
PHYSICAL REVIEW 8 VOLUME 50, NUMBER 11 15 SEPTEMBER 1994-I

Inelastic plasmon and interband electron-scattering potentials for Si
from dielectric matrix calculations

T. W. Josefsson
School of Physics, University of Melbourne, Parkville, Victoria 8052, Australia

A. E. Smith
Department of Physics, Monash University, Clayton, Victoria 8168, Australia

(Received 9 March 1994)

Inelastic scattering of electrons in a crystalline environment may be represented by a complex non-
Hermitian potential. Complete generalized expressions for this inelastic-electron-scattering-potential
matrix, including virtual-inelastic scattering, are derived for outer-shell electron and plasmon exci-
tations. The relationship between these expressions and the general anisotropic dielectric-response
matrix of the solid is discussed. These generalized expressions necessarily include the oK-diagonal
terms representing effects due to departure from translational invariance in the interaction. Results
are presented for the diagonal band-structure-dependent inelastic and virtual-inelastic scattering
potentials for Si, from a calculation of the inverse dielectric matrix in the random-phase approxima-
tion. Good agreement is found with experiment as a function of incident energies from 10 eV to 100
keV. Anisotropy effects, and, hence, the interaction delocalization represented by the off-diagonal
scattering-potential terms are found to be significant below 1 keV.

I. INTRODUCTION

Inelastic scattering of electrons, such as thermal diffuse
scattering, inner-shell electron ionization, and valence
electron excitations, plays a crucial role in the dynam-
ics of quantitative electron difFraction-microscopy and
electron spectroscopy. This includes convergent beam
electron difFraction, low energy electron diffraction, and
electron spectroscopy techniques I'such as Auger elec-
tron spectroscopy, x-ray photoemission spectroscopy, and
electron energy loss spectroscopy (EELS)j. The inelastic
electrons are a sensitive measure of many types of ele-
mentary excitations in the solid. s In this work, we are
interested in the electronic excitations, interband single-
particle and collective plasmon excitations. @ These in
turn depend strongly on the electronic band structure
of the solid.

In a rigorous treatment of inelastic scattering based on
the standard dynamical difFraction equations of Bethe
one obtains, in addition to the usual Hermitian elas-
tic scattering potential, a complex non-Hermitian "cor-
rection matrix. " This correction matrix or inelastic
scattering-potential matrix, is analogous to the Fourier
components of the complex optical potential often used to
phenomenologically characterize inelastic scattering.
For electronic excitations, simplified versions of the in-
elastic scattering-potential matrix have been related in
various ways to the dielectric response of the solid.
The utility of the dielectric approach is apparent. It is, in
principle, fully capable of representing, by use of empir-
ical data or direct calculation, ' the efFects of valence-
conduction electron and plasmon excitations.

Previous work in this area at medium to high incident
energiesis i 2o (10—100 keV), has concentrated mainly

on determining the inelastic mean-inner potential (MIP),
effectively the "head" of the inelastic potential matrix.
This is due in part to the very delocalized nature of
valence-conduction electron and plasmon excitations
at these energies. For large interaction delocalization the
ofF-diagonal inelastic potential matrix terms are expected
to be small and hence the diagonal terms (representing
the MIP) to dominate. At lower incident energies ((1
keV) effects due to larger off-diagonal terms may be sig-
nificant in scattering experiments. 4 Recent advances and
developments in electron difFraction microscopy and elec-
tron spectroscopy work in the medium energy regimes,
are also sensitive to solid state bonding (band structure)
efFects. 2'2 ' Hence, it is now desirable to estimate quan-
titatively the efFect of these o6'-diagonal terms.

In Sec. II, we give a general derivation of the com-

plex inelastic and virtual-inelastic scattering potential
matrix. %e discuss some properties of these inelastic
potentials and their relationship to generalized dynamic
form factor matrices. In Sec. III, we show how the full

inelastic scattering-potential matrix may be expressed in
terms of the kequency and wave-vector-dependent dielec-
tric matrix2s 2~ of the solid. The relationship between
these expressions and other less general results ' are
also pointed out.

