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We have calculated the electron energy-loss function for NiO and Ni using the random phase

approximation. Experimental results are presented for NiO, and it is shown that theory is in rather

good agreement with experiment. The local-Seld effects are shown to be small for the loss function,

although the system is very inhomogeneous, while they are large for the static dielectric function.

We demonstrate that the size of the local-Geld effects are governed by a certain Coulomb integral

io which is determined by the important transitions. These are 3d -+ 4f transitions for the loss

function, where m~y is small, and 3d ~ 3d and 4s -+ 48 for the static dielectric function, where mph' is

large. We discuss how the local-Beld effects reduce the static screening. We show that this reduction

is so eRcient for the 3d ~ 3d contribution that the 4s -+ 48 contribution plays a substantial role for

the static dielectric function, although the 4s density of states is much smaller than the 3d density

of states.

I. INTRODUCTION

NiO has attracted much interest as a widely studied
example of an insulator, where the gap is primarily due
to many-body effects. Thus it is found that in the
local density approximation (LDA) of the density func-
tional formalism, 4 the band gap is very small (at the most
a few tenths of an eV),s while the experimental gap is
large ( 4 eV). Here we calculated the dielectric func-
tion e(q, ~) and the loss function Im 1/e(q, u) for NiO
and Ni using the random-phase approximation" s (RPA)
together with the LDA band structure and compare with
experimental result for the loss function, obtained from
electron energy-loss spectroscopy (EELS) for NiO.

While it is clear that this approach leads to incorrect
results for low energies (u ( 4 eV) due to the incorrect
LDA band gap, it is interesting to see how good the de-
scription is over a larger energy range (~ & 4 eV), where
almost all the weight of Im 1/e(q, ur) is located. This
quantity is particularly interesting, since Im e (q, w) is
an important input in many-body calculations, which at-
tempt to improve on the poor band gap in the LDA, such
as the so-called GW method, i in which the lowest-
order self-energy is calculated. Below we show that a
satisfactory description of Im 1/e(q, u) is obtained for
u ) 4 eV, although the quality is not quite as good as
for Nj metal.

Another interesting aspect of NiO are the local-field
efFects. In the RPA one calculates the response of non-
interacting electrons to an effective field consisting of
the external field and the field from the induced charge.
Since the system is inhomogeneous, the induced charge
has rapid spatial variations, even when the external field
is slowly varying. In the simplest approach one aver-
ages out these rapid variations and only keeps the same
Fourier components as for the external field. We refer to

the corresponding dielectric function as eNi, p (lloillocal-
field), while the one which includes the effects of the rapid
variations (local-field efFects) is called eLF.

The importance of the local-field efFects is expected to
increase with increasing inhomogeneity of the system. It
is well known that there are substantial local-field effects
for semiconductors, such as Si.is Since NiO is substan-
tially more inhomogeneous, one may expect the effects
to be even larger. We find that the local-field effects in-
deed are large for the static dielectric function. For the
loss function, Im 1/e(q, ~) with ~ large and iqi small, we

find, however, that the effects are small.
We discuss these surprising results in detail. Since sim-

ilar results are also found for Ni metal, we focus in the
discussion on this simpler system. We consider the dom-
inant transitions, which are of 3d-3d type for the static
dielectric function and of 3d-4f type for the loss func-
tion. We show that the local-field efFects are related to
the magnitude of a Coulomb integral io for a charge den-

sity p„(r) —p, where p„(r) is the product of the two
functions involved in the most important transition and

p is the average of this product. Since the sd orbital
is very peaked, the corresponding charge density takes
large values, even after its average has been subtracted,
leading to a large Coulomb integral io ( 9 eV) and ex-
plaining the importance of the local-Geld effects for the
static dielectric function. The product of a 3d and a 4f
function, on the other hand, has a Inuch smoother be-
havior, since the 3d function is peaked in the inner part
of the atom while the 4f function is peaked further out.
As a result its amplitude has a rather modest variation
and is relatively small everywhere. The corresponding
Coulomb integral zo is very sinall ( 0.2 eV), explaining
the small local-field effects for the loss function.

In the case of the static dielectric function for Ni, we
find that the 1ocal-Ge1d effects reduce the eKciency of
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the 3d electron screening so much that the 48 and 4p
electrons also become important for the screening. To
illustrate these effects we present two simple models with
one or two important transitions, respectively.

In the RPA, we only consider the response of the elec-
trons to the Hartree potential. In addition, however, the
electrons feel changes in the exchange-correlation (XC)
potential, induced by changes in the density. These XC
efFects are also of'ten referred to as local-Geld effects, and
appear already for a homogeneous system. We refer to
these local-6eld efFects as XC local-Beld effects, while the
local-6eld effects due to the inhomogeneity of the system
we refer to as simply local-6eld effects. In this paper, we
focus on the latter, but we also give a brief discussion of
the XC local-field efFects.

