Auger recombina-
tion, and for diferent k' through the second-order con-
tribution of impact ionization and Auger recombination.
The first and the second square brackets in (53) describe
generation rates due to polarization and impact ioniza-
tion, respectively.

The equations for the polarization and the impact-

By neglecting the self-energy Z~(k), the difFerential
equation (44) for p' can be integrated according to
Eq. (57). By defining

X„.(k) = X„.(k) + A„(k),

the following equation for the contribution of the polar-
ization to the rate of change for f, (k) is obtained,

2f, (kq, t) =——Re X„,(kq) dt'

t
x exp i d7 O„k X*, kt

tS

xX,g(kq, —kq, t')

ass»ming that at t = to no polarization exists, i.e.,
p (k to) = 0. The above equation can further be elab-
orated analytically assuming that the phase space 60-
ing factor X,s(k, —k, t) is close to unity (nondegenerate
limit) which is often a good approximation in the high-
6eld region of a semiconductor device. Ass»ming a direct
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semiconductor, we will see that the only relevant nonas-
sisted Zener processes take place in the vicinity of the
band edges. Therefore, one can approximate X„,(k) by
X„,(0). The Zener transition rate, i.e., the total number
of electrons entering the conduction band per unit time,
is then obtained from Eq. (59) by summing over all k&

(expressed by dimensionless components r~~ and K~ par-
allel and perpendicular to the field 8) and performing the
limit 10 m —oo,

dn OQ & —&o

—~z dK& dK~~ d T

26 ——

10"
7I c.

10

&10'

10
0.0

1 I

05 10 15 20
electric field (MV/cm)

( tdg + o/J 1 3 o/g + o/j 1 3)
xcosl r + —w +K~[3 tdF 3 )

(60)

Here we have used the following abbreviations:

FIG. 3. Zener generation rate dn/dt as a function of the
electric field E calculated for GaAs at T = 300 K.

lx„.(0)l' m" 5"'
27r2$) ) m

mQ mQ

mc+ mv

(61)

Hr, = ) MI, (k)E'I+ c~qdt „+) ML, (k)FI d t, ct, ,

(65)

~g =&g/&, ~i =, , ~F = I, l
(62)2m* ' (2m'h)

d lx„.l' f—=2
&2~'~)

— 'A'
l

o/F (u)F )

(Gag )
i/ir~Fir Ai'

k~F)

(63)

where Ai(z) denotes the Airy function. Neglecting A~(k)
and using the following approximation for the interband
matrix element X„, (Ref. 24):

lx„,l'/h' = (64)

where ~g is called the electro-optical frequency. Ex-
pression Eq. (60) justifies the approximation X„,(ki) =
X„,(0) since due to the rapidly oscillating integrand
higher energy states give only a very small contribution.
Due to the complete symmetry between the (dimension-
less) time w and tc~~ in the argument of the cosine, the ini-

tial time to becomes less and less important and we may
take the limit to m —oo. Then, in the Markov limit, the
well-known result for the Zener tunneling rate in direct
semiconductors is obtained,

where the interband matrix element X„,(k) is split into
the pure dipole matrix element ML, (k) and the alternat-
ing electric Beld written as

g(+) g
—'~I, ~ g( —) g(+)*

0 C (66)

dn 1 2(m'
dt 2 (2ir25)

gvrtdF~ Ai' (z) —zAi (z)

In the case where the electric field strength of the laser
is much weaker than the electric Beld strength due to
the applied external voltage, which in modern devices
can easily be in the range of 103—10s V/cm, then the
contribution of the laser to H~~ is negligible. In H~, on
the other hand, the inBuence of the laser dominates be-
cause it can transfer energy to the electronic system. The
Franz-Keldysh effect ' occurs under these conditions
and describes the creation of an electron-hole pair by a
photon of frequency ~L, assisted by a strong static ex-
ternally applied voltage. The calculation is the same as
for the Zener effect except that in Eqs. (60) and (63) in
addition to the replacement of the matrix element L„,
by MI,E'0 one has to substitute co~ with ~g —~L, . One
obtains

the Zener tunneling rate according to Eq. (63) is shown
in Fig. 3 as a function of the electric Geld E'. For the
calculation we used m = 0.067mo, m = 0.45mo, and
Eg = 1.422 eV which are typical values for GaAs at room
temperature.

