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Point-defect computer simulation including angular forces in bcc iron
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An embedded-defect (ED) interatomic potential for Fe is presented. The ED model is based on the
same physical description of interactions as the embedded atom method (EAM) but including angular-

dependent many-body local terms. In this work, the ED potential is fitted to several Fe properties and is
used to simulate the vacancy and various self-interstitial configurations. The pair and many-body contri-
butions to the formation energy of the defects are calculated, as well as the corresponding relaxation
volumes. The results are compared to those obtained with an EAM potential fitted to the same proper-
ties. The vacancy displacement field is studied in detail for both potentials. Anharmonic effects are as-

sessed and correlated with the unrelaxed force pattern.

I. IbiiRODUirION

Several empirical or semiempirical interatomic poten-
tials that include many-body interaction terms have been
developed recently. They enable one to overcome some
shortcomings of the pair interaction model, widely used
in computer simulation studies in the past. Their goal is
to account for the delocalized physical nature of the me-
tallic bonding while retaining the calculation simplicity
of pair potentials. Among the first of these approaches
was the embedded-atom method (EAM) of Daw and
Baskes, ' the N-body potentials of Finnis and Sinclair,
and the glue model of Ercolessi, Tosatti, and Parrinello.
All of them proposed a pair interaction plus an electronic
(or atomic) density-dependent term for the description of
the energy associated with each atomic site. Within the
same spirit, but including some aspects of bond direc-
tionality, other models have been developed; among
them, the modified embedded-atom method (MEAM),
the embedded defect (ED), and Carlsson's potentials for
bcc metals.

The physical basis behind empirical interatomic poten-
tials has been reviewed and discussed by Carlsson in Ref.
7, where they are classified in pair potentials, pair func-
tionals, cluster potentials, and cluster functionals, de-
pending on how the many-body interactions are expand-
ed. Interatomic potentials in the EAM approximation
correspond to pair functional expansions of the energy.
They are known to fail, for instance, in the prediction of
structural energies. Furthermore, whenever covalent or
angle-dependent interactions are important, the applica-
tion of this model is questionable. As argued in Ref. 8,
this is possibly the case of bcc metals. Therefore the
influence of higher-order many-body terms for describing
interactions in these materials must be systematically
studied.

In Ref. 5, Pasianot, Farkas, and Savino deduced the
ED potential, an empirical many-body potential for bcc
transition metals. There, the energy was expanded fol-
lowing the spirit of the EAM, but adding a dipolelike-
dependent functional. Heuristically, this procedure is
equivalent to embedding every atom as a defect on the

otherwise homogeneous electron density (as in the EAM),
but including a dipole contribution to the configuration
energy. Baskes' first version of the MEAM (Ref. 9) is
quite similar to the ED approximation, while in later ver-
sions other second- and higher-order terms are includ-
d 4, 10

An EAM and an ED potential for Fe are used here for
the simulation of point defects, namely, the single vacan-
cy and several interstitial configurations. In Ref. 5, EAM
and ED potentials for several bcc metals were given.
Some analytic features of the EAM-type potential for Fe
were improved by Simonelli, Pasianot, and Savino in Ref.
11, making it more adequate for computer simulation
studies. There, point-defect simulations were performed,
and the most suitable interaction range was obtained by
fitting the experimental results. The EAM potential used
here is the short-range potential from Ref. 11, which in-
cludes up to second-neighbor interactions. On the other
hand, the ED potential constructed in this work is fitted
to the same Fe properties and keeping the same interac-
tion range.

The results for either potential are carefully analyzed
and compared among themselves and with others from
the literature. ' ' It is shown that the display of the
bare displacement field obtained from the computer simu-
lation does not reveal some subtleties of the potential em-
ployed, and therefore a more refined analysis is presented
in order to judge among different potentials. Savino and
Farkas' have compared simulation results using the har-
monic Green function approximation and the concept of
a force source for understanding some of the important
features on surface relaxation. Because of its simplicity,
the vacancy problem is the ideal candidate for comparing
results and for testing the reliability of the interatomic
potentials. Although for the vacancy the harmonic mod-
el has been developed by several authors and related to
pair potential predictions, e.g., Tewary, ' theoretical de-
velopment is still needed when many-body potentials, and
eventually large anharmonicity at the defect core, are
considered.

The purpose of this work is then twofold: On the one
hand, an improved ED potential for Fe with respect to
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the one in Ref. 5 is reported, and on the other, the
difFerences arising in the simulations of point defects
when many-body angular terms are included are analyzed
by comparing the results obtained with the EAM and ED
potentials.