In Sec. II, we present the formalism for the dielectric
function and in Sec. III, we present computational and
experimental details. In Sec. IV, we compare theory
and experiment for NiO and in Sec. V, we discuss the
local-Geld efFects in terms of two model calculations. The
XC local-6eld effects are discussed in Sec. VI and the
summary is given in Sec. VII.

proximation, where the space is filled with spheres, y~L,
has the following form:

B„(r)—:QRL(r)((t)RL (r); p = (RL, L'),

where P can be either P or P. This product basis is com-
plete for Po by construction and the response function
may be expanded in this basis as follows:

P (r, r', ~) = ) ) B~„(r)P„(q,u)B*„(r'), (6)

XRL —O'RL + O'R'L' hR'L', RL I

R'I '

PRL is a solution to the radial Schrodinger equation in-
side a sphere centered at R at an energy e„, chosen
at the center of the band of interest, and PRL is its en-

ergy derivative. PRL and PRL are only defined inside
a sphere centered at R. From Eq. (4), it is clear that

Qk„(r)Qk „(r) consists of products of the type PP, PP,
and PP, each localized in its sphere and zero outside.
We, therefore, introduce a new product basis set~ ' for
describing the polarizability

II. DIELECTRIC FUNCTION

In this section, we discuss the general formalism for
calculating the dielectric function. The irreducible po-
larizability for the frequency (d in the RPA is given by7 s

occ unocc

P'(r, r', ~) = 2) ) Qk„(r)Qk (r)Qk „(r')gk (r')
kn k'n'

1
X

~ —&k'n' + ~kn +»
1

(d + ekrn' ekn

where Qk„(r) is the wave function for a state with the
wave vector k, band index n, and energy s(kn). The
wave function is normalized to unity in the entire space
and the factor 2 comes &om summation over spin. The
Bloch states gk„(r) are expressed as

4'k (r) ) XRL(r k)bRL(kn)
RI

(2)

with

gRL (r, k) = ) e'"'
ZRL (r —R —T),

N

where N is the number of cells and R gives the positions
of the atoms inside the unit cell relative to the position T
of the unit cell. y~L, is the basis function on a given atom
centered at R with angular momentum L = lm. It is pos-
sible to have multiple orbitals with different energies for a
given L, but for simplicity we consider only one orbital
per L channel. In the linear-muflin-tin-orbital (I MTO)
method used below, and within the atomic sphere ap-

where B~„ is a Bloch sum of B„as in Eq. (3). The sum
over q is limited to the 6rst Brillouin zone and

OCC llIlocc

P' (q, ~) = —) ) bRL, (kn) bRL, (k + qn')
k

xbR, L (kn)bR L, (k+ qn')

1
X

ek++~' + ek~ + i

1

~ + &k+qn' &kn ib

with p = RL~, L2 and v = R'L3, L4. The quantity b

is de6ned as b = b or b = hb depending on the mean-

ing of B. Here the indicates that P is expressed in
the basis states Bz„. In this way we have expressed the
irreducible polarizability in terms of matrices with the
dimension M = Sn (N„(N„+I)/2+ N, N„), where n is
the number of atoms per unit cell, N„= t (& + I)
and X, are the number of valence and core states per
atom, respectively, and E „is the maximum l quantum
number used. In the actual calculations, the dimension
of this matrix is considerably reduced by neglecting prod-
uct functions containing P and contracting the basis to
optimized linear combinations of the states in Eq. (5).'

%'e now consider the screening of an external potential

V'"'(r, t) = V'"'(r, (u)e

= V'"'(q ~)e' ~' ' /v'NO

where 0 is the volume of the unit cell. The screened
potential, V"'(r, (u), satisfies the equation

V"'(r, ~) = V "'(r, ~)+ f d' ' d' "

x n(r —r') P (r', r", w) V"'(r",a),
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where v(r —r') is the unscreened Coulomb interaction.
This equation describes how the screened potential in-

duces a charge density of the type POV'", which gives
rise to an induced potential eP V"' which has to be
added to the external potential. To solve for V'", we

notice that due to the separable form ' of Pq in Eq.
(6), only integrals over B'„(r")V'"(r",(d) enter in the
second term of Eq. (9). Thus we introduce

V„'"(q, tv) = f d rrB'„(r)V"'(r, )v, (10)

together with a similar definition for V'" . We then Gnd

V„'"(q,~) = V„'"'(q, (u)

+).v~-(q) P.'i(q ~)V~-'(q ~)

where

vr„(q) = f dvrdvr'B'„(r)v(r —r')Bv„(r').

Veer (1 -PO) —1Vext

and using Eqs. (6) and (10) we obtain f'rom Eq. (9)

V"'(r tv) = V *'(r tv) + f d r'
& v(r —r')
QP&

x Bq„(r') P„„(q,u))V„'"(q, u)). (14)

To determine the dielectric function in the limit q ~ 0,
we take the Fourier transform of Eq. (14), and denote
the Fourier transforms of V'"(r, u) and V'"t(r, (d) by
V"'(q, od) and V'"t(q, u), respectively. We further write

Bq&(r) =
& f~(q)e' +) f&('q+ G)e'~ +

GQO

This kind of Coulomb integral has also been used in the
calculation of the Hartree-Fock energy. l In a traditional
treatment, the screened potential is Fourier transformed
and represented by the Fourier coefficients correspond-
ing to the wave vectors q+ G, where G is a reciprocal
lattice vector. One then finds that the Fourier coefficient
V'"(q+ G) infiuences the induced charge p(q). Here
we collect all the different Fourier coefficients in an ap-
propriate way by considering the transform in Eq. (10),
and we do not need to consider higher reciprocal lattice
vectors explicitly.

%e now treat e and P as matrices and V'" and V'"
as vectors with indices p = RL, L'. The solution of Eq.
(ll) can be written as

f„'(q)V'"'(q, (d), we obtain

V'"(q, ur) = V'"'(q, (d)

+v(q) ) f (q)P.-(q ~)f:(q)V "'(q ~)

where P = Po(1 —vPo) l and v(q) = 4vre2/q2. The
inverse dielectric function is given by

V'"(q, (u)
Vext ( )

=1+v(q)) fp(q)Pp-(q ~)f:(q)
pv

= 1+v(q)P(q, ur).