Various simplifications to the inelastic scattering po-
tential are considered in Sec. IV. The efFects of interac-
tion delocalization and dielectric isotropy on the inelastic
potential is discussed in some detail. Because of its sig-
nificance to electronic excitations, particular emphasis is
placed on the diagonal terms of the inelastic potential and
how they reduce to the well-known results of Pines, in
the dielectric isotropy approximation. Finally, in Sec. V
we present quantitative Grst-principles calculations of the
band-structure-dependent inelastic and virtual-inelastic
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mean-inner potential for Si. This is based on a random-
phase approximation (RPA) calculationis 2s of the di-
electric response matrix, in turn based on an empirical
pseudopotential band structure.

With the assumption that H„' « H„' p, so that only
excitations from the ground state contribute significantly
to the scattering, 2 Eq. (4) reduces to

II. THE INELASTIC SCATTERING-POTENTIAL
MATRIX

V' ()))„(r)+ k„P„(r)— H„'p(r)Pp(r) = 0, n$0.

It is instructive to briefly consider the origin of
the inelastic scattering-potential matrix, as derived by
Yoshioka. ii We consider Schrodinger's equation for the
incident electron and periodic solid, H4 = E4,

$2 Q2
H = +H. +H',

2m

where H, is the unperturbed solid Hamiltonian and H'
the interaction Hamiltonian between the incident elec-
tron and the solid. The total wave function 4 of the
system is expressed in terms of the exact "stationary"
unperturbed solid wave functions, a„such that

4(r, ri, ..., r„) = ) P„(r)a„(ri, ..., r„),

where r is the coordinate of the incident electron and
rz the coordinate of the jth electron in the solid and
H, a = E„a„. (t)p(r) represents the elastic scattered
wave (of energy E —Ep) and (t)„(r) the inelastic scat-
tering of the electron (of energy E —E„)resulting from
a corresponding excitation in the solid to the state a„.
Integrating over all electron coordinates r~ in the solid
(of volume 0) one obtains

V P (r) + k — H' (r) (t) (r)

) H(') (r)P (r) = 0, (3)
m, +0

V P (r)+ k„— H„'„(r) P„(r)

The resultant out-going (the retarded) wave solution

(t „(r),
~iA'„jr —r'

j

P„(r)=, H„' p(r') (t)p(r') dr'

substituted into Eq. (3) yields

V'(t (r)+ kz — H' (r) P (r)

+ 2 Ar, r' 0 r'dr'=0, 8

where A(r, r') is the nonlocal kernel given by

A(r, r') = ) (ap~H'(r)~a„}

~i I(:„jr—r'
j

x (a„~H'(r') ~ap)

This term incorporates all the excitations from the ini-

tial state ~ap) to the final states ~a„) in the solid and
hence represents the effect of inelastic scattering of the
electrons. Expanding the wave function of the electron in
the solid in Bloch form, (t)p(r) = g& yb expi(K+ h) r,
where K is the electron beam wave vector in the solid,
one may showii by premultiplying by (3I)p(r) in Eq. (8)
and by integrating over the crystal volume 0 that the ef-

fect of the interaction H'(r) on the elastic scattered wave

P (r) is given by

) H„' (r)4' (r) = 0 . (4)
h2

[(K+h) —k()]gal —) (Vb s+ Vi, s)ps ——0. (10)

k„, the wave vector for the scattered electron, is defined
in terms of the total energy E or the energy EP relative
to the ground state Ep of the solid (the vacuum incident
electron energy), 5 k„ /2m = E —E„=E —(E„—E ).
kp is the elastic scattered wave vector (of energy E ).
The matrix elements H„'

'7

Id„' (r) = (a (Id'(r)~a ) = f a„'H'(r)a drr, ..., dr„,

Equation (10) is the basic equation of dynamical elec-
tron diffraction theory generalized to include inelastic
scattering. Vz s are the usual local crystal poten-
tial Fourier components that result in elastic scattering.
The V& are the complex nonlocal inelastic scattering-
potential matrix components that represent and incorpo-
rate the eKects of excitations in the solid,

1 K h r K
Vi, s ——— e ' + 'A(r, r')e'~ +s~' drdr'. (ll)

is the interaction term for a transition in the solid be-
tween the states n and m. We note that H00 is just
the usual "elastic" crystal potential Hp p(r) = V(r) =-

Vs exp i(g r) and g is a reciprocal lattice vector. We
have used the standard sign convention that de6nes the
crystal potential V(r) as positive inside the crystal.

