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Temperature dependence of the Hartree-Fock approximation
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The Hartree-Pock exchange energy of the electron gas is calculated at nonzero temperatures. The
calculation is done self-consistently in that the Hartree-Fock self-energy is included self-consistently
in the Fermi-Dirac occupation numbers. %e also calculate the first and second derivatives of the
Hartree-Fock exchange energy vrith respect to density, which are useful for density-functional cal-
culations at nonzero temperatures.

I. INTRODUCTION

The homogeneous electron gas~ is the standard model
in which to investigate electron-electron interactions.
The positive charges are spread uniformly throughout
the sample and the difficult problems are due to electron-
electron interactions. The lowest level of approximation
is to include only electron exchange, which is called the
Hartree-Fock approximation (HFA). In the approxima-
tion, the Hartree-Fock exchange energy is given by

where v~ = 4zez/q in three dimensions and v is the
volume. At zero temperature, the Fermi-Dirac occupa-
tion functions are np ——e(kp —p), a step function at the
Fermi wave vector kp. Here we wish to consider the eval-
uation of the Hartree-Fock exchange energy at nonzero
temperatures.

Most previous evaluationsz ~ of this expression at
nonzero temperatures have just used the noninteract-
ing occupation function (n = 1j(exp[P(e~ —p)] + 1)),
where ts is the chemical potential, e~ = hzpz /2m, and

P = 1/kttT This proce. dure is the correct result in

the first order of perturbation theory. Here we wish to
include more terms in perturbation theory. As a way
to include higher-order terms effectively, Lidiard sug-
gested a good variational form of the Fermi-Dirac func-
tion, where P was considered to be a variational param
eter, which was followed by Umeda and Tomishima. ~

Since exchange efFects change the particle energy and
the occupation number corresponding to it, we do the cal-
culation self-consistently by including the Hartree-Fock
self-energy Z (p) in the argnment of the occupation xu|m-
bers. In order to count correctly, the higher-order dia-
grams, we must include the self-energy while performing

a coupling constant integral. Much earlier work by
Wohlfarth, M Lidiard, ~r and Cowan and Ashkin~s also in-
cluded the self-energy self-consistently. The approach by
Lidiard was analytical, and limited to various cases of
very high and very low temperatures. We use the com-
puter to evaluate these expressions for a full range of
temperatures.

There are two different applications of self-energies at
nonzero temperatures. One is astrophysical, where one
models stars and other galactic phenomena. The sec-
ond is in condensed matter physics. Many calculations
are done using the local density approximation (LDA) of
Hohenberg, Kohn, and Sham. 9 For a recent review, see
Mahan and Subbaswamy. 2o The Hartree-Fock exchange
energy plays an important role in LDA calculations. The
LDA formalism for nonzero temperatures was formally
set up by Mermin. z~ There is some interest in doing LDA
at nonzero temperatures, in which case one needs the
Hartree-Fock exchange energy at nonzero temperatures.
This latter application is of interest here. We also calcu-
late the 6rst and second derivatives of the Hartree-Fock
exchange energy with respect to density.

Here we generalize the previous work by Gupta and
Rajagopals (to be referred to as GR) who proposed the
exchange-only scheme, where they used the exchange en-

ergy E (n, T) with the noninteracting occupation func-
tion n& as in many previous works. This E (n, T) was
the same as Eg/v But in our .calculations we include
the Hartree-Fock self-energy Z (p) in the argument of
the occupation numbers while doing a coupling-constant
integration. The correct Fermi-Dirac function, which we

call F(p), contains the exchange self-energy Z (p) in its
argument:

1
ePE(P) + 1 '

where E(p) = e& + Z (p) —p is the particle energy.
The aim of this paper is to give a full seM-consistency to
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the previous formalism by GR by expressing the Hartree-
Fock exchange energy E (n, T) as a integral over the
coupling constant, with the correct Fermi-Dirac function

E(k) including the self-energy in its argument. In Sec. II,
the nonzero temperature formalism calculating E (n, T)
and its derivatives with respect to density is developed.
In Sec. III, the paramagnetic susceptibility of an inter-
acting electron gas is obtained and some difI'erences be-
tween our results and those of GR are discussed. In the
Appendixes, some notes and comments are given for the
thermodynamic potential and the Lindhard function.

dsk
Z (g, p) = — @vs ),E(g, k)

qe2k~ k dk p+ k

)
ln

G(g, k) = PE(g, k) = P[eg+ Z (g, k) —y],
52k~2 qe2kp

p = — +6@,
2m x

0 Fh2k2

2m

(8)