In Sec. II the ED model and the potential fitting pro-
cedure are presented. In Sec. III we describe the defect
calculation method for the computer simulation and the
harmonic approximation, paying special attention to the
single-vacancy case. Results of the vacancy simulation
(lattice distortion, formation energy, and relaxation
volume) are given in Sec. IV, as well as an analysis of the
forces around that defect. In Sec. V calculations for self-
interstitials are presented, and in Sec. VI, the results of
this work are discussed.

II. INTERATOMIC POTENTIALS

p, =Trk, ,
= g4(R;~ ) (3)

and

Y =pa iiX ~—p'/3
a,P

(4)

Thus, taking 4 as an atomic electron density, the term

F(p;) is analogous to the embedding function of the
EAM. The other term 6 ( Y, ) is angle dependent due to
Eq. (4). Note that the calculation of the tensor A, , is

straightforward, since it involves pair sums only. Also
note that Y; =0 for cubic symmetry.

Without loss of generality, we impose the many-body

part of the energy F(p;) in Eq. (1) to have a null first

derivative at the equilibrium perfect lattice. In addition,
the term 6 ( Y; ) does not contribute to the force equilibri-

um and zero-pressure conditions in a cubic lattice [Eqs.
(13) and (21} in Ref. 5], therefore V(R,") is an effective

pair interaction potential, i.e., it ho1ds in equi1ibrium a

Within the ED method proposed in Ref. 5, the energy

E; at a site i is expanded as

E;=—gV(R;J)+F(p;)+6(Y;) .=1
JXl

The first term V(R,") represents a pair interaction; it de-

pends on the distance R; between atoms i and j. The
many-body terms F(p, ) and 6 ( Y, ) depend on invariants

of the tensor )i, , defined at each atomic site as

=+4(R;J )R;JR~q/R, q,
j4i

where R,' denotes the a component of the vector joining
atoms i and j, and 4 is a function of the distance between

these atoms. The arguments p, and Y, are given by

lattice with the correct lattice parameter.
The potential is fitted to the Fe bcc lattice parameter,

the elastic constants, an estimated value for the unrelaxed
vacancy formation energy E"' ",and the cohesive energy
E„„(throughRose's equation of state ). Experimental
values for these properties are shown in Table I. Explicit
equations to fit ED potentials for cubic Bravais lattices
are reported in Ref. 5. For the sake of completeness, we
shall describe here the main steps of the procedure and
present the functional form chosen for the energy expan-
sion terms, as well as the values of the parameters ob-
tained.

The first step consists of fixing the electron density
function 4. We choose a Thomas-Fermi-like screening
function. Equation (22) of Ref. 5 is smoothly matched to
zero according to

exp( —Px)/x, x ~xi,
4(x)= (x —xi) (ho+h, x+hix ), x, (x ~xi, (5)

0, xhx2

where P=5 and x is in units of the equilibrium first-

neighbor distance. The adequate cutofF is obtained by
fixing x, and xi and calculating the coeScients h, that
make the function and its first two derivatives continuous
at those points.

On constructing ED potentials, an arbitrary relative
contribution of the terms F and 6 to the energy must be
imposed. The parameter selected for this purpose is f,
the relative contribution of the many-body terms to the
unrelaxed vacancy formation energy (Ef' "). If only first

and second neighbors are considered,

(Ef" "=8F(p,)+6F(p2) 14F(po)—
+86 ( Y, ) +66 ( Yi },

where the subindexes 1 and 2 refer to the functions evalu-

ated at the neighboring shells 1 and 2 from the vacancy
and 0 stands for the perfect lattice configuration (pa= 1

and Yo =0 in our model). An approximate expression is

used for g, assuming that the difFerences between perfect
and defect values for the arguments p; and Y; are small,

gE" "=(,'F +0—,'60)Q—N„4,,

where Fo =(d F/dp },60=(dG/dY)r r, v 's the

index of the atomic shell around the vacancy, and X„is
the number of atoms in that shell. On the other hand,

the equation for the Cauchy pressure is

where I',- are functions of 4 only. Since this latter func-

0 3

TABLE I. Data Stted by the EAM and ED potentials. Elastic constants are in eV/A .

0 (A)

11.78

a (A)

2.866

E„h(eV)

4.28'

g, NR
( V)f

1.8

(&]I +2& Ig ) /3

1.113

(~11 ~12 )/2

0.298 0.699

'Reference 19.
Reference 20.
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TABLE II. g is the many-body contribution to the vacancy formation energy and 8„82,and 83, the
resulting many-body contributions to the bulk modulus (c»+2c»)/3 and to the shear modulii

(c» —c» )/2 and c44, respectively.