The total scattering potential may then be written in
the standard form 2 as an effective complex optical-
p«ential, "V„' = Vg + V„. The problem of in-
elastic scattering in electron dilraction is then reduced
to solving Bethe's equation with the correct inelastic
scattering-potential matrix.

To solve for the V& in a real solid, we substitute the
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Green's function relation

eik„(r—r'( e'K (
hm

4~ ~r —r'[ b~o+ (2x)s K'2 —k2 —ib
'

into A(r, r') and, generalizing the sum over the ground
state [ao) and final states [a„) by the sum over multi-
ple initial [a;) and final states [ay), we obtain [with
h2ky /2m = E —Eg = E —(Ey —E )]

dK'
~

fo(E;)[1—fo(Ey))(a;[H'(r)e' '[ay)(ay[H'(r')e 'K '
[a,).~o+ (2~)' Eo —EIc —(Ey —E;) + i~i,f

where fo(E) is the Fermi distribution. We thus obtain the inelastic potential matrix components V& as

1 . dK fo(Ea)[1 fo(Ey)]Wj (K+ h —K )Wgi(K+ g —K )
Vq

————hm0 c~o+ (2z.)s E —EJf i —(Ef —E;) + isi,f
(14)

where

~i.')~) = J (~il&'(~)"'l~ )«.
In this work, we are specifically interested in the solid state electronic excitation contribution to the scattering, and
hence the interaction term Wy; reduces (with the Hartree-Fock approximation to the electron-electron interaction
Hamiltonian) to

4xe~
Wy, (q) = (ag~e' '~a;) i

and the inelastic potential matrix becomes

1 . dK' (4m e2) 2

0 c~o+ (2m) [K+ h —K'[ [K+ g —K'[

X
.fo(E;)[1—fo(Ey)](a;[e '~ +" l'~ay)(ay[e't +z K l''[a;)

Eo —E~ —(Ey —E;) pici, f
(17)

We replace the summation over the initial ground state
and final states in Eq. (17) by a summation over the
occupied (at T = 0) valence states v and unoccupied (at
T = 0) conduction states c in the solid, and so obtain

dK' (4me2) 2

0 c~o+ (2x) [K+ h —K'i [K+ g —K'[

x " ', (18)
.M,*,(K+ h —K')M, „(K+g —K')

Eo —E~ —(E, —E„)+is
'V)C

where the matrix elements M, „(q) are given by
M, „(q) = (a, ~e*i [a„). Equation (18) is the total com-
plex inelastic scattering-potential matrix due to inelastic
electronic excitations. We may rewrite this expression as

I 1 . dK (4~e2)2
0 ~o+ (2vr)s [K+ h —K'~2[K+ g —K'[2

0 E
(1

Sb s(q, w) is a generalized non-Hermitian dynamic
form factor matrix that we define here as

—M,*„(q' + G + h) M, „(q' + G + g)
)

c,v+ &s
7

(20)

where we restrict q' (but not q) to lie in the first Brillouin
zone by translation through the reciprocal lattice vector
G such that q = q' + G. In addition, we have used the
more convenient notation Ru, „=E, —E„and tuu =
g0 g~,

It is convenient to explicitly separate Eq. (19) into two
parts: V& ——V& + iV&, using the standard relation

G 1
lim = aP —i~ah (x —b), (21)

c-+0+ z —b + xE z —b

where P denotes the principal part of the function at the
singularity x = b. The Vb represents virtual-inelastich,g
scattering ~'25 that may be interpreted as representing
the effects of the induced dynamic polarization of the
crystal. The V& represents the "real" inelastic scatter-h,g
ing. We then obtain
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1 dK' (4z.e2)2