(io)

II. THEORY: TEMPERATURE DEPENDENCE
OF HFA

where g( l is the fully dressed Matsubara Green's func-
tion with the exchange self-energy Z:

g(~j(& p)
1

~p —[~p+~ (n J) —~]' (4)

We consider a homogeneous electron gas without exter-
nal potential. The Hartree potential of the electron gas
is canceled by charge neutrality. In this paper, we con-
sider only exchange eGects, neglecting correlation pro-
cesses. Then we can approximate the effective single-
particle potential Vff as only exchange part: Veff
V (n, T) = 60 (n, T)/6n. 0 (n, T) is the Hartree-Fock
contribution to the thermodynamic potential of the sys-
tem due to exchange efFects. In general, the thermody-
namic potential O(n, T) is obtained by a coupling con-
stant integration. ~s ~s See notes on the thermodynamic
potential in Appendix A.

To include correctly the lowest order and all higher-
order diagrams with electron exchange efFects, we use the
self-consistent Hartree-Fock approximation in which the
Hartree-Fock exchange energy per vob~me E (n, T)—:
0 (n, T)/v is given by a integral over the coupling con-
stant q:

1 gE.(,T) = ' ). —"~.(~,p)g"(~, p),

0

( kgT
1

era~kg (9z /4) ~ 6.029' (12)

where a~ is the Bohr radius and r, is an efFective radius
which comes from n = 4z (r,a~) /3, n being the num-

ber density. Thus a (or r, ) is small for a high-density
electron gas and large for a low-density one. Scaling all
momenta by k~ we obtain

G(9 y) =PE(n y) =G1(n y)+G2(n y)

G (n y) = P(s~ —V) = (g (V y) —u

gg(g, y) =y —1+2@a,

a = g6p/y, ',

(14)

(16)

G2(n, y) = P~ (n y) = 2nk~g2(n y),
1 zdz y+z

g2 '9~y
y 0 e (~ l+1 y —z

ln (18)

Here p is the Fermi energy, —ge k~/z is zero-
temperature shift in the chemical potential due to the
exchange self-energy, and 6p is nonzero-temperature de-
viation in the chemical potential, determined by the num-

ber conservation. Note that Eqs. (7) and (8) provide the
self-consistent equations for Z, G, and E.

We introduce the reduced inverse temperature ( (or
the reduced temperature t) and the reduced radius a:

Z. (&,p) = — ) &v„g(.l(&, k).
k, ik„

(S) The correction of the chemical potential, 6p, is deter-
mined by the number conservation: n = —„P&E(g, k),

1

E*(,T) = -). "~.(~,p)E(~, p—)
0P

= ——) gv~ gE(g, p)E(g, k—),
1

pk
(6)

Here we used the four-vector notation p—:(p, jp„) in
writing the argument of the Green's function and the
self-energy for notational convenience

Since the exchange self-energy does not depend upon
the energy variable ip„, the &equency summation of the
Green's function g(*& just gives the occupation number
E(g, p) = 1/(exp[PE(g, p)] + 1). (Note that the notation
p now represents the magnitude of a vector p.) Then

1.e.)

f
OO 1

z2dzE(q, z) = —.
0 3

(i9)

Note that g2(g, y) does not have any explicit dependence
of n except in the exponent G(g, z).

Above, we used a correct Fermi-Dirac function E(g, k),
which is difFerent kom the noninteracting Fermi-Dirac
function n . The same problem, which we will solve be-
low, was solved by GR just by using the noninteracting
Fermi-Dirac function which lacks a full self-consistency.
In this paper, we consider the correct Fermi-Dirac func-
tion to give a full self-consistency to HFA and see how
much difFerence there is between the two cases.

For E (n, T) we obtain
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E (n, T) = E (n, O)I(f),
1 OO

I(() = —2 deal dy y 92{g,y)F(g, y),
0 0

(20)

V (n, T) = ' = V (n, 0)V (n, t),
dE (n, T)

dA

V (n, t) = I(() +-( dI(()

V.(n, O) = -(e2/~)(3~'~)'~',

K (n, T) = ' = K, (n, 0)K (n, t),
d2E (n, T)

7( dI(() 2 dzI(()

K (n, 0) = (e /—3vr)(3m )'~ n '~,
where, using a shorthand notation Bf = &~&,

1 OO

BfI(() = —2 drl dy y'[F(rt, y)af 92(rl, y)
0 0

+»(~ y)afF(~ y)]
1 OO

Bf'I(() = —2 drl dy y'[F(rl, y)a~ 92(rl, y)
0 0

+2B(92(9 y)a(F(n y) + 92(n y)ay(n y)].