Go (eV)

EAM
ED

0.013
0.200

1.65
3.51 5.66

0.193
0.410

0.000
0.013

0.000
0.341

tion is chosen beforehand, Eqs. (7) and (8) define a system
of two linear equations with Gc and Fc' as unknowns.
From Eq. (8), it is clear that the inclusion of G(Y, ) is
strictly needed only when (c,z —c~)(0 (Fc')0, Gc)0
on physical grounds}, which is not the case for Fe. In the
EAM approach, Gc =0 in the above equations; therefore,
Fc and g are fixed through Eqs. (8) and (7}, respectively.
In the ED method, for a chosen value of g, Gc and Fc are
determined by solving the system of Eqs. (7) and (8), and
the relative contributions of the many-body terms to the
elastic constants can be calculated. We choose /=0. 2 for
the ED potential, resulting 0.03 from the term Fo' and
0.17 from Gc. As mentioned before, g is not fixed in ad-
vance for the EAM potential; the value /=0. 013 is ob-
tained, implying a different contribution of the many-
body terms to the elastic constants in each potential.
These relationships are reported in Table II. In that table
8$ 82 83 stand, respectively, for the relative contribution
of the many-body part of the potential to the bulk
modulus B =(c»+2c,2)/3 and to the shear modulii
(c» —

c&z }/2 and c44.
For the effective pair potential we propose: '

4
&(x)= g a, (x z, )'H (z, x), — — (9)

with

1, x&z;,
H(z; —x}= '

0, x&z;,
where the a's are obtained following the procedure of
Ref. 11, through satisfaction of the zero-pressure condi-
tion and the fitting of the remaining contributions to the
elastic constants and to the unrelaxed vacancy formation
energy.

F(p) is obtained numerically by fitting the equation of
Rose et al. ' Note that Y remains null in a uniform ex-
pansion or compression of the crystal; therefore,

F(p, )=E(a)——g V(R;l ),1

jAi

where E(l') is given by

E(Z)=—E'„h(1+W)exp( —a')

(10}

and where if =a(R, /R „—1), with R
„

the equilibrium
value of the first-neighbor distance R &, a =9QB/E«h,
and Q the atomic volume.

Finally, following Ref. 5, a linear approximation for
the term G(Y} is proposed, i.e., G(Y)=GcY. Therefore
the ED potential can be considered as a first-order expan-

III. POINT-DEFECT LATTICE RELAXATION

A. Computer simulation

Vacancy and self-interstitial configurations are simulat-
ed using the interatomic potentials reported in the previ-
ous section. The simulations are performed for a spheri-
cal block of —1500 free atoms (region I) for the vacancy
and -9000 for the interstitial configurations, surrounded
by atoms fixed at their perfect lattice positions (region II}

TABLE III. Parameters of the potentials fitted to bcc-iron
properties. z4( =x2) is the interaction range. The length unit is
the first-neighbor distance in equilibrium. p=1 for the perfect
lattice in equilibrium. Coefficients a are in eV. The function
F(p) is obtained numerically (see text).

Function 4 x,
X2

ho

h)
h2

Function V zo

Z]

Z2

Z3

Z4

ao
a&

02
03
a4

Function G
Efcc Ebcc
Ehcp Ebcc

EAM

1.10
1.40

—53.553 74
101.830 17

—49.935 30
0.999
1.020
1.030
1.380
1.400

—60.00000
94.41605

—45.226 89
—139.686 02

124.058 56

0.007 eV/atom
0.007 eV/atom

ED

1.10
1.40

—53.553 74
101.830 17

—49.935 30

1.020
1.030
1.380
1.400

—236.01663
198.41045

—120.16072
106.308 96
60=5.66 eV

0.015 eV/atom
0.015 eV/atom

sion of the EAM in the variable Y. The approximation is
satisfactory whenever the argument Y does not differ
much from its perfect lattice value, but this condition
may not be fulfilled in the neighborhood of "strong" de-
fects. Other lattice properties besides those considered
here must be fitted in order to obtain a more adequate
dependence of the energy on this variable.

The complete set of parameters for the Fe ED poten-
tial is given in Table III. We also report there the param-
eters corresponding to the EAM potential used in this
work (the short-range potential presented in Ref. 11) and
the predicted energy differences between the bcc struc-
ture and the more compact hcp and fcc ones. As men-
tioned before, all functions have the same interaction
range in order to allow for a consistent comparison.
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and interacting with the inner ones. Though a smaller
block size can be used to simulate the interstitial
configurations, the chosen size is needed to perform an
adequate analysis of defect core anharmonicity that will
be reported elsewhere. Such an analysis for the single va-
cancy is given in sections below. A conjugate gradient
code, based on DEvIL, is employed to determine the
configuration that minimizes the energy. Formation en-
ergies and relaxation volumes are calculated, and the
contributions of the pair and the many-body terms are re-
ported separately.