0 (2z.) lK+ h —K'l lK+ g —K'l
Eo E,

(22)

tial matrix in Eq. (19). For a general noncentrosym-
metric structure the matrix elements are complex and
hence both Vh and Vh are in general complex. i Di-
rect substitution easily verifies that the components are
individually Hermitian Vh ——V"h and Vh ——V"h.

dK' (4vre2)2

0 (2~)' lK+ h —K'l lK+ g —K'l2

xS' K —K',
a )

(23)

where we define the Hermitian dynamic form factor ma-
trices as

.—M;„(q'+ G+h)M. „(q'+G+g)
Sh,,(q ~) =

ViC CqV

(24)

Shg(q, (u) =z ) M;, (q'+G+h)
ViC

xM. „(q'+ G+g)b(M —M. „) . (25)

For centrosymmetric crystal structures (such as for Si)
the matrix elements are real and hence the dynamic form
factor matrices, and both Vh and Vh g, ~e real quan-
tities. This entails that Vh and Vh are the real and
imaginary part, respectively, of the total inelastic poten-

III. INELASTIC SCATTERING AND THE
DIELECTRIC MATRIX

Direct calculation of the inelastic scattering potential
via Eq. (22) and Eq. (23) is computationally highly de-
manding. One may obtain a more useful expression for
Vh and Vh in terms of the dielectric response of the
solid. The dielectric response of most solids is well stud-
ied both theoretically and experimentally, allowing cal-
culation of Vh and Vh directly &om any given model
dielectric function or experimental data. 'is

Because of the periodic nature of the crystal lattice
potential, the general dielectric response of a crystalline
solid to an applied external field of &equency u and wave
vector q, is to induce rapidly oscillating microscopic or
local fields of &equency u and wave vector q+ g, where

g is a reciprocal lattice vector. This dielectric response
may be expressed in matrix form. s si In order to relate
the generalized dynamic form-factor matrix in Eq. (19)
to the dielectric response of the solid, we consider the
dielectric matrix formulation of Adlerz and Wiserzr in
the random-phase approximation,

4z ez . . fp [E„(k+ q)] —fp [E„(k))
Olq+ gllq+ hl ~o+, E„(k+q) —E„(k)+ Lu+iha

x(k+ q, n'le' +g 'lk, n)(k, nle * +" 'lk+q, n'), (26)

where the Brillouin zone summation is over all possible
transitions between the states lk, n) of energy E„(k) and
lk + q, n') of energy E„(k+ q).

Using the standard relations between the RPA and
the Hartree-Fock (HF) dielectric functions eHp ——1+4'a
and eRpA = 1 —4z'a, where a is the polarizability of the
solid, we may write [in the notation of Eq. (18)]

v —1 4xe2
q, ~ = hhg+

~lq+ gllq+ hl.M;„(q+ h)M. ..(q+ g)
flu —hu, „

t

M„',(q+ h)M„,(q+ g)
ho+ hu, ,, (28)

4vre2
(q, td = bhg+

f1lq+ gllq+ hl

.M; (q+ h)M, „(q+g)x lim
~~o+ - Ru —ibad, „+ie

VqC

M„' (q+h)M„(q+g)
Aced+ hew +is (27)

In general, this inverse dielectric matrix is both complex
and non-Hermitian. To proceed further we use the delta
function relation of Eq. (21) to deconstruct the dielectric
matrix into the sum of two complex Hermitian matrices:
eh (q, u) = eh (q, u) + ieh (q, ru), where

4me 2

olq+ gllq+ hl
V)C

xM, „(q+g)h(her —M, )

—M' (q+h)M„, ,(q+ g)b(M+ hu „) .
(29)

We then have the following relations:

1
eh, g'(q ~) = -[eh,'g(q ~) + ~, h'(q ~)]
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2

eh, g'(q ~) = —
2[eh, (q'~) eg h (q ~)] . (31)

