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Pressure-induced symmetry breaking in tetrahedral networks
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Recent experiment and theoretical studies appear to show a great deal of complexity in the high-

pressure behavior of tetrahedral semiconductors. We show that the structural stability of silicon and
the order of its phase transitions is identical to that of a tetrahedrally coordinated network of rigid
rods with spring-loaded joints. We further show how this parameter-free model resolves the recent
controversy regarding the first high-pressure phase in silicon.

Recent refinements in high-pressure crystallography
have revolutionized the field of high-pressure phases of
tetrahedral semiconductors. Until recently, all these ma-
terials appeared to fit a simple scheme with the zinc-
blende or wurtzite low pressure phase transforming to
either P-Sn or NaC1 structures at the metallization tran-
sition. A tidy phenomenological theory explained these
two structures in terms of ionicity and bond length,
and ab initio electronic structure calculations confirmed
the high-pressure instability of the diamond phases.
A second phase transition, to the simple hexagonal
phase, was also reported in Si, ' and its stability again
demonstrated by electronic structure calculation. Sim-
ilar hexagonal phases have been reported in GaAs and
InSb. 5

The discovery of orthorhombic distortion in the III-V
compounds' was initially associated with their lying in
a region of intermediate ionicity between P-Sn and NaC1
regimes, the structure being intermediate between the
two. However, the orthorhombic phase in InSb and GaAs
is actually Imm2, 7 an intermediate between P-Sn and
simple hexagonal. Soon after these experimental results
appeared, electronic structure calculations demonstrated
the instability of P-Sn with respect to Imm2 in InSb. s

The most recent, and remarkable, report is that the
first high-pressure phase silicon itself, the archetypal
pressure-induced metallization, may have been misin-
terpreted. Careful x-ray crystallography using imaging
plates and synchrotron radiation showed that for most of
its range of existence the P-Sn phase of silicon was in fact
unstable with respect to an orthorhombic distortion to
Imma (the monatomic analogue of Imm2). Once again,
electronic structure calculations on the Imma phase con-
firmed this instability, although at the low end of the
pressure range the energy difFerence was within the com-
putational uncertainty.

It thus appears that the complex behavior of even
the simplest of covalent materials is at the limit of both
experimental and computational feasibility. There may
seem to be no reason why still more complexity should
not lie undetected awaiting further improvements in res-
olution or computation.

In this paper it is shown that far &om being complex,

the observed behavior can be understood by a simple
consideration of the bonding nature of the materials: the
various phases observed in silicon are isomorphic to those
found for a simple network model of rods and springs.

The network in question is one in which atoms are rep-
resented by hard spheres, each connected to four other
atoms by rigid rods. These rods have the same length
as the hard sphere diameter and interact with each other
by means of torsional springs. In constructing the PVT
phase diagram for this model there are no free param-
eters, the "pressure" being given in reduced units of
the spring constant and bondlength and the "temper-
ature" expressed as the energy barrier appropriate to
the Landau-type W-shaped well. ii The topological con-
nectivity of the network remains fixed throughout, al-
though the effect of relaxing this condition for sixfold-
coordinated structures is discussed.

To obtain analytic expressions for enthalpy it is nec-
essary to assign a suitable functional form to the energy
of the springs. Since they represent bond-bending of co-
valent bonds and the distortions away from tetrahedral
will be large, a simple spring constant is not ideal. From
a tight binding analysis it has been shown that the
natural minimum of a three body sps term is in the range
115' —118', and hence for the spring energy a trigono-
metric expansionabout 8 = 116':U oc (cos8—cos8 )2
is appropriate. This form gives the relation between ge-
ometry and energy a simple analytic form, and it turns
out that similar stability behavior is obtained with other
reasonable choices. Use of the covalent approximation
and sp term implies that the current model will be in-
applicable to atomic structures with greater than fourfold
coordination. Remarkably, the symmetry predictions of
the rigid rod model mimic those of real systems well be-
yond this regime. There is some support for the exten-
sion of the idea of covalent bonding &om the significant
bond charges observed in ab initio calculations of P-Sn
and simple cubic phases

The connectivity of the network is determined with re-
spect to the diatomic Imma cell, since it is the maximal
subgroup linking diamond, P-Sn, and simple hexagonal,
and allows a unique fourfold bonding topology. This en-
ables us to go by continuous distortion of the network
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The stable phase at a given pressure is then given by min-

imizing H with respect to the two dimensionless struc-
tural parameters u and y. The zero temperature stability
of each phase is thus a balance between the E and PV
terms, and with pressure being measured in "natural"
units of spring constant and bond length, there are no
fittable parameters. For simplicity, each phase is exam-
ined in turn. The possibility of a symmetry-enhancing
phase transition at high temperature will be treated sub-
sequently by Landau theory.