This expression contains local-Geld efFects. We now con-
sider the matrix element v„„(q) in more detail. Thus we

write

v -(q) = f;(q)v(q)f-(q) + ~ -(q) (19)

From the definition (20) it is clear that tv» is obtained

by constructing the charge density B~„(r), subtracting
the qth Fourier component and then calculating the in-
teraction of this charge density with itself. In the limit

q ~ 0, which is the interesting limit here, a constant
density is subtracted so that the resulting density inte-
grates to zero. If the charge density Bz„(r) is relatively
constant, the subtraction of the average charge leads to a
small charge density, and m» is correspondingly small,
while for a Bz„(r) with a strong spatial variation, the
subtraction of its average has a smaller effect and the
corresponding u)» is large.

If we neglect all Fourier components of the induced
charge density difFerent from the Fourier component g
of the external potential, i.e., neglect the components
G g 0 in Eq. (15), we obtain that tv„„=0. Using Eq.
(11), this leads to

eNl, F(q, ~)= 1 —v(q) ) f„(q)P„'„(q,~)f„'(q)
pv

= 1 —v(q)P (q, u)), (21)

where ENI,F is the dielectric function without local-field
corrections.

where

(q) = ) v(lq+ GI)f„'(q+ G)f„(q+ G) . (20)
GQO

where q is limited to the first Brillouin zone. Here

III. COMPUTATIONAL AND EXPERIMENTAL
METHODS

fRL,L, '(q ~ 0) 0 (i6)

Using Eq. ( 13) in Eq. (14) and the relation V„'"t(q, ur) =

We have performed calculations using a modified ver-
sion of the linear-mufBn-tin-orbital method, where we
allow for several orbitals per l and m quantum number,
where l and m are the angular and azimuthal quantum
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numbers, respectively. The introduction of several or-
bitals per / and m may be necessary if we want to describe
Im e i(q, td) over a large energy range ku & 1 hartree,
while otherwise it is suf5cient to use one orbital per 1 and
m. For energies of the order ~ & 1 hartree 4d functions
become important, while higher functions for I g 2 enter
only at substantially larger energies. To reduce the size
of the matrices describing the dielectric function we have
introduced basis states, which are linear combinations
of the states B„(r)in Eq. (5). These linear combinations
are optimized so that for a given number of such linear
combination, the space of all functions B„(r) is spanned
as completely as possible.

To simplify the integrations over the Brillouin zone in
expressions of the type (7), we calculate the imaginary
part and then obtain the real part kom the Kramer-
Kronig formula. The h functions appearing in the imag-
inary part are replaced by

—('i ')
o'

(22)

where cr = 0.05 hartree has been used. Due to this
smoothening of the b function, the density of states ob-
tained for Ni is smaller than is normally given, since the
density of states varies very rapidly at the Fermi energy.
For the qualitative discussion this is, however, not impor-
tant. We observe, however, that the peak height in the
loss function is rather sensitive to whether a Gaussian or
Lorentzian is used to approximate the h function.

In the calculations we introduce spheres around each
atom, in such a way that the volumes of these atomic
spheres add up to the volume of the unit cell (volume
conservation). These spheres, therefore, overlap some-

what. In NiO we have introduced additional interstitial
spheres, which are located between the atoms. The vol-

ume conservation then requires smaller spheres and the
overlap between the spheres is reduced. There are two

empty spheres per unit cell (with one NiO unit per unit
cell), located at (1,1,1)a/4 and (—1,—1,—1)a/4, where a
is the lattice constant. For Ni metal, we have in a similar

way introduced one empty sphere per unit cell, located
at (l, l, l)a/2. The functions PRL, (r) and their energy

derivatives PRL, (r) in Eq. (4) are defined inside such a
sphere and put equal to zero outside.

To simplify the calculations for NiO we have considered
a paramagnetic system instead of an antiferromagnetic
system, which leads to a reduction of the unit cell from
four atoms to two atoms per unit cell. This changes
the results over a small energy scale only. In separate
publications, we discuss the approximations and the tests
we have performed in detail.

Experimentally, the loss function of NiO has been de-
termined with EEI S in transmission using a 170 keV
spectrometer described elsewhere. The energy and mo-
mentum resolutions were set to 150 meV and 0.05 A

respectively. Thin films of about 1000-A thickness were
cut from a NiO single crystal by an ultramicrotome with
a diamond knife. Subsequently, the Elms were Boated on
electron-microscope grids and transferred into the spec-
trometer. Prior to the investigation of the loss function,

the samples were characterized by measuring the elastic
electron diHraction spectrum. To obtain the loss func-
tion, the raw data have been corrected for the contri-
bution of the elastic line and multiple losses after the
measurements. The EELS studies were performed with
a momentum transfer of 0.5 A. i, in order to compare
them to the theoretical results.

IV. RESULTS

0.00
0 20 30

ii&(e Y)

&0 50

FIG. 1. The loss function Im c (q, m) for NiO for

q = (0.25, 0.00, 0.00)2vr/a. The full curve shows results ob-
tained arith one orbital per l and m quantum number and the
dashed curve shows results when the Ni 4d orbital is included.