(24)

(26)

(27)

(28)

(29)

(30)

(31)

Note that
—a/2(. The
af2G(I7, y):

BtG(il, y) =

Bf2G(rl, y) =

Bfg (n, y) =

B~g (n, y) =

a has ( dependence through k~. Bfn =
following equations determine BfG(rl, y) and

gi(n, y) —n~+ v~92(n y)

+2rja([af 92(g, y)] —at a,

[1 + 92(rj, y)] + 2rla[agg2(q, y)]
'gO!

2(
+2@a([a('g,(il, y)] —af'a,

OO y+x
zdzafF(rl, y) ln

y p y —x
1 y+xx dx BfF(rl, y) ln

p y —x

(32)

(34)

—1
BfF(rI, y) = Bg G(rl, y),

—1
+

2[1 + cosh G(g, y)]
B~G Iv, y, (37)

where we use two constraints to fix Dga and 0&a:

E {n,O) = —e k~/4ir, (22)

E.(n, t) = * ' = I(()E.(n, o)
(23)

We define the exchange potential V (n, T) and the "in-
teraction function" K (n, T), which appears in the calcu-
lation of response functions. Since we consider E (n, T)
instead of 0 (n, T), the functional derivatives of 0 are
replaced by usual derivatives of E in the homogeneous
limit. Thus we obtain

x dz BfF(g, z) = 0,
0

x'dza,'F(q, z) = 0.
0

(39)

2.0

1.5

= GR (u=0)
OURS (o~O)

1.0
{c)

(b)

0.0
0.0

I

0.5 1.0
I

1.5
I

2.0

FIG. 1. Plot of group (a) E (n, t), group (b) V (n, t), and

group (c) K (n, t) as a function of t=( . The GR's results
with filled squares (corresponding to o.=0) are independent
of o., while ours are much dependent on o.. For each group,
results for ex=0.0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9 (r, =0.0, 0.60,
1.81, 3.01, 4.22, 4.82, 5.43) are shown in increasing order.
The second derivatives K show a distinctive behavior as o.
increases.

We can easily see that results of GR, are obtained by
letting o. = 0 in the above formulas [Eqs. (13)—(39)] and
solving them self-consistently. That is, GR's results are
independent of a, while our results depend very much
on o.. Below, we will reproduce their results to compare
them with our results.

Figure 1 shows plots of (a) E (n, t), (b) V (n, t), and

(c) K (n, t) as a function of t=( i. This figure can be
classified into three groups from the convergence at large
t Th.e lowest group is {a) E (n, t), the next one is (b)
V (n, t), and the topmost corresponds to (c) K (n, t)
The curve with filled squares (results for a=O) in each
group is that of GR. In each group when shown at t=l,
curves for nonzero o. represent o,=0.1, 0.3, 0.5, 0.7, 0.8,
and 0.9 in increasing order. Note that values of all curves
approach 1 at t -+0 since F(il, k) becomes 8(k~ —k) at
zero temperature. We see much difference between our
results (corresponding to nonzero a) and those of GR
over ranges of 0.25 to 1.25 in reduced temperature
t. Note that for larger n, the difference becomes bigger.
Especially, the second derivatives K show a very distinc-
tive behavior; (i) our values of K increase less slowly to
t 0.4 than GR's results but (ii) for larger n they increase
much further to a maximum, while in this region GR's
results decrease. For larger values of t (-+oo), our results
become the same as those of GR, from which we may
say that at high temperatures the effects of self-energy
corrections become less effective.
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It is worth considering the behavior of E (n, t),
V (n, t), and K (n, t) at sxnall t .That is, what is the
6rst term in the power series in t? How does its coefE-
cient depend on o.?

For o.=O and t—+0, the limiting behaviors are known: '

E.(n, t)

V. (n, t)

K.(n, t)

7r2
+ — +

6
7r2

1 ——t,2
12

2
2

1+—t,
4

(40)

(4l)

(42)

where A is some known constant (A=0.767409. . .). Note
that terms containing A in the last two expressions can-
cel out each other. This value of A was calculated by
Wasserman, Buckholtz, and DeWitt. But they did not
correct for the change in the chemical potential which is
—z2/6. 2s So one should get

A' = A —z /6 = —0.877525. . . . (43)

1.010

This value is also confirmed by numerical calculations
at small t In F.ig. 2 (a), the filled circles, squares,

and diamonds are numerical data points for E, V, and

K, respectively. The lines are analytical ones given by
Eqs. (40)—(43). The lowest solid line used the value of
A' instead of A, while the dashed one used A. The line

using A' 6ts our data very well.