The defect formation energy (Ef } is obtained as the
difFerence between the energy of a lattice consisting of N
sites in region I with the defect at its center and the ener-

gy of a perfect lattice with the same number of atoms
(N —1 in the case of a vacancy and N+1 for a self-
interstitial} for N sufficiently large: ENR+ gERf f f ' (18)

B. Harmonic approximation and Kanzaki forces

Flinn and Maradudin and Tewary' developed a
Green function approach for the calculation of the lattice
distortion produced by point defects based on an earlier
work by Kanzaki. An extension of their approach was
developed in Ref. 16 and used for the understanding of
atomic relaxations in computer simulation runs. Within
the Green function theory, it is assumed that every atom
of the perfect lattice is displaced a small amount u; as a
consequence of interaction with the defect,

RD=R'+u .l l l

Therefore the formation energy can be expanded as a
function of the displacements:

E —lim I
EN%1(& ) EN+1(&o)

)N~ oo
(12)

r being a vector of dimension 3(N+1):
r =(Ro, . . . , Rz+i), with R; the position of atom i; r
corresponds to the defect configuration and r to the per-
fect lattice one. Because of the additive property of the
energy, expressed in Eq. (1), it is possible to separate in

Eq. (12) the contribution of each term of Eq. (1). For in-

stance, the pair contribution is given as

where EfNR is the energy of the ensemble when every
atom is located at the perfect lattice position, i.e., the un-

relaxed f0~ation energy, and d Ef" stands for the energy
relaxation produced by the displacements. In a harmonic
approximation,

Nkl 3 1
N+1 3

b,Ef"= lim g g E, u, +——g gP;~u, 'u~

(19}

1 N%1

Ef „,= lim —g gV(R;, ) gV—(R~~j)
N~ao 2 . 1.~. 2

where

(20)

(13)

where the last term does not depend on the subindex i
The lattice distortion can be pictured, besides the dis-

placement field, by the parameters p and Y, which are re-
lated to the arguments of the many-body functions F and
G, respectively, and defined at each site i as

is the a component of the force exerted by the defect at
the unrelaxed lattice site i and P' the force constant ma-

trix for the lattice with the defect. The latter can be ex-

pressed as

(21)

Y;=Q(3/5)Y, .
(14)

where P is the force constant matrix corresponding to the
perfect lattice and g takes account of changes in the con-
stants caused by the defect. The displacement field, ob-
tained by minimizing Eq. (19), is given by

p gives local density changes, while Y takes account of
angular distortions (departure from cubic symmetry).
Their special form is related to scaling purposes.

The relaxation volume of the defect, b, V, is obtained
through the corresponding dipole tensor P. In a comput-
er simulation study, the latter quantity can be calculated
by the first moment of the forces on the (fixed) atoms in
region II:

a ~G e aPg oa
i ~ ij j

j,I3

(22)

(23)

where 6* is the Green function matrix of the lattice with
the defect, defined as the inverse of the corresponding
force constant matrix, G'=(P ) '. Equation (22} can
also be written as

P ~= gR, F~,
j EII

(15) where G =P ' is the perfect lattice Green function, relat-
ed to G' according to Dyson's formula'

which approaches a limiting value as the size of region I
increases and encloses the whole defect anharmonicity.
Then'4

G*=G(1+KG*)

and

(24)

hV= Tr(P)/38, (16)
K=K +gu (25)

where 8 is the bulk modulus.
are the forces exerted by the defect at the relaxed atomic
positions. These are the so-called Kanzaki forces.
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The procedure outlined above solves the problem of
finding the relaxed defect configuration for a harmonic
lattice. At the core region, where the harmonic approxi-
mation breaks down, computer simulation techniques can
be used for finding the relaxed defect structures. Howev-
er, the concept of Kanzaki forces is still useful to charac-
terize the defect configuration; it is now dined as the
forces that in a harmonic approximation produce the
same displacements in the lattice as does the defect.
This is realized by inversion of Eq. (23) according to

~::~
0

(a)

~ ~ y
aa 4E

sc'= yy'~u(' (26)
j,p

where uj~ is the (known} result of a computer simulation
run. One must remember that the Kanzaki forces so gen-
eralized are always exerted on a harmonic lattice.