In Fig. 1, we show Im e&F(q, u) for NiO, calculated
according to Eq. (18), i.e., including local-field ef-
fects. We have considered a small value of ~q~ [q
(0.25, 0.00, 0.00)2z/aj, where a = 7.899 ao is the lattice
parameter. The dashed curve shows results using one or-
bital per t and m quantum number, while the full curve
was obtained using both Sd and 4d orbitals. We can see
that for he@ & 20 eV, it is suScient to use one orbital per
t and m quantum number.

In Fig. 2, we compare calculations with (full line) and
without (dashed line) local-field effects with experimen-
tal results. First of all we observe that there is an overall
satisfactory agreement between theory and experiment.
The main structure is the plasmon peak at about 24 eV,
which is fairly well reproduced in terms of energy and
weight, although the theoretical peak is too narrow. Also
for other energies the intensity is rather well reproduced.
For energies below about 4 eV there is no intensity ac-
cording to experiment, while LDA gives intensity in this
energy range, due to the incorrect band gap in the LDA.
The theoretical intensity in this region is, however, very
small. The theoretical curve also exaggerates some of
the structures in the experimental results. For instance,
there is a peak at about 9 eV in the calculation but only
a shoulder experimentally. Also at 35—40 eV the calcula-
tion shows too much structure. Also earlier calculations,
neglecting local-6eld efFects, have found that the theoret-
ical results are more structured and have narrower peaks
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FIG. 2. Theoretical and experimental results for the loss
function Im e '(q, ~) for NiO. The (smooth) full and dashed
curves show theoretical results with and without local-field ef-
fects, respectively, for q = (0.25, 0.00, 0.00)2s/a = 0.37 A.

The experimental results were measured at the momentum
transfer of ~q~

= 0.5 A. . Since the absolute magnitude of
the experimental results is not known, they have been normal-
ized to the theoretical curves. The Ni 4d orbital is included
in the calculations.
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rections for Ni, which is simpler than NiO in the sense
that Ni has only one atom per unit cell.

V. LOCAL-FIELD EFFECTS

FIG. 3. The loss function Im e (q, u) for Ni for

q = (0.25, 0.00, 0.00)2s/a. The full curve and empty circles
show results with and without local-field effects, respectively,
and the dotted curve shows experimental results (Ref. 23).
The ¹i4d orbital is included in the calculations.

than the experimental results. A reason may be the
lifetime broadening effects not included in the RPA.
Nevertheless, the calculated results appear to be suS-
ciently accurate to provide a basis for the interpretation
of the experimental results and as an input for many-
body calculations.

We notice that the difference between the results with
and without local-field effects is rather small. This is
surprising, since NiO is a very inhomogeneous system,
and one would expect the local-field effects to be large.
Indeed, we find that for the static dielectric function,
e(q, ur = 0) there is a large difFerence. Thus we find that
for q = (0.25, 0.00, 0.00)2m/a the dielectric function is 42
without and 20 with local-field efFects, i.e., the difference
is a factor of 2. This large difference in the importance
of the local-Beld effects for the static dielectric function
and the loss function will be discussed in detail in Sec.
V.

Qualitatively similar results have been obtained for Ni
metal. In Fig. 3, we show results using the present for-
malism for Ni with (full line) and without (empty circles)
local-field effects. As for NiO we can see that the differ-
ences between the two calculations are small. There are
also appreciable similarities with the results for NiO. For
instance, the plasmon peak is at about the same energy
and has a comparable weight. A further similarity with
NiO is that for the static dielectric function there is a
large difference between the calculations with and with-
out local-field corrections. For q = (0.25, 0.00, 0.00)2'/a,
we find that the static dielectric function is 23 and 68
with and without local-field corrections, respectively.

Because of the substantial similarities between NiO
and Ni, we discuss below the efFects of local-field cor-

In this section, we discuss in detail for Ni metal why the
local-field effects are important for the static dielectric
function but not for the loss function.

A. Static dielectric function

We consider the static case (u = 0) for small values
of g. In this limit the intraband transitions give the
dominating contribution to P . The number of possi-
ble transitions goes to zero with ~q~, but the correspond-
ing energy denominator also goes to zero, leading to a
Bnite result, where P is determined by the partial den-
sities of states. Because of the large 3d density of states,
the 3d-3d transitions, therefore, play a dominating role
for the dielectric function without local-field corrections.
We have calculated the dielectric function by only includ-
ing states B~„ in Eq. (5) where p stands for a product
of two 3d functions, using the band structure calculated
with the full basis set. We then obtain eNgp ——118,
in qualitative agreement with the full calculation, which
gives ~Nj.p ——68. The smaller value in the full calcula-
tion is due to a partial cancellation by the ofF-diagonal
terms in Eq. (6). With local-field corrections included,
we obtain eLF ——10 with only products of 3d functions,
while the full calculation gives egF ——23. To improve the
agreement, we also have to include a product of extended
functions. For instance, using a product of two 4s func-
tions in addition to the product of two 3d functions, we
obtain eNLp ——72 and ez,p ——19, in good agreement with
the full calculation (eNi, p = 68 and eLp = 23). To ob-
tain a better understanding of these results, we consider
a two-band model below where only one product of 4s
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functions and one product of 3d functions are included,
as well as a model with only one product of 3d functions.