The stability of diamond with respect to P-Sn is illus-
trated in Fig. 1. Diamond becomes metastable at pres-
sure 1.48, and the transformation to P-Sn is therefore first
order, accompanied by a large volume collapse. A sim-
ilar plot for the stability of P-Sn with respect to simple
hexagonal via Imma distortion has a single minimum.

&om diamond to P-Sn to Imma to simple hexagonal
without stretching or breaking any of the bonds. The
general Imma structure is determined by four parame-
ters, three lattice constants a, b, and c and one internal
parameter u. P-Sn is a special case of this with u =

4
and a = b; diamond further requires c/a = ~2. Simple
hexagonal is also a special case with u = 0 and b/c = i/3.
By varying the angle between a and b axes it is further
possible to go to face-centered cubic, while by consider-
ing a cell doubling it is possible to form hexagonal close
packing. The simple cubic structure can also be obtained
in this topology (u = 1/2, c = a = ~2, b = 2) although
two neighbors are not connected by rods.

Modeling bonds by rigid rods may appear to be a gross
oversimplification. However, the experimental data show
that the bond length remains roughly constant as a func-
tion of pressure, when compared with the other relevant
length scale, the cube root of the atomic volume. As-

suming constant bond length moreover introduces two
constraints into the Imma-&ee parameters:

2
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~
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In conjunction with the constraints introduced by sym-
metry, the diamond structure is completely defined, the
P-Sn structure has one free parameter (c/a), Imma has
two [for example, y = (c/z) and u] and simple hexagonal
is also completely defined.

The PV equation of state for this model can thus be
written in terms of two structural parameters and a pres-
sure. The enthalpy is then given as H = E+ PV where,
solving for the angles,

„5 —Sn Diamond

P=1.6

0.5—
P=1.48

P=1.32

P=1.00

10 12 14 16 18 20 22 24 26

FIG. 1. Graph showing the dependence of enthalpy on e
for the P-Sn symmetry, at several different pressures. Dia-
mond is the special case where c = 4/~3. The enthalpy zero
is taken as the enthalpy of the diamond structure, with each
graph displaced upward by 0.2 for clarity. The vertical line at
c=1 arises from contact between the hard spheres. The phase
transition occurs at about P=1.48. The double minimum in
the graph shows that the transition is first order.
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PIC. 2. Variation of internal parameter u with pressure
at T = 0. Dashed line shows the metastable region of the
Imma/P-Sn curve. Above 1.48 two values of u (with different
b and c) are degenerate.

At zero temperature, and above the diamond transition
pressure, the P-Sn structure is unstable at alt pressures
with respect to Imma. Figure 2 shows the stable value
of u at zero temperature which is generally neither 4 nor
0, but an intermediate value which reduces to 0 (simple
hexagonal phase) at high pressure and increases to 4 at
low pressure (below 1.48), so before P-Sn becomes stable
with respect to Imma, it has become metastable with re-
spect to diamond. Diamond itself is stable with respect
to variation in u, and it is only after the barrier to the
first order transition to P-Sn has been overcome that the
distortion of u occurs.
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The simple cubic structure is unstable at all pressures
with respect to rhombohedral distortion. The stability of
the NaC1 structure in compound semiconductors can be
understood by considering ionicity, since this compound
structure gives six unlike species touching spheres, while
P-Sn gives two like species and four unlike species.

For completeness the final transition to close packed
has been examined, although considering only four out
of 12 neighbors to be bonded is such a drastic approx-
imation as to render the similarity between this system
and silicon purely fortuitous. In the close-packed regime
the energetics and symmetry depend significantly on the
choice of functional form for the spring constant —any
form which has a minimum at 180' favors a continu-
ous transition to face-centered cubic via a base-centered
monoclinic phase, while with the minimum at 116 the
hexagonal close-packed distortion always yields a lower
energy than fcc for a given vobime. The simplest coor-
dinate system in which to analyze the simple hexagonal
to hcp transition is that of the primitive hexagonal unit
cell doubled in the c direction. This forms a sandwich of
close-packed layers. As with the diamond+ P-tin transi-
tion, the path can be defined by a single parameter, the
displacement of the central plane. Defining the basis to
be atoms at (000) and (A, A, z), A = 0 represents sim-
ple hexagonal in the double-size unit cell and A = 1/3 is
hexagonal close packed. Considering the energetics, for
intermediate values of P there is a continuous variation
of A with pressure, thus we might expect to find an in-
termediate phase with doubling of the unit cell between
the simple hexagonal and the hexagonal close packed.
An intermediate phase of silicon has been reported in
this pressure region, but its structure has not yet been
solved.

Once the network is compressed to the hexagonal close-
packed phase each hard sphere is in contact with 12
others. Although bonds are still defined only to four
neighbors no further vobime reduction is possible. It
is clear that the covalent hypothesis which differentiates
four bonds f'rom the others is now invalid, but the pres-
sure term is now dominant: the model is of hard sphere
packing.