—Ofq' + h + G [[q' + g + G
f

h, gSh q) (d
4xe~

1
x [eh+a g+a(q ~) + kg+a, h+a(q ~)
—2bg h], (32)

With b(her + Lu, „):—0 for all (d ) 0 and noting that
the second summand in Eq. (28) is small, we obtain the
general relation between the dynamic form-factor matri-
ces and the inverse dielectric matrix

(the vacuum incident electron energy). The variables ur

and q are related by energy and momentum conservation,
he@ = hg. V —h q /m, where V is the incident electron
velocity. We then obtain the final expressions for the
inelastic and virtual-inelastic scattering-potential matrix
components (for a general crystal structure), in terms of
the dielectric response as

E/h d I

Vh ——4~e du)

—1

2[q'+ h+ G~[q'+ g+ G[ "+

+ e'+a h+a(q', (d) —2bhg] x b ~ —(q'+ G) V

O[q'+ h+ Giiq'+ g+ Gi
h, gSh q, (u

4xe2
2

2 [ h+a, +a(q ) +a,h+a(q )l '

(33)

From these general noncentrosymmetric expressions we
may, by direct substitution of a Hermitian dielectric
matrix, trivially obtain the equivalent centrosymmetric
forms. We note that Sh (q, ur) in Eq. (33) is related to
the mixed dynamic form factor of Kohl and Rose. In
addition the diagonal g = h term in Eq. (33) is equiva-
lent to the dynamic form factor of Saslow and Reiter.

With the general expressions Eq. (32) and Eq. (33)
we obtain by substitution into our defining equations [Eq.
(22) and Eq. (23)] the general relation between the in-
elastic scattering-potential matrix and the inverse dielec-
tric matrix, as

dK' —1

(2~)s 2~K + h —K'~ [K + g —K'~(, Eo —E~ l
x eh+a +a ~

K —K' —G))g (, E —E~)
ah a~ K —K' —G,

~

—2bhgg+, +

(34)

dK'

(2~)' 2[K + h —K'i [K + g —K'[
Eo Ez, )

n(q'+ G)'l
+

2m

E /h

Vh
——4xe

0

d '

'-&-f..('-')

2[q'+ h+ G[(q'+ g+ G( "+

—e'+a h+a(q', (d)] x b
~

u) —(q'+ G) V

h(q' + G) ' ~
+

2m

E /h

Vh ——4~e
0

'-&-f..('i
—1

[q'+ h+ Gf/q'+ g+ G/

xRe[&h+a gqa(q &) bh, g]

xb
i

cu —(q'+ G) V+ h(q'+ G)'l
2m r

E'/a
Vh

——4xe d(d )
0 B2) 27l

fq'+ h+ G[[q'+ g+ Gf

For centrosymmetric structures this reduces to

(36)

(, E' —Esc )—~*+a h+a I

K —K' —G
g

(35)

xIm[ —e„+a +a(q', (d)] x b (d —(q'+ G)

h(q'+ G)
2m

(39)

We transform the integration over K' to an integration
over q' (restricted to the first Brillouin zone) such that
K—K' = q = q'+G where hq is the momentum transfer
to the solid in the scattering process. In addition, we
also integrate over all the related energy transfers her

to the solid Ru = E —E~ up to a maximum of E

IV. EVALUATING THE INELASTIC
SCATTERING-POTENTIAL MATRIX

Conduction electron and plasmon excitations in a solid
are well known to be highly delocalized processes
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~vhh~ )) ~vh ~, for h g g. The most significant in-
elastic scattering-potential elements for these processes
are, therefore, the diagonal Vh h and Vh h terms. Specifi-

cally the components Vo 0 and VD 0 correspond to the ze-
roth order Fourier coeKcients of the inelastic and virtual-
inelastic potential, respectively, that is the so-called in-
elastic mean-inner potential (the inelastic MIP) and the
virtual-inelastic MIP. For g = h Eq. (37) becomes

using the standard delta function transformation

h[&(*)] = „(.) (43)

where R denotes the "root" of the function, we may read-
ily integrate further over the polar or scattering angle 8
to obtain, using

r hq2 ) h[8 —G(u), q)]
2m) qVsin8

(44)