For simplicity, we first consider a model with just one
product basis state Bz„(r) This may refer to a product
of two 3d functions in the case of the static dielectric
function, or to the product of a 3d and a 4f function for
the loss function, as discussed below. Prom Eq. (18) it
follows that the dielectric function is

u(~) ll(q) I'P'(q ~)
1 —m(q)Po(q, ~)

(23)

if local-field eH'ects are included and

e»F(q ~) = 1 —~(q)lf(q)l'P'(q ~) (24)

if local-field effects are neglected. We can see that the
local-field efFects are important if m(q) lP (q, ~) l

is of the
order one or larger. In Fig. 4 we show the product of
two 3d radial functions. It is immediately clear that this
product is very peaked for r 0.3ao ~ Even if we sub-
tract the average of this charge density, the charge den-

sity remains very large at r 0.3ao. The corresponding
Coulomb integral, meed

——9 eV, is then also large. Fol-
lowing the considerations in the Appendix, we replace P
by the sum P Po —1.4 eV in our one-band
model. It is immediately clear that local-field efFects are
very important, since 1 —m P 1 + 9 x 1.4 14. We
can, however, see that the model is a bit too simple, since
it overestimates the local-field effects, which in the full

calculation "only" decrease the static dielectric function

by a factor of 3. In our simple one-band model with only
one 3d function, we obtain eLF ——10 and ~NLF ——118.
Below, we discuss a model which also includes the 48
electrons and which describes the local-field efFects more
accurately.

It is at this point interesting to discuss qualitatively
why the dielectric function with local-field corrections is
smaller than the one without these corrections. For sim-

plicity, we consider q ~ 0 and we assume that f„(q) = 1.
This is possible since f„(q ~ 0) = I/~O, if p corre-

sponds to equal functions. For simplicity we then put
0 = 1 in the formulas below. Let us apply an exter-
nal potential V'"te'+' within the one-band model we
have just discussed. In the g ~ 0 limit we then have
P (q, 0) = —D(0), where D(0) is the 3d density of states.
Including local-field eKects, we can then write

V'"(q, 0) = V'"'(q, 0) —[v(q) + m(q)]D(0)V'"(q, 0).

(25)

We recall that according to the definition (10), the tilde
over V'" means that V'" is not the qth Fourier trans-
form of V'"(r, 0) but that it is the expectation value
of V"'(r, 0) taken between a Bloch sum of the localized
functions. To see the origin of Eq. (25), we note that the
potential V"' leads to the induced charge density [see

Eq. (14)] —B(r)D(0)V'"(q, 0). Calculating the corre-
sponding induced potential and taking the expectation
value for the localized function Bloch sum leads to Eq.
(25), if we use the result (19) for v(q). Thus V'" is the
sum of the external potential and the induced potential
i.e. , the potential from the induced charge acting back on
the localized level. The potential acting back on the level
has one part, u(q), which is the q ~ 0 Fourier component
and one part, to(q), which contains the local-field correc-
tions due to all the higher Fourier components induced
by the inhomogeniety of the system. These potentials
are schematically shown in Fig. 5. If we neglect the
local-field effects, the magnitude of the induced poten-
tial is reduced for a given induced charge, since tu(q) is

always positive [see Eq. (20)]. The reason is that when
the local-field effects are neglected, only the q —i 0 com-
ponent is considered, which corresponds to smearing out
the induced charge over the unit cell. In reality, the in-

duced charge is built up by the localized level, and its
interaction with this level is therefore stronger than if
the charge had been smeared out. The relative effect is,
however, moderate, since m(q) approaches a constant as

q ~ 0, while the term v(q) diverges. Nevertheless, the
local-field effects on the dielectric function can be large,
even for q ~ 0, as shown below.

We can easily solve for V'" from Eq. (25) and obtain

V8Xt V8Xt

V ind

V
$Gf

+8xt
~~,"gq) D(0)v"', v"' =

Ji

= -u(q) D(o) V

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 4. The square t)iz(r) of the radial 3d function

[ft dr/&(r) = 1] as a function of r (full line). The dotted
line shows the product Pz(r)Pr(r)

FIG. 5. The induced (V'" ) and screened (V'") potentials
acting on the localized level and the corresponding Fourier
components, V'" and V"' for the case when f(q) = 1. The
local-Beld effects are determined by tu(q) D(O) =

l

V'"
and the dielectric function is given by e = V'"'/V"'.
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1+[ (q)+ (q)]D(o)
(26)

To obtain the dielectric function, we now have to ask for
the q m 0 Fourier component of the induced potential
[second term on the right-hand side of Eq. (14)]

V'"'(q, 0) = —(q)D(0)V-'(q, 0)

() () V' ( 0) (27)
1 + [v(q) + ur(q)]D(0)

We remind the reader that V'"i(q, 0) = V' (q, 0), be-
cause we assume f„=1. Since we ask for the qth Fourier
component of the potential, the quantity m(q) does not
enter in the m~merator, which is crucial for the result.
As q -+ 0, the divergence of v(q) leads to V' d —V'"t
(to leading order in 1/q2) and there is an efficient cancel-
lation between the external and induced potential, im-
plying that V"' is small and the dielectric function is
large. The cancellation is, however, not perfect, and
the degree of cancellation can depend crucially on the
local-field efFects. In the example we have considered
[q = (0.25, 0, 0)2m/a] we find, for instance, that the in-
duced potential is —0.992V'" and —0.900V'" without
and with local-field efFects, respectively. Although the
difFerence in the induced potential is only 10%%uo for this
value of q, the difFerence in cancellation, and in the di-
electric function, is an order of magnitude. To see this
formally, we write