B. The Franz-Keldysh effect

Let us now suppose that the electric Geld f is the sum
of a static field f (due to an applied voltage) and an
alternating electric field E'I, as is present in laser light
which, on a semiclassical level, can be described by

. (67)

Here the amplitude E'o of the laser is given in terms of a
Rabi frequency Oz = l2MI, (0)Col/h. The electric field E'

from the externally applied constant voltage enters only
through tdF For an electri.c field E' = 10s V/cm and a
Rabi frequency of O~ ——5 x 10 s the generation rate
due to a laser is shown in Fig. 4 as a function of the pho-
ton energy RuI. . As is seen in Fig. 4 the threshold intro-
duced by the band gap is softened by the Pranz-Keldysh
effect, i.e., even photons with energy below the gap are
able to create an electron-hole pair. The extra energy is
provided by the intracollisional field effect, i.e., the intra-
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V. IMPACT-IONIZATION-INDUCED CARRIER
GENERATION

'p4

3

p2

wl-

0.4 0.6 0.8 1.0 1.2 1.4 1.6
photon energy / Eg

FIG. 4. Optical generation rate dn/dt due to a laser as a
function of the photon energy (normalized to the band gap)
with and without an external static field 8 (calculated for
GaAs at T = 300 K).

In the previous section, in the derivation of the Franz-
Keldysh effect we replaced Hi with HL, . This results in
the appearance of the frequency ~1, of the oscillating light
field in the argument of the exponential function. Now
we will show that in an impact-ionization process in the
presence of an external electric field the impact-ionizing
electron with energy E (k) plays the role of the photon
in the Franz-Keldysh effect such that the mathematical
description remains almost unchanged. Here the energy
(or part of it) of the impact-ionizing electron is used to
create an electron-hole pair and this process is assisted
by the presence of an electric field as in the case of the
Franz-Keldysh eH'ect.

A. The impact-ionimation generation rate

band. acceleration of carriers by the field due to Hii. The
range of the softening is of the order of Rug. The gener-
ation rate given by (67) is proportional to the absorption
coefBcient, is i.e. , the quantity that can be measured in
experiments.

In analogy with the polarization, Eq. (55) can be in-
tegrated accord. ing to (57), and the resulting expressions
for the s,„can be inserted into Eq. (53). For simplic-
ity we neglect in the following the )did,„ terms, and the
self-energies Z,„.The result of the integration is

d 2m I 1—f, (kit t)ill ———
2 ) dt' cos —d7'0, 2(7) M, (k&, k,'t, q) %,2(t')

Ic/ q 0 tl

27r

h2

2'+—
2

t t) dt' —cos dcB,s(c)) Al, (k, , k', , q) Es(t')
tl

t 1 t
dt' —cos dcB t(c) j&l,(k, , ks'„q) E,t(t')

7r tl

t t) dt' cos *B,s(—c)) Jx(s(kc, k'„, q) %,4(t').
k

tl
)9

(68)

We have used the fact that, in a sum over k' and q,
M;(q) M (q) can be replaced by

M; (k, k', q)—:—(iM; (q) i

2 + iM, (q) —M~(k' —q —k) i4

+iM;(k' —q — )i ) t ie(e, h). (69)

The first term in Eq. (68) describes in-scattering of an
electron from the conduction band into the state labeled
by A: and its inverse. The second describes in-scattering
of an electron from the valence band into state k and
its inverse. The third term describes out-scattering of
an electron out of state k and its inverse. The fourth
term Gnally describes in-scattering of an electron from
the valence band due to hole impact ionization. In the
above equation the rate of change of the electron dis-
tribution function at time t depends also on the distri-
bution functions at earlier times, i.e., the dynamics is
non-Markovian. Equation (68) supplemented by a simi-
lar equation for the distribution function of holes fp, rep-

t
xcos dcO, (c)) ~M (q))*,

tl
(70)

l

resents a complicated but closed system of differential
equations for the determination of the distribution func-
tions.

In order to discuss some important differences with re-
spect to the semiclassical approach and to emphasize the
similarities with the Franz-Keldysh efI'ect, we assume the
case of a semiconductor device under conditions where
in the high-Geld region the electron density is nondegen-
erate, and the hole density is negligible. Neglecting thus
all terms containing Mh, or products of distribution func-
tions f, (ki) f, (k2), and approximating terms of the type
(I —f) by unity one obtains the total impact-ionization
rate dn/dt due to electron impact ionization only, by
summing over A:. Using the symmetry with respect to
the summation variables, we find

"(') = ) —'„, f'dt'd (k;t')).,
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where we have approximated M, (k, k', q) by ~M, (q) ~.