In terms of the Kanzaki forces, the dipole tensor P of
Eq. (15) can also be calculated as

J J (27)
j=1

In fact, agreement between Eqs. (15) and (27) is a way to
judge if the size of the atomic array employed in the
simulation is enough to include all the defect anharmoni-
city.

C. Cope Kanzaki forces

In this section, a procedure is proposed for calculating
the Kanzaki forces from the computer simulation dis-
placements at the paint-defect core. For this method,
knowledge of the force constant matrix of the perfect lat-
tice according to Eq. (26) is not needed. It is also a help-
ful tool for determining the size of the anharmonic region
surrounding the defect.

Kanzaki forces are obtained by computing the gradient
of the defect-host interaction potential. This is most easi-
ly done using a method devised by Kanzaki, s shown
schematically in Fig. 1 for the single-vacancy case. That
author assumes to know the defect relaxed lattice
configuration, i.e., the configuration of minimum energy
[Fig. 1(c}] and defines a new lattice where the missing
atom is replaced at its perfect lattice site [Fig. 1(b)]. The
defect-host interaction potential is defined as the energy
difFerence between configurations (c) and (b), i.e., as
E(c) E(b). In Kan—zaki's model, the lattice responds
harmonically and the defect core is restricted only to the
missing atom. However, in some cases, even for relative-
ly weak defects such as the vacancy, anharmonic effects
extend over a larger region. An alternative and general
procedure can be used for those cases. The process of
Fig. 1(b) is generalized to the one of Fig. 1(d); namely, not
only the missing atom, but also largely displaced ones are
restored at their perfect lattice position. Forces are eval-
uated at these restored atomic positions and at the
remaining displaced coordinates. The procedure entails
defining the defect core as the region where the relevant
anharmonic behavior occurs, while the rest of the lattice
is essentially harmonic. The method can be carried out
to successive degrees of approximation. For instance, the
zeroth order of approximation for the vacancy is to con-

(c)
FIG. 1. Kanzaki's scheme to evaluate the defect-host interac-

tion on a planar fcc lattice. (a) Perfect lattice; 0,1,2 label the
atomic shells that constitute the defect core in the zeroth, first,
and second order of approximation. (b) Relaxed lattice with the
vacant atom restored. (c) Distortion induced by the vacancy.
(d) Extended scheme to first order (see text).

sider the defect as represented by the only one missing
atom, as Kanzaki did; first order will include first neigh-
bors to the vacant site into the core region; and so on.
The Kanzaki forces calculated by the above procedure
can be replaced in Eq. (27) to obtain the dipole tensor and
from this the defect volume change is computed accord-
ing to Eq. (16). Eventually, convergency to the dipole
tensor value calculated by computer simulation [Eq. (15)]
is reached and the defect core region can be consistently
defined.

Note that the above process is, in a sense, symmetric to
the one entailed by Eq. (15), but with opposite meaning
for regions I and II. Here region I is a perfect rigid lat-
tice and region II contains the (harmonic) displacements
of an unbounded solid with the defect at its center; the
Kanzaki forces are concentrated on a shell including the
boundary between regions I and II.

IV. VACANCY

A. Computer simulation

The vacancy-induced radial displacements resulting
from the computer simulation using the EAM and ED
potentials are shown in Fig. 2 as a function of the neigh-
boring shell index. %e observe that radial displacements
are qualitatively similar for both potentials, the main
differences being a smaller value for the closest neighbors
using the ED potential and larger for the remaining
neighbors in the (111)direction (fifth and tenth shells}.
As shown later, this behavior is consistent with the mag-
nitude of the total unrelaxed forces.

The lattice distortion according to the many-body pa-
rameters defined by Eqs. (14) are represented in Figs. 3(a)
and 3(b) for the relaxed configurations obtained with both
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potentials. An oscillatory behavior of the density p as a
function of neighbor distance is observed. Excluding the
defect's closest neighbors, these oscillations in density fol-
low the displacement field pattern reported in Fig. 2; such
a behavior is expected since we have chosen a monotoni-
cally decreasing electronic function [Eq. (5)]. After the
fourth-neighbor atomic shell, the variable also Y follows
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0 0
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/
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Y=(3Y/5) ~
/
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FIG. 3. Parameters p (density change) and F for the vacancy,
as a function of the shell index. (a) corresponds to the EAM po-
tential and (b) to the ED one. po is the equilibrum value ofp.

shell index

FIG. 2. Vacancy radial displacement as a function of the
neighboring shell to the vacancy for both potentials EAM and
ED. R &, is the nearest-neighbor distance.

TABLE IV. Vacancy formation energy Ef (eV) calculated
with the EAM and ED potentials. E~, E~, and Eg are, respec-

tively, the contributions of the pair interaction V, embedding

function F, and the angular term G.