Vext
(rq, 0

Vena + Vext

1+ [v(q) + ~(q)]D(0)
1+m(q)D(0)

(28)

In the q -+ 0 limit, we can now neglect m(q) in the nu-
merator, but the factor 1+m(q)D(0) in the denominator
remains finite in this limit, and it may be important. We
exnphasize again that this effect results from the fact that
vi(q) enters in the calculation of the potential V' d felt by
the localized level but not in V'n~ entering in the dielec-
tric function. This is illustrated in Fig. 5. If we neglected
the term vi(q)D(0), there would be a small relative de-

crease in
~

V' d~ and a large relative increase in V'". This
would lead to a self-consistent readjustment, so that there
were a small relative increase in the induced charge, until
the value of V'" were almost restored. Since V'" = V'"
when the local-field effects are neglected, the neglect of
local-field effects then implies a large decrease of V'",
which would become similar to V"' in Fig. 5, and a
large increase of the dielectric function e = V'" /V'".

Since our one-band model does not give a very accu-
rate description of the dielectric function with local-field
corrections, we have also considered a two-band model.
In this model we let the product functions Bz& in Eq.
(5) stand for a product of two 3d functions and of two
4s functions. This leads to matrices of the dimension
2 x 2 and the matrix multiplications and inversions in
Eq. (18) can be performed analytically. For simplicity,
we consider q ~ 0 and we assume that f„(q) = 1 as
above. Then we obtain to leading order in 1/q2

rp(q& ) (q)( ss sd Pds Pdd + (vasss + ~sd + voids + vidd)(PssPdd PsdPds))

x(1 —vissP» —visdPds —vidsPsd —mddPdd + (P„Pdd —PsdPds)(wssvidd visdvids)) (29)

where we have dropped the arguxnents q and u = 0 of P . Typical numbers are m„= 0.1 eV, m, d ——md, ——0.5 eV,
vidd ——9 eV, P,, = —0.2 eV, P,d

——P,d ——0.3 eV, and Pdd ———1.4 eV . As above we have summed over the m
quantum numbers for the Ps involving 3d functions, e.g. , P,d

——g Po, . We can see that vidd is much larger than
the other Coulomb matrix elements. As before, we use q = (0.25, 0, 0)2m/a, which leads to v(q)/0 = 83 eV. Inserting
these numbers, we obtain eLp = 16 and eNLp = 84, in qualitative agreement with the full calculation (ei,p = 23 and
eNLp = 68). If we set m„= m, d = vied, = 0 we obtain

d Pd Pdd + ~dd( dd dPd )egF = v(q)
1 —urddPdOd

(30)

This leads to egF ——17, and the approximation of putting
ass ——lsd ——voids = 0 is apparently a good one. Finally
we make the approximation that mdd~Pdd~ && 1. To lead-
ing order in 1/q2 we obtain

PO
ez,p = [1 —v(q)P, ,]+ 1 —v(q)

1 —Qldd Pdd

—Pee ed Pde ~ddPed de+v q
1 —tUdd Pdd

The first bracket is the dielectric function e, due to
48 —+ 48 transitions and it takes the value 18. The sec-

ond bracket is the dielectric function ed due to 3d -+ 3d
transitions with the value 10. The third term contains
some cross terms with the value —8. Since we have put
m„= 0 we do not need to consider local-field corrections
for e, . From the results in Eq. (31) we can see that e,
and cd give comparable contributions. This may at first
seexn surprising, since we expect that the 3d electrons
doxninate the screening, due to the large 3d density of
state. The denominator in the second bracket, describ-
ing the local-field effects for the 3d electrons, is, however,
large (=14) and leads to a large reduction of the 3d ~ 3d
contribution, which becoxnes somewhat smaller than the
48 —+ 48 contribution. This is completely different &om
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the case when local-field corrections are neglected. In
that case the contribution &om the 3d electrons alone is
about seven times larger than the contribution from the
48 electrons alone. Finally, we notice that we obtain sim-
ilar results if the product of two 48 functions is replaced
by the product of two 4p functions. The important as-
pect is that both products provide an extended function,
which is needed to describe the screening properties.

B. Loss function

We next consider the loss function in the limit when
~ is finite and q -+ 0. For the imaginary part of the
polarizability, there are then no contributions from the
intraband transitions, since the energies of these transi-
tions go to zero for q ~ 0. Let us consider the Fourier
transformation of P (r, r ),

P (q, q, ur) = d rd r'e '~ 1' '1P '(r, r', ur), (32)

2vre p
(udurlme(q, q, u)) =

0 m
(33)

where p is the density of electrons. We first consider
the contributions &om the intraband transitions. For
energies much larger than the intraband transitions we

have

OO

Re& "'
(q, q, u) = 1—

X(d

xime " '
(q, q, u'). (34)

Since the q ~ 0 intraband transitions take place just
across the Fermi energy, it follows that