XIIIi[—eh+& h+G(q' ~)]

r g(q'+ G)~l
xh ~ —(q'+ G) V+

2m

G(~, q) = cos +
(d 54/

qV 2mV

finally giving

In an entirely delocalized system Vh -+ hhzVh, the
crystal potential is switched ofF and the inverse die. electric

matrix becomes diagonal eh (q, ~) = hh, zeh (q, ~).
We make the assumption that the ofF-diagonal t~erms of
the inverse dielectric matrix are small relative to the
diagonal terms, so that to a good approximation we

may evaluate Vh h from a diagonal inverse dielectric ma-
t

trix. The departure of the dielectric matrix from di-
agonal form is a measure of the strength of the higher
order coefficients of the crystal potential. Substituting
coo(q'+ G+ h, ur) = eh+& ++(q', v) into Eq. (40) we
obtain

'E /h q(m)
Vo~ o ——e

d~ —~™[—eo o(q, u)] . (46)
vrV q(~ ' ) &

@(8)= ~2m V' — —V
~

V'—
m ~ m y

cos 8

(47)

The ~q~ integration is over the range defined by some
minimum possible scattering angle 8; ~ 0 through to
8 = z, and the ~ limits run over all the possible energy
transfers to the solid. . ~q~

= q and u are related by the
scattering angle 8 such that

xIin[ —coo(q+h, ~)] x h
~

~ —q &+
2m&

(41)

where q(:—q'+ G) now runs over all allowed momentum
transfers Q(u). We note that local-field efFects discussed
in Sec. III are still included in the inverse dielectric ma-
trix in Eq. (41) for all q within the first Brillouin zone.
These fields have a dramatic infiuence on the calculated
[0,0] component of the dielectric response for small wave
vectors. zs'si However, they do not affect the approxima-
tion that the off-diagonal terms of the dielectric matrix
are sxnall in comparison with the diagonal terms.

Equation (41) simplifies for the h = 0 case and Vo o,
the inelastic MIP becomes

E /5 dq 1
Vo o

—4me du)

xIm[ —eo o(q, (u)] h
(
~ —q. &+

) (42)
l 2m)

If we now in addition to the diagonal approximation con-
sider the dielectric response to be isotropic, eo o(q, cu) =
zoo(~q~, u) (this approximation is supported by both
experiment s and previous calculations2s s4 for large ~q~),
Eq. (42) simplifies considerably. By transforming to
spherical polar coordinates dq = q2dqsin(8)d8dg, we
may trivially integrate over the azimuthal angle P, and

Equation (46) is the standard equation first derived
by Piness for the inelastic mean-inner potential in the
isotropic approximation (see also Ritchie and Howieis).
The above analysis may trivially be extended to include
Vo"o and an entirely analogous argument leads to the fol-
lowing expression for the isotropic virtual-inelastic MIP

E /h q(m)
Vo"o = du) —Re[—eo o(q, (u) + 1] . (48)xV q(e . ) g

We now reconsider the nonzero diagonal components
Vhh and Vhh. The term Im[—coo(q, ~)] is the so-called
loss function of the solid. The loss function [see Fig. 1(a)]
and hence the integrand of Eq. (46) is sharply peaked in
the forward scattering direction at ~q~ = 0. Analogously,
the integrand of Eq. (41) is sharply peaked at ~q+h~ = 0,
i.e., translated to q = —h. For incident electron energies
above 1 keV the momentum transfer, or q integration
in Eq. (41), ranges over an order of magnitude further
than the low h vectors and hence the shift in the loss
peak is relatively small. The result of this small shift in
conjunction with the sharply peaked loss function is that
to a good approximation, (for incident electron energies) a few hundred eV) Vh h = Vo o and from a similar
argument Vh h = Vo"0.