EAM
Unrelaxed Relaxed Unrelaxed

ED
Relaxed

Ep
E
E.

1.81S
1.799
0.016

1.S67
1.547
0.020

1.808
1.440
0.054
0.314

1.634
1.273
0.079
0.282

these oscillations. Lower values of Y were expected for
the ED potential with respect to the EAM one, due to an
explicit energy dependence in the first case. This does
not seem to be the case; however, note that for some
shells (e.g., the fifth), although the displacement is larger
for the ED potential, the local variable Y5 is smaller.

Vacancy formation energies predicted by either poten-
tial are reported in Table IV, for the relaxed and unre-
laxed configurations. Since an approximation to Ef' "
[Eq. (7)] was one of the parameters used for fitting the po-
tentials, the energies calculated for the unrelaxed lattice
are very similar. After relaxation, the vacancy formation
energy Ef is found to be smaller for the EAM potential
than for the ED one, although the displacement patterns
are similar. Previous calculated values of the vacancy
formation energy using many-body potentials' ' approx-
imately agree with our results, although we found that
the Ef" obtained with our EAM potential is somewhat
smaller. As stated in the previous section, it is possible to
separate many-body from pair contributions to the for-
mation energy of the defects and to compute these contri-
butions for each atomic site [see Eq. (13)]. The corre-
sponding results are reported in Fig. 4 and Table IV. The
table shows that, as a consequence of the value of g [Eq.
(7)], the many-body contribution to Ef" is much smaller

for the EAM potential than for the ED one, where it
comes mainly from the angular term. Actually, for either
interatomic potential the energy contribution coming
from the local density term F increases its value when the
defect lattice is relaxed. The contribution of the effective
pair interaction is the most important in both cases, and
it is clearly the driving force of the relaxation, although
for the ED potential the angular term contribution is
significative. This is also seen in Fig. 4, where the contri-
butions to Ef per atomic site (i.e., the difference in each
energy term evaluated at the atomic site in the relaxed
and perfect lattice configuratioCts) are plotted for the
effective pair interaction [Fig. 4(a)] and for the many-

body terms [Fig. 4(b)] as a function of neighboring shell

number. It can be seen that the contribution of the pair
interaction is not only the most important one, but simi-

lar for both potentials. Note that the oscillations in Fig.
4(a) are not necessarily in direct correlation with those of
the displacements (Fig. 2), contrary to what happens for
density changes (Fig. 3). This is because the effective pair
potential V of Eq. (9) is richer than the function 4 in
functional details.

Finally, we have calculated the relaxation volume
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hV/Q for both potentials, using Eqs. (15) and (16).
These results are presented in Table V ("computer simu-
lation" row). We could not find experimental data on
hV/Q for the vacancy in Fe. According to Harder and
Bacon, ' vacancy relaxation volumes are accepted to be
in the range —0.2 to —0. 1 for bcc metals. Those au-
thors report the computer simulation result for the Fe
N-body potential of Ref. 2, b, V/Q = —0. 15, in agreement
with our calculations.

B. Kanzaki forces and relaxation volume

The vacancy relaxation volume 6V/Q, being a
measurable value of the defect-induced lattice relaxation,
is an important parameter for comparing predictions of

diFerent interatomic potentials. In this section we give a
brief description of the force field in the vicinity of the
vacancy and focus on its relationship to the defect
volume change.

We first calculate K of Eq. (25), i.e., the Kanzaki
forces at the unrelaxed lattice. A detailed analysis is
given in the Appendix. The expressions and numerical
values obtained for the EAM and ED potentials are re-
ported in Table VI. Those expressions are deduced for a
vacancy in a bcc lattice when second-neighbor interac-
tions are considered. It is seen that, for both potentials,
the efFective pair interaction provides an inward contribu-
tion to the forces for the first neighbors of the vacant site
and an outward contribution for the second neighbors;
the local density terin F(p; ) always contributes inwards,
while the term 6 ( F; ) does so mainly outwards, changing
sign for the fifth and sixth neighbors. Note that the
many-body terms induce forces reaching the sixth neigh-
boring shell from the vacancy (twice the potential range ).