For nonzero o., we assume that E (n, t) has a form of

E.(n, t) - I+ C, (~)t'+ C, (n)t'lnt. (44)

Then we find the dependence of V (n, t) and K (n, t)
at small t:

V.(n, t) - i+ C, (~)t'+ C, (~)t'lnt,
K.(n, t) - I. + C,(~)t'+ Cs(n)t'lnt,

(45)

(46)

where the coeKcients C3, . . . , C6 are simply related to Cq

and C2 by relations between V, K, and E .
Fitting numerical data to the above functions gives the

dependence of coefBcients on o, , which is shown in Fig. 2

(b). For n=0, we set C4 and Cs to be zero and data
6tting shows that 6tted coefBcients are close to analytical
ones within a few percent. For example, we obtained
Ci(0)=—0.838643, which is very close to A'= —0.877525.
For nonzero a, the coefficients C4(n), Cs(cr) are close to
zero, &om which we may say that the terms proportional
to t lnt have a small contribution compared to t terms,
in V and K . As o. increases, the magnitude of every
coefficient decreases from its n=0 value except Ci(a).

III. APPLICATION: PARAMAGNETIC
SUSCEPTIBILITY

The function K (n, T) can be used in the study of
the temperature-dependent paramagnetic susceptibility

yp(n, t) of an interacting electron gas. The long wave-

length (q~0) limit of yp(n, t) in the static case (a=0)s 22

1s

1 000 '-~~= &o(n t). o
XP( ) )q~o: 9 PB K ( T) ( )

) (47)

0.990

0.980
0.010 0.020 0.030 0.040 0.050 0.060

where g 2 is the electron g factor and pB is the usual
Bohr magneton. In the limit of q ~ 0, yo(n, t), the
Lindhard susceptibility at 6nite temperature, becomes a
simple form:

3.0
(k.

2.0
L

1.0
CI
o QQC. g

o10(g
-2.0

-3.0
0.00 0.15 0.30

I

0.45

c a c (u)
o C,(u)

o- o c,(u)
o -a C,(a)
c- —o c,(tx)~ —fj c,(a)

0.60 0.75

h(t)
7r3e2a2 0B

h(t) = ch f(x),
0

f (x) = 1/(exp[(x —Pp, ] + 1).

yo(n, t)q o =— (48)

(49)

Note that the noninteracting occupation number f (z)
can be obtained by putting ii=1 and a=0 in F(r], x).
For some comments on the Lindhard susceptibility, see
Appendix B.

First, it is worth noting the result of the zero-
temperature paramagnetic susceptibility:

FIG. 2. (a) Plot of E (n, t), V (n, t), and K (n, t) atsmallt
for n=o. The filled symbols represent numerical data points,
while the curves are given by analytical limiting behaviors.
The lowest solid line used the value of A' instead of A. The
dashed line using A is also shown for comparison. (b) The
dependence of coefficients Ci(a.), . . . , Cq(n) on n. Note that
only Ci(o.) increases from its n=O value in magnitude and
that C4(n), C6(n) are close to zero.

Xo(n, 0)q o

1 1=9 PB m3e2a2 o. 1 —o.B

This expression shows the well-known zero temperature
instability point o.=1, i.e. , r, =6.029, of the paramagnetic



7288 SUKLYUN HONG AND G. D. MAHAN 50

state.
Define yz(n, t) as a function of n at given t:

( )
gi, (rt, &)~ p 1 h(t)

9 P~/7r e +ri o' 1 —ah(t)K (n, t)

To compare our results with GR's, the following equation
is used in drawing 6gures:

h(t)
yp(n, t) =—

r. 1 —~h(t)K. (n, t)

Figure 3 shows plots of y~(n, t), where curves with
filled circles represent our results and curves without
symbols represent those of GR. From Figs. 3(a) to 3(f),
the results for o,=0.1, 0.3, 0.5, 0.7, 0.8, and 0.9 are shown.