To solve for the off-'diagonal scattering-potential ma-
trix components Vh for h g g, we cannot in general
make use of the diagonal-isotropic dielectric-response ap-
proximation. We need to solve Eq. (36) and Eq. (37)
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numerically in their general form. This is a computation-
aly demanding calculation that is not as yet practical.
However, we can make some approximations in consider-
ing the terms Vo h, which are electively the higher order
Fourier coeKcients of the inelastic scattering potential.
For the centrosymmetric case we may write using the
approximation eo h(q' + G, ur) = e~ &+h(q', u)

&o,h =

&0",h =

2~2'

xIm[ —eo h(q, (u)] x b[8 —G((u, q)], (50)

&'l~

fq( ) (2 ) Iallq+~l

xlm[ —s;„'(q ~)] x 8
I

~ —q. V+
I

. (49)
hq2 5

l 2m)

Furthermore, transforming to spherical polar coordinates
and using the delta function relations of Eq. (44) and Eq.
(45), we obtain

4
0
()

K
0

x Re[—eo „'(q, ~) + 1] x b[e —G((u, q)] . (51)

These expressions for the inelastic and virtual-inelastic
scattering-potential matrix components, although sim-
pli6ed somewhat, are still numerically intensive calcu-
lations. For incident energies above a few hundred eV
where the momentum transfer integration extends over
very many reciprocal lattice vectors, we can say that
these o8'-diagonal elements must be very small. This can
be seen from physical arguments (the large delocaliza-
tion of the interaction potential) and &om calculations
of the inverse dielectric matrix that show only small off'-

diagonal terms. We have previously found that these
oK-diagonal dielectric matrix terms are generally two or-
ders of magnitude smaller than the diagonal terms. An
indication that Vh, for valence electron and plasmon ex-
citations is likely to be orders of magnitude smaller than
Vo 0, except at very low (( 500 eV) incident electron en-

ergies. This is further reinforced by both experiment '

and our calculations in the next section that find the
plasmon dispersion for Si to be only weakly anisotropic.

V. THE INELASTIC AND VIRTUAL
SCATTERING POTENTIAL FOR SI

eye'j
PqeQ

0

) -2

2, 0

(eU
q~enc'J

FIG. l. (a) The loss function for Si as calculated in the
(1,1,1) direction near the plasmon peak; and (b) the equiva-
lent virtual-loss function for Si.

The loss function Im[—eo o(q, ur)] may be measured

experimentally by for instance EELS. A large peak in
the loss function for Si [see Fig. 1(a) for the loss func-
tion calculated with q in the crystallographic 2vr/a(l, 1,1)
direction] for small ]q~ near fur =17 eV, is a result of res-
onant interband transitions that may be interpreted as
the plasmon excitation peak. This plasmon peak dis-

perses close to quadratically for increasing q magnitude
and at the same time decrease significantly in magnitude
(an indication of the unsustainability of high momentum
plasmons in the solid).

In Fig. 1(b), we show the equivalent "virtual-loss"
function Re[—eo o(q, ~) + 1] from Eq. (48), required to
calculate the virtual MIP. The loss functions were calcu-
lated &om Eq. (26) by inverting large (59x59) RPA di-

electric matrices. These dielectric matricies in turn were
calculated by summing over the 4 highest valence and
41 lowest conduction bands, and then many thousands
of points in the first Brillouin zone. The loss functions
are numerically fully converged and the detailed struc-
ture in these loss functions are due to the topology of the
band structure we have used.

The inelastic MIP for Si has recently been calculated
by the authorsis for q in the crystallographic (1,0,0) di-

rection, as a function of incident energies (10 eV—100
keV) and scattering angle 8. Results for both the inelas-
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tic and the virtual-inelastic scattering MIP are shown in
Fig. 2(a) (for 8; ~ 0), calculated &om Eq. (46) and
Eq. (48). The results here are for q in the (l, l, l) direc-
tion. Excellent agreement is found with the experimental
results '3 3 &om 100 keV down to an incident energy
as low as 10 eV. That the results agree with experiment
so well at very low incident energies may perhaps seem
fortuitous given the derivation of the general scattering
equations in the weak scattering approximation and the
neglect of exchange and correlation effects in the RPA. s

However, the dielectric loss function itself (&om which
the MIP is obtained) is well known to be very accurate
over the range of energy and momentum transfers re-

quired for the MIP integrations. The good agreement is
due to the fact that the calculated loss function models
the experimental loss function so well at low energies.