The forces Kc are used for calculating the dipole tensor
[Eq. (27)] and an approximated value for the vacancy re-
laxation volume. The resulting analytic expressions and
the corresponding numerical values for both potentials
are reported in Table V. Those expressions are obtained
by replacing the K of Table VI in Eqs. (27) and (16). As
mentioned before, the pair interaction term of our poten-
tials constitutes by itself an equilibrium potential for the
lattice with the correct lattice parameter. Therefore, if
relaxation is not permitted, the contribution of the pair
interaction to hV/Q is null (it would be proportional to
minus the Cauchy pressure for a nonequilibrium pair po-
tential). On the contrary, many-body terms can have a
nonvanishing contribution, and within this approxima-
tion, they are the only terms responsible for the predicted
volume change. In fact, the many-body term F provides
a negative 6V/Q, while the angular term of the ED po-
tential contributes with a positive volume change. In the
approximation considered, a better agreement with the
computer simulation results is expected for the ED po-
tential than for the EAM one. This is due to the larger
weight of the many-body terms as measured by the pa-
rameter g [Eq. (7)]: 0.2 for the former against 0.013 for
the latter. Note that though G weights about 6 times
more than F in the parameter g of the ED potential, its
contribution to the defect volume change is only half of
the contribution from F and of opposite sign. It is seen
that the two terms add up to a negative relaxation
volume which is in good agreement with the computer

TABLE V. Analytical expressions for the contributions to the vacancy volume change (LL V/Q) of the various energy terms in Eq.
(1), obtained from Table VI, Eqs. (27) and (16), and the corresponding numerical values. Computer simulation calculations are also
reported.

Computer simulation, Eqs. (15) and (16)
Unrelaxed approximation

from V(R;~)
from E(p;)
from 6( F;)
Total

[8(v 3/2) V) +6V'i ]/3BQ—8[(7F) +6F2 )Qi+ (8F ) +5F2 )&3/2$~]/3BQ——", Go[kiki+(&3/»4'z4z]/3&Q

—0.14

0.00
—0.05

—0.05

—0.11

0.00
—0.20

0.10
—0.10
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TABLE VI. Kanzaki's forces for the unrelaxed lattice with a vacancy. All forces are radial, except
for the [3,1,1] shell. Numerical values in 10 eV/Ri, . Subindexes 1 and 2 refer to first and second
neighbors of the vacant site, respectively. 6' stands for the constant 60 of the text.

Shell

1 [1,1,1]
2 [2,0,0]

1 [1,1,1]
2 [2,0,0]
3 [2,2,0]
4 [3,1,1]
5 [2,2,2]
6 [4,0,0]

Force's expression

Pair term [V(R;, )] contribution

Vi [111]/&3
Vg [100]

Embedding function [F(p;)] contribution

[(Fi
—F2 )41—&3FI eH [111]/v 3

[( 4/v —3)F', p', +F'p'][100]
—V'2[(2/&3)FIi))', +F,'P,'][110]/&2

—F20i [111]/v 3 —F102[100]
—F i $I [111]/ 3

—Fz(()v[ 100]

EAM

—97.27
112.32

—0.64
—3.22
—3.23

—[1.29,0.56,0.56]
—1.59
—0.44

ED

—77.28
89.24

—1.05
—16.65
—11.44

—[5.79,1.57, 1.57]
—7.74
—1.23

Angular term [6(Y;)] contribution

1 [1,1,1]
2 [2,0,0]

3 [2,2,0]

4 [3,1,1]
5 [2,2,2]
6 [4,0,0]

—
—,6'((),((()I+7/, /R i, )[111]/&3

', G'[(—4/-3&3)it I4i+ it'A'2

+(16/3&3)pi/R i, ][100]
—2&2G'[«/9~ 3)KNi+ 6'Pe~3

—(8/9v 3)pi/R i, ][110]/&2
2Q ', 6'pi/2/—R i, [411]/&18

43 G'p', p, [111]/&3
-', G'(('l((' [ 100]

22.93
18.34

35.96

[3.18,0.80,0.80]
—42.24
—7.50

simulation result [Eqs. (15) and (16)] also reported in
Table V. The latter value is taken as the most accurate
one due to the fact that the size of the simulation block
employed guarantees a fairly converged figure. The men-
tioned agreement, however, may be fortuitous in view of
the poor result obtained for the EAM potential in this ap-
proximation. Although we do not expect contributions to
change sign, the more refined analysis proposed in Sec.
III C is needed to compare with the computer results and
to gain insight into the difFerent potentials predictions.
Results for the vacancy relaxation volume computed
along these lines, using the zeroth, first, second, etc., ap-
proximation defined in Sec. III C, are given in Table VII.
It is seen here that the zeroth approximation already
gives a result close to the computer simulation for the
EAM potential. However, for the ED potential higher-
order approximations are needed, at least up to the fifth,
which includes the second (111)neighboring shell. This

TABLE VII. Vacancy relaxation volumes computed with the
di8'erent approximations of Sec. III C for both EAM and ED
potentials. %within parentheses is the neighboring shell included
in the approximation (see text}.

result is consistent with the magnitude and distribution
of the unrelaxed forces shown in Table VI: Forces are
much bigger for the ED potential and decrease slower
with distance than for the EAM potential.