(u'du)'Ime'"" (q, q, (u') - ) d k~vi, „~
0 n Fs

where vi, = bs(kn)/bk is the electron velocity of the
state kn, u„ is the plasma frequency, and the integral is
performed over the Fermi surface. For the 3d states, the

which involves integrals jd rQi*,„(r)e'~'Qi, ~„.Fo»n-
terband transitions n g n' and q ~ 0, we expand e'~'
as I + iq r + . . From the orthogonality of the wave

functions, it follows that there is no contribution &om
the first term. The dominating contribution then comes
&om the dipole transitions induced by iq r + . . This
term efFectively couples the occupied 3d functions to the
unoccupied 4f functions, and the 3d -+ 4f transitions
should dominate the imaginary part of P over the en-

ergy range of interest.
For the real part of P the situation is somewhat

more complex. Let us consider the dielectric function

e(q, q, ur) = I —v(q)Po(q, q, ur) which fulfills the sum
rule'4

effective mass is large and the electron velocity is small.
Therefore, the contribution from the intraband transi-
tions to the sum rule Eq. (33) is small. For instance, by
integrating to ~ = 4.3 eV, which includes the intraband
and some of the interband transitions, only contributes
about one electron per unit cell to the sum rule. Thus
the 3d —+ 3d intraband transitions play a rather small
role for somewhat larger energies () 5 eV) for the real
part of the dielectric function. The remaining contribu-
tion must then come from interband transitions, which to
a large extent are 3d -+ 4f transitions. Furthermore, the
real part of the dielectric function is rather small com-
pared with the imaginary part for these energies () 5
eV). Since the imaginary part is dominated by the in-
terband transitions, we focus on the 3d ~ 4f transitions
below. While such a model is much too simple to describe
the quantitative features of the loss function, it contains
the qualitative features and in particular it explains why
local-field effects are not very important.

We first consider the Coulomb integral tugy correspond-
ing to the product function of 3d and 4f states. Since
the 3d and 4f functions are orthogonal, the qth Fourier
transform goes to zero for q -+ 0. In this limit there is,
therefore, no constant charge density to be subtracted
away &om the product. The product is, however, al-

ready rather small, as is illustrated in Fig. 4 by the
dotted curve. Averaging over the 35 products of 3d and
4f functions, we find that the corresponding Coulomb
integral is mgf —0.2 eV. The smallness of this Coulomb
integral is primarily due to the smallness of product of
the radial orbitals Psg(r)$4y(r), which follows from the
fact that $4y(r) is small where PM(r) is large and vice
versa. This is in contrast to mph where by definition
the two functions involved are large in the same parts of
space.

We now apply the one-band model in Eqs. (23) and

(24) to the 3d ~ 4f transition. Following the consid-
erations in the Appendix, we add the diagonal matrix
elements P„„ for the 35 product functions. The result
depends strongly on the cu and it increases with u. For
energies smaller than about 20 eV, the result is small and
in the range 30—40 eV it is of the order 4 eV . Prom
Eq. (23) we then estimate that the local-field effects may
change the loss function by a factor 1+0.2 x 4 = 1.8 in
the range 30—40 eV. While this change is larger than the
actually calculated one it is in qualitative agreement with
the full calculations. In particular, we can see that the
large difference between mph' ——9 eV and mph'

——0.2 eV, is
essential for understanding the large difr'erence between
the effects of the local-field correctiolis for the static di-
electric function and the loss function.

Finally, we notice that there are large local-field effects
in the region 60 to 80 eV. In this range there are tran-
sitions from the 3p core level to, in particular, 3d states.
Since both the 3p and 3d levels are well localized, we may
expect the corresponding integral iv~g(q) to be relatively
large. The joint density of states should also be large,
due to the sharpness of the 3p level and the narrowness
of the 3d density of states. From this one would expect
large local-field effects from the 3p core transitions, as is
also observed.
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VI. XC LOCAL-FIELD EFFECTS

Introducing the quantity

i.*:(e)= f~'r&;, (r)
*' ~"(')pr (37)

we obtain the generalization of Eq. (18)

e&F(q, (d) = 1+ i)(q) ) f„(q)(P [1 —(8+ I"')P ] }„„
xy„'(q). (38)

The local-6eld effects due to the exchange-correlation ef-
fects are then determined by P" and the local-field effects
due to the inhomogeneity are determined by m, as before.

It is then interesting to ask for the relative importance
of the two types of local-field effects. For diamond it has
been found that the two effects are of similar magnitude
but of opposite sign, 2s and it has been argued that for
this type of system there may be a substantial cancel-
lation between the two types of effects. Here we want
to address if there may also be such a cancellation for
systems with localized levels, like Ni and NiO.

We assume that the localized 3d orbital can be de-
scribed by a Slater orbital

P(r) = Ar e '~", (39)

where A is a normalization constant. Using this orbital
we calculate I3d3d 3d3d and m3d3d Sdsd, and compare their
magnitude. If we only include the contribution &om the
N3d occupied 3d orbitals, the spherical average of the
density is given by

In the previous sections, we have focused on the local-

Seld effects due to the inhomogeniety of the system. Here

we discuss the XC local-field effects due to exchange-

correlation effects. Thus we consider the effective po-
tential V' in the density functional formalism, 4 which

has an exchange-correlation contribution v„„in addition
to the Hartree potential discussed above. We here have

the local density approximation for i)„, in mind, and in

the explicit calculations we, for simplicity, only consider

the exchange part, since it is much larger than the cor-

relation part. Equation (9) is then generalized as

V (r, tr) = V * (r, tr) i f~r; f d r"r(r r')—
xPo(r', r", (u)V' (r", (d)

d r"P (r, r",~)V' (r", (d). (36)
6p(r)

In Eq. (41) the total density enters, and the value of
6e /6p and thereby also I"' would be further reduced if
we considered the core electrons. The integral should be
performed over the Wigner-Seitz sphere, but since the
Slater orbital has little weight outside the Wigner-Seitz
sphere for values of A appropriate for the late 3d elements,
we have extended the integral to infinity. We then find

XC 1
I3d3d 3d3d

———0.079, Ry.
3d

(43)

In the same approximation we 6nd

0.516 12
~3d3d, 3dsd =

~
+

5~ws
4 f3 7A' )

Rws )
(44)

where Rws is the Wigner-Seitz radius. Here the first
term comes from the Coulomb integral of gP(r) and the
second and third. terms are due to the correction from
subtracting the average charge &om P (r). To reproduce
the value of the Coulomb integral of the true 3d orbital,
we have to put A = 0.266. Using R~s ——2.6 ao, we then
obtain m = 1.94+ 0.92 —2.20 = 0.66 Ry and P" = 0.07
Ry.