In Fig. 3 (a) for a=0.1, two results are (almost) the
same as each other. As cr increases, our y~(n, t) becomes
much difFerent from theirs. It is due to the fact that, in
the denominator of gz(n, t), our K (n, t) for larger cr is
much different from that of GR. Their results show that
yz(n, t) rises above its zero-temperature value at small
t, goes through a peak, and then decreases rapidly with
increasing t. This behavior is more outstanding in larger
n than in smaller u. Finally, their values of y„(n, t) be-
come negative at some larger o. (say, a=0.9) over t 0.23
to 0.48. But our results are quite diferent &om theirs:
(i) yz(n, t) starts to decrease at small t for all n; (ii) y„

does not show a peak but always decreases with increas-
ing t; and (iii) our results do not becoine negative even
at a=0.9, while their results show an instability.
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APPENDIX A: NOTES
ON THE THERMODYNAMIC POTENTIAL

H =Ho+V,
Hp = ) (pcp~cn~,

pcs

vq g cQ+q p~p q Q&pz&Qp &

qgo kpecr

(A1)

(A2)

(A3)

At nonzero temperatures it is best to employ the 6nite-
temperature formulation of Matsubara. In this method
the following equations give the Hamiltonian of the elec-
tron gas and the expression for the thermodynamic po-
tential O.

2.0 1.5
Pn = PAp —) U(, (A4)

1.5
I

1.0

~" 0.5

~ 0.0

Q)
~ 0.6

0.3
G)
C

0.0
E
(Q

0.6
CL

(a)
1.0

0.0

2.0

1.0 '

0.0

10.0

PBp ——) in[1+ e ~f&],

pa
P P

U( = dpi dpi(T~V(~i) V(7i))
E o o

(A5)

(A6)

The energy with respect to the chemical potential is

(~ = h2p2/2m —y, , while vq ——4me2/q2 in three dimen-
sions. In the last expression, the 7 dependence of the
interaction is evaluated in the interaction representation,
and only di8'erent connected diagrams are evaluated.

The lowest level of approximation, under the title of
"Hartree-Fock" (HF), is to consider only the single dia-
gram shown in Fig. 4(a). It is simply

0.4

0.2

0

0.0

Ui = P(V)—
1

VqAp Ap+q2v
(A7)

0.0
0.0

1Q Q
0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5

pqcr

FIG. 3. Plot of y~(n, t), where curves with filled circles
and those without symbols represent our results and GR's,
respectively: (a) cr=0.1, (b) 0.3, (c) 0.5, (d) 0.7, (e) 0.8, and

(f) 0.9. In (a), two results are shown to be the same. As
o, increases, our results become much di6erent from those of
GR. For given ci, our y„(n, t) does not show any peak but
always decreases with increasing t.. Note an instability of GR
shown in (f), while our system is still stable. Inset in (f):
better view of our result for o.=0.9.

(A8)

1
e~~~ + 1' (A9)

The Hartree-Fock exchange energy is calculated using
only the first term Uq, which is the same as Ez. In this
level of approximation, the occupation numbers np of
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+ ~ ~ ~

is appropriate for the place of the Lindhard susceptibility
in Eq. (47). Note that if we only include ladder diagrams
for a single bubble, the polarization P (q) and the para-
magnetic susceptibility y„ is the same up to a constant
(—g2@2&). If only exchange effects are considered, we are
actually considering only a single bubble. Thus, the for-
mula g„(n, t) = g I—J&P (q) is justified in the HF level

First candidate is still to use the Lindhard susceptibil-
ity,

FIG. 4. One-bubble diagrams for evaluating the thermody-
namic potential 0 . The solid lines represent the unperturbed
electron Green's functions, while the dotted ones represent
Coulomb interactions v~=4se /q . (a) First-order diagram
for HFA and (b) higher-order diagrams for corrections.

.( t). ~ = I ).g")(p)g")(p+q)
pampa

p ~p+e= hm-
tzMp El fp —(p+qP

h(t)
m3e2a~ o.B

(Bl)

p)&pa

(Alo)

where g(P) is the unperturbed Green's function. After
some manipulations, we obtain

0 —Op ———) g(g, p)Z(g—, p),
].

P,.„p (All)

where g is the Matsubara Green's function with the self-

energy Z.
The proof of this expression is given in Abrisokov et

al. and a simple treatment for electron-phonon systems
is also shown in Mahan. Using the exchange self-energy
Z and the Green's function g( ) in Eq. (All), we obtain
the Hartree-Fock thermodynamic potential 0 =vE .