The last equation was analyzed in the ultrashort time
regime in Refs. 28—30 assuming constant overlap inte-
grals, and parabolic spherical valence and conduction
bands. It was shown there that due to energy-time uncer-
tainty and due to the applied strong electric field impact-
ionization transitions take place even below the "semi-
classical impact-ionization threshold" determined by en-

ergy and momentum conservation according to Fermi's
golden rule.

B. Field-assisted impact ioni2 ation

In the following for simplicity we again assume a di-
rect spherical parabolic semiconductor. The more com-
plicated case of silicon is treated in Appendix B.

With these assumptions five of the six integrations over
k' and q in Eq. (70) can be carried out analytically, and
one obtains

The argument of the cosine in Eq. (71) contains the
impact-ionization electro-optical &equency w+ and the
(Fermi's golden rule) threshold p ~qh

('1 (ef)2 l
(p Sm*n)

~ = ~th [~f(k) ~l ~ (76)

~th — kgh ~ ~th-
JM 2m'

1+2nP=
3. +o.

2m
pQ

mc

mv

In Eq. (71) u „expresses the energy width of the con-
duction band; it would be infinite for a purely parabolic
semiconductor.

We shall now analyze Eq. (71) in the long-time Markov
limit without neglect of the electric field. The summation
over kq in Eq. (71) allows one to substitute k| with k —:
k~. As a consequence f, (kq, t') becomes f, (k
t ). Applying the Markov limit, the distribution function
is taken out of the time integral and approximated by its
value at t. Then we obtain

xS((uy(kg ), ury(kg ) —u))

1 (I
x —cos

~

-(~yt )'+,, (~yt ) ~

(71)

dn(t) = ) f, (k, t) d~ S(~y(k), ~y(k) —ur)

a

1 ",1 (1x,, d~' cos
~

——~' +,, ~'
~

. (7S)
o 7r (3 ~z )

for the number of carriers that enter the conduction
band per unit time and unit volume due to Geld-assisted
impact-ionization. In the above expression

For tp —+ —oo the time integration can be carried out
yielding

t =t —t,I t+ —=(t+ t')/2 (72) = ) f, (k, t) P(k, t),

are the relative and absolute scattering times,

] ]
S( f )=

2 g( )+
ld ((dy, (d) I

ldy

1 . fui
P(k, E) = du S(u)y(k), uy(k) —u)), , Ai

~

0 k~P)
(79)

2,&, (e'~+„.+..~g~. l
'T 'F Egp

+ gsy2 )
(74)

The information about the particular band structure is
contained in

& hj'
u)y(k) =-

p, 2mc

expresses the impact-ionization scattering rate with
threshold energy @2' and impact-ionization mean &ee
Bight time ~ defined by

Here ~ is extended to infinity. This is possible due to
the exponential decay of the Airy function Ai for posi-
tive arguments. By comparing the above expression with
the corresponding rate of the Franz-Keldysh effect we see
that (dqh substitutes ~g, and ~y substitutes ul. . The inte-
gration over ~ here reBects the fact that, due to energy-
time uncertainty, also energy-nonconserving transitions
to higher energy states in the conduction band are pos-
sible, and corresponds to the summation over k in the
derivation of the Franz-Keldysh formula. Here the inte-
gration over cu must be performed numerically.

In the limit of a vanishing electric field 8 Eq. (79) re-

duces to the semiclassical result obtained with Fermi's
golden rule. The scattering rate becomes

P(k, E = 0) = du) S(~y(k), ury(k) —u)) b(~)
0

= S((u~(k), ~~), ~g & (u~. (80)

hA'
(75)2'

In Fig. 5 the impact-ionization scattering rate P(k, 8)
is shown as a function of energy E,(k) for diferent val-
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ues of the applied electric Geld and compared with the
zero-field limit, i.e., the semiclassical rate. 2i si For the
calculation we assumed GaAs with the same parameters
as in Sec. IV A. It is clearly seen ia the figure that the
effective impact-ionization threshold is shifted to smaller
values when an electric field is applied. This is a result
of the intracollisional field efFect by which virtually gen-
erated electron-hole pairs gain energy from the electric
Geld during the impact-ionization scattering process.

FIG. 5. Impact-ionization scattering rate P(k, 8) as a func-
tion of the energy E,(k) = 5 k /(2m, ) for different values of
the electric field 8, calculated for GaAs at T = 300K.

homogeneous case, for example, by transforming to the
Wigner representation.