For the Ni 3d orbitals, we, therefore, find that the
local-field effects due to the inhomogeneities are about
an order of magnitude larger than the XC local-Beld ef-
fects In th. e limit when A/Rws « 1, we can see from
Eqs. (43) and (44) that both ii) and I"' scale as 1/A,
and the relative importance of the two types of local-
field effects is independent of the extent A of the orbital.
This follows because the last two terms in Eq. (44) then
can be neglected. Already for the Ni 3d orbital, these
terms are, however, not negligible, and as A/Rws grows
larger, these terms become important. For instance, for
A = 0.4 we find that u) = 0.15 Ry and P" = 0.04 Ry,
and the XC local-field effects are not negligible any more.
We conclude that for diamond the XC local-field effects
are more important both because the 28 and 2p orbitals
are more extended (A larger) and because the number of
electrons Nsg is smaller. Thus it is not surprising that
the two types of local-Beld effects were found to be of
comparable magnitude for diamond.

VII. SUMMARY

geneous system. We then have

3 4 65~ 3 2
Ps'usa, sass = d "& (") d rP (r)E: . (42)

bp 9m3d

p(~) = &.~4"(~). (40)

bv 4~
$p 9 p

(41)

where e is the exchange energy per electron of a homo-

We only consider the exchange potential v~ p /, for
which we have that

We have presented theoretical results for the dielectric
function within RPA for NiO and Ni and experimental
results for the loss function for NiO. Comparison between
theory and experiment shows that theory reproduces the
loss function of NiO fairly well. We have discussed the
local-6eld effects extensively and shown that these are
important for the static dielectric function but not very
important for the loss function. We 6nd that the im-
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portance of the local-Geld effects is related to the magni-
tude of the Coulomb interaction va for a charge density
obtained from a product between the wave functions in-
volved in the most important transitions minus the aver-
age of this product density. We have shown that the loss
function is primarily related to 3d ~ 4f transitions while
the static dielectric function is mainly determined by the
3d ~ 3d intraband transitions. Since m~y 0.2 eV is
much smaller than todd 9 eV, we can understand the
difFerence between the importance of local-field efFects
for the loss function and the static dielectric function.
We have further illustrated why the local-field effects re-
duce the static dielectric function. We found that this
reduction is so efficicient for 3d ~ 3d contribution that
the 4s ~ 4s contribution becomes important for Ni, al-
though the 4s density of states is much smaller than the
3d density of states.

a nondegenerate orbital. To simplify the notation, we
consider the case with a threefold degenerate p orbital.
The generalization to any other degeneracy is straight-
forward. We Grst form the six product functions B,&&,
where the atomic index i only takes one value and L and
I' can each take three values with the restriction I & I'.
The product functions are labeled so that the first three
ones correspond to L = L' and the following three corre-
spond to L & L' Pr.om the normalization, it then follows
that the first three product functions integrate to 1/0,
where 0 is the volume of the imit cell and the following
three to zero. For simplicity we put 0 = 1 and write

1 for p&3
0 f- „&3. (Al)

For the Coulomb integrals we then make the assumption
that

vp for pv (3
0 for y, or v & 3, (A2)
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APPENDIX

In this appendix, we discuss how a model with a de-
generate orbital can be approximated by a model with

I

since the dominating interaction is a monopole interac-
tion for both y, & 3 and v & 3, and a multipole inter-
action for y, ) 3 or v & 3. We also assume that the
polarizability matrix is diagonal

pod~~ fol' p & 3
( )2ppb~~ fol' p ) 3,

since the nondiagonal elements are found to be much
smaller, as one would expect from Eq. (7). Correspond-
ing to the basis function I & L' there is also a second
contribution to P from L ) L', which is included by us-

ing the factor 2 in Eq. (A3) for p & 3. We then perform
the matrix operations in Eq. (18) and find

(1 — P) i=
1 —3vppp

( 1 —2vppp

vopo
vopo

0
0

vopo
1 —2vppp

vopo
0
0
0

vopo 0
vppp 0

1 —2vppo 0
0
0 0
0 0

0 0
0 0
0 0
0 0
1 0
0 1

Calculating P (1—vPP) i and performing the suin over

p and v in Eq. (18), we obtain

This equation shows that within this model we can re-
place the threefold degenerate orbital by a nondegenerate

I

orbital, if we replace the polarizability by the sum of the
polarizability over the three components L = I'. The
same immediately follows for more general cases. %e ob-
serve, however, that the result is rather sensitive to the
assumption (A2) of all v„„being equal (for p and v cor-
responding to L = L'), and that we should only expect a
qualitative agreement with the full calculation when the
assumptions (A2) and (A3) are not fulfilled.
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