The dramatically difFerent behavior of the two scatter-
ing potentials is evident. The virtual MIP, very large at
low energies drops ofF markedly for increasing incident en-
ergies, and becomes small (negligible in comparison with
the constant =14 eV elastic potential) in the high energy
region. Below 1 keV virtual-inelastic scattering is quite
significant, contributing an additional several eV (10%)
to the elastic potential. The further fall in the virtual
MIP below 30 eV is due to the decreasing number of pos-
sible interband excitations that are allowed. In contrast,
the inelastic MIP increases rapidly &om 10 eV (where it
is less than 1/10 of the virtual MIP) as it approaches the
plasmon excitation threshold, to a maximum above 50
eV (three times the plasmon energy peak of 16.9 eV). It
then decreases slowly with increasing energy, in contrast
to the more rapidly decreasing virtual-inelastic MIP.

In Fig. 2(b), we compare the inelastic and virtual-
inelastic MIP's calculated by assuming dielectric isotropy
with q in the (1,0,0) direction (dashed lines) and also the
(1,1,1) direction (solid lines). It is clear that although
evidence is found for a small dielectric anisotropy (and
hence a nondiagonal inverse dielectric matrix) below 100
eV, this effect is negligible at higher incident energies.

We may conclude that accurate knowledge of the elec-
tronic structure of the solid is important for accurate
calculations of the inelastic scattering-potential matrix
below 1 keV. However, at higher incident energies only
the diagonal components need be considered. The meth-
ods employed for the inelastic MIP calculations are de-
scribed elsewhere, and an analogous method was used
here for the virtual MIP calculation. We note that great
care has been taken to avoid numerical instabilities that
arise in evaluating the inverse dielectric matrix that may
yield inaccurate results.

VI. CONCLUSION
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FIG. 2. (a) The calculated inelastic (solid line) and virtual
(broken line) mean-inner potential for Si with q along (1,1,1).
Experimental results for the inelastic MIP are as indicated.
(b) The inelastic and virtual MIP for q along (1,0,0) (solid
line) and (1,1,1) (broken line).

We have shown how the effects of inelastic and virtual-
inelastic electron scattering in a crystalline environment,
due to electronic valence-conduction electron excitations,
may be related directly to the inverse dielectric-response
matrix of the solid. The expressions for the complex
inelastic scattering-potential matrix simplify to previ-
ous well-known approximations under certain conditions,
such as dielectric isotropy or full excitation potential de-
localization.

From a calculation of the inverse dielectric matrix in
the random-phase approximation, based on accurate elec-
tronic band structure, we have calculated the diagonal el-
ements of the inelastic scattering-potential matrix for Si
as a function of incident electron energy. Excellent agree-
ment with experiment was found in our calculations.

Calculations assuming dielectric isotropy in two difFer-
ent symmetry directions in reciprocal space show that the
resulting inelastic scattering-potential matrix is highly
isotropic, and hence very near diagonal (to several orders
of magnitude) at incident energies above 1 keV. However,
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at lower incident energies the diagonal inelastic scatter-
ing matrix becomes weakly anisotropic. This breakdown
of the isotropic approximation in turn entails that the in-
elastic scattering-potential matrix becomes nondiagonal,
and the full inelastic scattering-potential Inatrix must be
calculated.

The band structure is responsible for the ofF-diagonal
elements of the inelastic scattering-potential matrix and
we have shown that these elements become significant

below 1 keV. However, for higher incident energies we

may to a very good approximation consider the inelastic
scattering of electrons due to valence-conduction electron
and plasmon excitations to be entirely delocalized, and
hence the inelastic scattering-potential matrix to be di-
agonal. We have shown that accurate electronic band
structure should be included in any calculation of the
diagonal inelastic scattering-potential matrix to yield ac-
curate results, particularly at low incident energies.
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