APPENDIX 8: NOTES
ON THE LINDHARD SUSCEPTIBILITY

In Sec. II, we evaluated K (n, T) using a formalism
with a full self-consistency. Here K is the LDA version
of the Hubbard local-6eld correction, ' usually called
G(q); more precisely, K =—v~G(q) at q-+0.2P To give
the self-consistency to the evaluation of the paramag-
netic susceptibility yp(n, t), we need to determine what

the electrons are those of the noninteracting electron gas.
This expression was discussed in detail at nonzero tem-
peratures by GRs using the density-functional approach.

The next level of approximation, in HF, is to sum the
diagrams shown in Fig. 4(b) and add them to the above
term. To do this and do more generally, we follow a sim-
ple argument by Luttinger and Ward. ~4 The prescription
for computing 0 is to take each possible closed linked di-
agram that can be drawn just once. Suppose we consider
any lth order diagram for O. If we break open any of its
21 lines we obtain a possible lth order diagram for the
Green's function. Let us call Z~(p) the total self-energy
part of the lth order, proper or improper. Note that we
get the same closed linked diagram 2L times when we close
all possible lth order Green's function diagrams. Then
we may obtain the following expression for A~, the 1th
order contribution of 0, summed over spin:

h(t) = dz f(z)
0

Second one is to use H(t) instead of h(t),

H(t) = dz E(z),
0

(B3)

2 ~ - E(J) -E(lp+ ql)
gp fL, t q~p = llm —gqw0 g/ gp —Qp+~P

—1 H(t)
7l e a 0!B

(B4)

Third choice is to use fully dressed Green's functions for
internal lines:

&o( t) o = h, ).g'*'(&)g"(&+q)
2

q-+0
I )gj vs

- E(p) —E(lp+ ql)~™~,&(p) -&(lp+ql)' (B5)

where E(p) = $p+ Z (p).
Originally Hubbard, 24 in his formalism on the polar-

ization, used g0 instead of yz, while a derivation us-
ing the equation-of-motion method shows that yp is cor-
rect. The LDA version of the Hubbard correction was
first derived by Hedin and Lundqvist, who used y0.
Niklasson used F08 instead of y0 in his Lindhard sus-
ceptibility and Schweng and Bohm dered a general-
ized Lindhard function with the same spirit of Niklasson.
Rajagopal et al. ' ' used it differently in their several
papers. In earlier work, 28 fully dressed Green's functions
were used to give yz+. In the next one, Rajagopal used
E(k) = (I, + V, where V = Z (kp) at T ~0. Using

where E(z) is obtained by putting rl=l in E(rl, z), i.e.,
E(z) =—E(g=l, z). For H(t) with nonzero a, the oc-
cupation n»mber E(z) is for the interacting gas rather
than for noninteracting gas, as in Niklasson. 2 Using in-
teracting occupation n»mbers means that one is using,
in an approximate fashion. , interacting Green s functions
for internal lines in the bubble. That is,
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2 .BF(p)
&o( t). o = —):~E( )

aF(y)
u du

2%2 gE(y)
By

(B6)

Here, at T -+ 0, F(y) + 8(1 —y) and s" ~ h(l),
and then

~E(y)
oc I/m* -+ oo. (B7)

this E(k) is not one of three choices mentioned above.
In another one, of which scheme we follow, they used
E(k) = (x, and thus yo.

Anyway, the third choice using fully dressed Green's
functions seems to be right among three possibilities. But
unfortunately this seemingly exact way fails because the
fully dressed Lindhard susceptibility go ~0 becomes zero
at T ~ 0 due to divergence of the inverse effective mass:

Therefore, y& ~0 m 0 at T ~ 0. Thus we get the
zero value of the paramagnetic susceptibility. By the
conserving approximation in the level of HF, we find
a standard Hartree-Fock result:

P (0) =
7l 8 G 0! 1 —0!H

(B8)

in the limit of T m 0. We should have found a finite
value of the zero-temperature paramagnetic susceptibil-
ity. Therefore, the third way should be thrown away.

Two other choices give the exact value in the limit of
T ~ 0 as in the conserving approximation. The second
one is using interacting occupation numbers with self-

energy corrections only in the numerator, while it does
not give any self-energy correction to the denominator.
Thus it appears less consistent than using noninteracting
things in both denominator and numerator in the Lind-
hard function. Here we claim that the 6rst choice may
be correct. This argument will be clari6ed elsewhere

by comparing present results with those &om conserving
approximations.
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