In summary, we have shown that for strong electric
fields quantum corrections lead to an enhanced genera-
tion of carriers by impact ionization and a softened ef-
fective impact-ionization threshold, as compared to the
semiclassical theory. This is mathematically described by
a smeared-out energy gap. The impact-ionization thresh-
old is not a fixed field-independent quantity as it would
result from the first-order perturbation theory (Fermi's
golden rule) commonly used in semiclassical transport to
describe incoherent transitions. The reason for this is the
intracollisional 6eld effect due to the intraband accelera-
tion of carriers during the impact-ionization process even
in the Markov limit. The derived analytical formulas
make evident the close connection of 6eld-assisted im-
pact ionization with other field-assisted generation pro-
cesses. In particular, the decrease of the efFective impact-
ionization threshold with Beld is the analog of the Franz-
Keldysh effect in semiconductor optics.
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VI. CONCLUSIONS

We have derived a closed set of quaatum kinetic equa-
tions for the electron and hole distribution functions,
the interband polarizatioa, and the impact-ionization
density-correlation functions which describe the coher-
ent action of an external electric field in terms of Zener
tunneling, 6eld-assisted impact ionization, and Auger re-
combination. In the basis of accelerated Bloch waves,
polarization-induced and impact-ionization-induced car-
rier generation processes with non-Markovian properties
refiecting energy-time uncertainty arise. The first-order
coherent contribution of impact ionization and Auger re-
combination renormalizes the carrier energies and the
electric field. This extends and complements work in
which electroa-phonon and/or carrier-carrier scattering
was considered in addition to the action of a constant
external electric field or a classical laser 6eld, ' but
where processes that change the number of carriers in a
band due to electron-electron interaction were neglected.

The theory of Geld-assisted impact ionization pre-
sented here differs substantially from earlier work.
We apply a full quantum transport theory based on the
density-matrix formalism with the inclusion of distribu-
tion functions and the Pauli exclusion principle. We clar-
ify the difFerent efFects of the electric field by splitting
the electric field interaction Hs into accelerating (H~~)
and polarizing (H~) components. Furthermore, our ex-
plicit calculations take full account of the q dependence
of the Coulomb matrix element and thus go beyond the
Keldysh approximation of M, (q) by its value at thresh-
old. Our approach can be extended to the spatially in-

APPENDIX A: THE EQUATION OF MOTION

In this appendix we demonstrate that for a homoge-
neous electric field the effect of H~~ can be removed from
Heisenberg's equation of motion. Let us coasider an arbi-
trary time-independent Schrodinger operator A and de-
6ne

A:= Ug(Hii) A U, (Hii) . (AI)

The operator A transformed into the Heisenberg picture
(A~) obeys the following equatioa of motion:

(A2)

f, (kp, t) = f, (kg, t) .

Since the following identity holds:

(A3)

cg„= Ug(Hii) cg, U, (Hii), (A4)

(and analogous ones for c& and c&ci,), the function f, cant t
be written as

f.(kc, t) = (Ui(equi) c„,cc, U, (Hii)), (A5)

Let us illustrate the efFect of Eq. (A2) for the elec-
tron distribution function f, In the spirit .of Chambers
approach to semiclassical transport we de6ne the fol-
lowing function:
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and according to Eq. (A2) f, obeys

—f ]ko. t) ,= —(](s—
s~~~~), c„ f~, ]) = f—(k,„k) .

(A6)

The drift term of the semiclassical Boltzmann equation
is obtained by substituting in Eq. (A3) kq with k

E.(k) =, ) P,k,',
C

kg — fA~ 1 fAc 2 fAc Q
1/3

P; = ', (81)
7AC

h2
E,y(k) = ) p;(k; —Z, f,;)

i=1
(82)

or, equivalently,

19 eE' 8—f, (k, t) = f, (—k, t) — —f,—(k, t)
dt

' ' Bt ' ' fi]9k

(A8)

2

E„(k) = Es p+ ) a(k; —Z„,,)',' ~ ;=1

(83)

The left-hand side of Eq. (A8) is equal to the left-hand
side of Boltzmann's equation, the right-hand side has the
meaning of the scattering contribution to the evolution of
the distribution function. In contrast to Boltzmann's or
Chambers' equation, Eqs. (A6) and (A8) are not closed
but are only the first level of a coupled hierarchy of in-
finitely many differential equations for the expectation
values of operator products.