For the Imma structure, there are two possible dis-
tortions leading to the same structure (u =

4 6 z) with
a barrier in between (Fig. 2). At sufficient tempera-
ture, this barrier can be &eely overcome and the resul-
tant structure will have the P-Sn symmetry (u)
Other symmetry-breaking structures also have barriers
which can be overcome at sufFicient temperature although
the diamond-+ P-Sn barrier is very large (Fig. 1). The
melting temperature is not well defined because melting
requires bond breaking, which is explicitly not allowed.
The transition temperature between phases is defined as
the barrier height. Since we are working in dimension-
less units, this is as detailed an analysis as is possible.
The nonlinear relation between T, and barrier height thus
manifests itself in a nonlinear (but monotonic) relation-
ship between the "temperature" used here and an actual
thermal energy, as might be determined by molecular dy-
namic simulation of this system. In view of the nonquan-
titative nature of the model the exact derivation of &ee
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FIG. 3. (a) Phase diagram of the system of hard spheres
and rigid rods. Pressure is in units of spring constant per
cubic bond length and temperature is taken from the bar-
rier height (Fig. 1), units of spring constant. (b) Phase dia-
gram vrhere the choice of bonded neighbors in structures arith
greater than fourfold coordination can be varied. Pressure
and temperature are defined the same way as in (a).

energy from a double well model has not been done, but
the topology of the phase diagram, and the sign of the
slopes, which is all one could hope for in a parameter-free
model, remains correct.

It is thus possible to define the PVT phase diagram
[Fig. 3(a)] for this rigid network. As explained above,
liquid and gaseous phases are excluded. Within the re-
gion of applicability it is topologically equivalent to the
experimental diagram for silicon, in which P-Sn appears
only as a finite temperature phase, consistent with the fi-
nite temperature experiments and the zero-temperature
calculations. i For a better comparison to silicon, it is
appropriate to allow the choice of bonds in the sim-
ple hexagonal phase to vary: it is then possible to de-
fine a symmetric W-shaped potential for Irnma struc-
tures around simple hexagonal, with different choices for
the four bonds on either side of the u = 0 local max-
imum. This in turn gives a temperature dependence
to the Imma/(simple hexagonal) boundary and modi-
fies the phase diagram to that shown in Fig. 3(b). Note
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here that at finite temperature Imma is stable only at a
limited range of u values and changes discontinuously to
u = 0 at the transition to simple hexagonal.

As we have seen for the zero-temperature struc-
tures, the diamond —+ Imma is first order while the
Imma ~simple hexagonal is second order. At zero tem-
perature, the metastable P-Sn-+ Imma is also second
order (the equivalent graph to Fig. 1, of H vs u, has
a single minimum which moves from u = 1/4 to u = 0
with increasing P). Temperature eKects change this: we
assume that the P-Sn~ Imma occurs at the pressure for
which the energy maximum at u=l/4 (Fig. 2) is higher
than the available thermal energy. Since this maximum
is already present when the pressure allows the transi-
tion from diamond, the minimum u is some way &om
1/4, thus the transition from u=l/4 is first order.

The model divers &om the wide range of previously
postulated empirical silicon potentials in that it has no
&ee parameters. Relaxing the constraint of hard spheres,
introducing interactions with more than four neighbors,
etc. would allow quantitative fitting to observed data.
Several such models exist, with forms based on physi-
cal intuition, and it is interesting to note that the rigid
rods model can be obtained &om some of these with an
extremal parametrization.

For more general top ologically connected covalent
species, without additional complications such as ionic-
ity, simple rules can also be deduced: At zero pressure
we expect high symmetry since equalizing bond angles to
minimize energy is the dominant eKect. At higher pres-
sures the angles may distort to allow for smaller volumes,

leading to lower symmetry in the intermediate regime be-
tween energy-dominated and pressure-dominated (close-
packed) regions. A specific case is any transforxnation
from cubic to tetragonal which occurs by one of the
three axes breaking symmetry, leaving two axes equiv-
alent. Had the third axe.s not distorted, the energy could
have been reduced by breaking this symmetry. In the ab-
sence of a coupling between the three symmetry-breaking
modes, the tetragonal phase will thus be unstable with
respect to an orthorhombic distortion (as we have seen
here). In real systems, such a coupling will exist and its
sign will determine whether there is a region of tetrago-
nal stability. At high temperatures, the symmetry can be
increased by Landau-type transitions which allow more
of the configuration space to be sampled. Finally, we
note that even for partially ionic III-V compounds such
as InSb, the topology of the phase diagram is the same as
for the simple system described here, indicating that the
ideas presented here are of rather general application.

To summarize, we have shown that the symmetry-
breaking distortions which had remained unconsidered
and undiscovered for 30 years since the first crystallo-
graphic "solution" of the first high pressure phase, i and
for 12 years since the first electronic structure calcula-
tions on the P-tin phase, could have been anticipated by
consideration of a parameter-free model based on a sim-
ple mechanical network.
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