APPENDIX B: FIELD-ASSISTED IMPACT
IONiZATION IN SILICON

In this appendix we extend the theory of Sec. VB to
the case of an indirect semiconductor to demonstrate that
here besides phonon scattering also impact ionization is
able to supply the necessary momentum for the Zener
transition. We concentrate on silicon and, to describe
the impact-ionization process with the lowest semiclassi-
cal threshold (see Fig. 6), need the following valence and
conduction band dispersion relations (parabolic band ap-
proximation of silicon)

Here E,(k) describes the energy dispersion of the low-
est parabolic (but not spherical) conduction band of sil-
icon (X valley) and m, is the effective conduction band
mass, whose introduction will be useful later. E,t (k) ex-
presses the same energy dispersion, but of the neighbor-
ing equivalent X valley and E„(k) describes the energy
dispersion of the heavy-hole valence band in spherical
parabolic band approximation. The zero of the energy
scale coincides with the conduction band edge. The k-
space origin is chosen to lie in the minimum of that X
valley from which the impact-ionization process initiates.
Z„; and Z,f; denote the k-space distance of the other
respective band extrema.

With these energy dispersion relations again Eq. (71)
is obtained but with the following difFerent meaning of
the parameters. First, the definition for the impact ion-
ization mean free Sight time 7 is changed to

]' „, (. ~Z„.Z..(gm. q
/ 3 2

')I 2 ] ." ) ] cepfP~ )
(84)

Second, the frequency associated with the energy of the
impact-ionizing conduction electron ]dy is changed to

~y(k') = — k'
/

cos 8+ sin 8
/

1 h, 2 ]' s p,sP2

p, 2m~ ( ]]k2Ps j
+(A+ B) —2~A+ B[[k'~ cos8, (85)

where k,*. = ~P;k; (Herring-Vogt transformation) and
8 is the angle between k' and the electric 6eld direction
assumed antiparallel to k3. The electro-optical &equency
in this case becomes

+p. ( )' '"
p 8m, h)

and kd&h now depends on ~k*~

(86)

FIG. 6. Schematic impact-ionization transition in silicon
with the lowest (semiclassical) threshold (umldapp process,
denoted hy shaded arrow).

~th(k ) [kk)k + (& + B)' + 2IB(kkh
p 27D

—2)A/ /k*f cos 8], (87)
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where 10

(2m, E a+ Ps

( pshz aps )

P;(P; + 2a;)Pi= 1P=a;+p; pi
&'.="i )

(88)
10

The constants A and B finally contain the information
about the location in k space of the difFerent band edges

"'0.8 1.0 1.2 1.4
energy (eV)

1.6

1 1 asPs
A psZef 3 ) B (Zz 3 2Z f 3)

ps
' ' ' psas+ps

(89)

Z„= (0, 0, 1.156,), Z,y = (0, 0, 0.34), (810)

m„= 0.6m, , m, ,q
——m, ,2

——0.19m, ,

m, ,
= 0.98m, ,

(811)

where b, = 2n/a and a = 5.43 x 10 iom is the lattice
constant of silicon. Comparing the field-assisted impact-

The above expressions can be derived &om a more gen-
eral formula i if we assume the ks direction of the k-space
coordinate system in the (001) direction of silicon and the
electric field applied in the same direction.

With the above redefined parameters the formulas of
Sec. VB remain valid. In Fig. 7 the impact-ionization
scattering rate P(k', 8) of Eq. (79) for silicon is plotted
as a function of energy E,(k'). In the calculation the
following values for silicon were assumed:

FIG. 7. Impact-ionization scattering rate P(k', S) as a
function of the energy E,(k") for different values of the elec-

tric field, calculated for Si.

ionization rates in Si and in GaAs it is seen that the
field efFect in GaAs is much more drastic. This is due to
several reasons. Even without field the impact-ionization
threshold in Si is much softer than in GaAs since it is not
isotropic. i Furthermore, the large momentum involved
in transitions near threshold makes the Coulomb matrix
element small. The most important reason, however, is
the smaller electro-optical frequency in Si due to the large
conduction band mass in the ks direction (direction with
the smallest Fermi's golden rule threshold). An electron-
hole pair state that is created with no energy support
has an energy uncertainty of about the gap energy and
can survive a corresponding time interval. During that
lifetime in the same electric field an electron-hole pair
in GaAs can gain much more energy than in Si due to
the much smaller conduction band mass. This fact is
reflected in the ratio Es/(Fuu~) which for an electric field
of 10 V/cm is 12.6 in GaAs and 21.4 in Si.
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