V. SELF-INTERSTITIALS

TABLE VIII. Formation energies Ef (eV), dipole tensor
eigenvaluesI P; and relaxation volumes 6V/0 of the interstitial
configurations simulated with both potentials. E~, E, and Eg
are, respectively, the contributions of the interaction V, embed-

ding function F, and the angular term 6 to E&.

( 110)
EDEAMEDEAM

Formation energies and relaxation volumes are calcu-
lated for the ( 110) and ( 111) dumbbells; the results are
presented in Table VIII. Contributions to Ef of the
difFerent interaction terms are reported separately. The
eigenvalues of the corresponding dipole tensors P are also
given in that table. The relaxed configurations of other
possible interstitials are not recovered under the action of
small perturbations; therefore, they are considered to be

Order of approximation

0
1 ((111))

3 ((220))
4 ((311))
5 ((222))
6 ((400))

—0.154
—0.129
—0.133
—0.132
—0.133
—0.130
—0.130

—0.207
—0.209
—0.156
—0.156
—0.152
—0.118
—0.117

hV/0 (EAM) hV/0 (ED)

E

Pl
P2
P3

5V/0

4.34
4.23
0.11

24.8
10.0
10.0
1.1

4.66
3.88
0.08
0.70

41.9
16.9
16.9
1.9

4.15
4.04
0.11

19.4
10.2
16.8
1.2

4.36
3.59
0.11
0.66

28.1

17.0
26.2

1.8
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unstable and are not reported here.
It is seen that the ED potential gives higher values of

Ef. Because of the angular term, the many-body contri-
butions are more important for this potential than far the
EAM one. Dipole tensor components are bigger for the
ED potential, and therefore the relaxation volumes ob-
tained are significantly higher. Note that P is slightly
more isotropic for the ED potential, i.e., the relative
differences between the three eigenvalues are smaller.

To the authors' knowledge, the only experimental re-
sult on self-interstitial configurations in Fe, obtained by a
magnetic relaxation technique, is that the dumbbell
(110) is the most stable one. Besides this, only a few
calculations are available. Johnson, using pair poten-
tials, ' reports formation energies of various
configurations relative to the (110) dumbbell and their
relaxation volumes. We found same of Johnson's
configurations to be unstable, but the Ef's we obtained
are consistent with the values reported by him, mainly
those for the ED potential. More recently, Harder and
Bacon' calculated formation energies and obtained the
same relative stability of the difFerent configurations as
we do; however, the relaxation volume calculated by
them for the (110) dumbbell is a little lower. Though
experimental results on interstitials volume change are
lacking, the values of b, V/0 given by the ED potential
seem to be too high when compared to the ones calculat-
ed for other bcc metals. ' '

VI. DISCUSSION

The ED method is an empirical extension of the EAM,
in which a term depending on angles between neighbor-
ing atoms is added to the energy functional expression
[Eq. (1)]. In this work we assume a linear dependence of
the energy on the angular many-body variable Y, defined
in Eq. (4}.

One must remember that the EAM-type interatomic
potentials retain the calculation simplicity of the pair in-
teractions, but they allow the fitting of two important
properties that were forbidden within the latter approxi-
mation.

(i) Independent values for the lattice cohesive energy
and vacancy formation energy. For pair potentials these
quantities are equal (except for the lattice relaxation); in
the above EAM approach, where F0=0, these energies
differ by a many-body term

Ef"' "=IE„hI—IFOI+ APC,

where no lattice relaxation is considered; Fo is the perfect
lattice value of the embedding function, Pc is the Cauchy
pressure, and A is a density-dependent function, positive-
ly defined:

gjv„4„
[gjV„R„4„'/3]

Similarly, for the second-moment tight-binding approxi-
mation,

E" = IE I

——'
I
U' '

I

where U~~ is an electronic energy, which depends on the
perfect lattice bandwidth.

(ii) The lattice is held in equilibrium with the correct
Cauchy discrepancy. EAM potentials can reproduce the
elastic constants (c|2+c44) if the Cauchy pressure is posi-
tive, Pc =(c,2

—c~)/2) 0, while equilibrium pair poten-
tials always predict c&2=c44. For the case of negative
Cauchy pressure, the EAM approach imposes to select
nonphysically valid shapes of the embedding function
F(p). The additional many-body term in the ED poten-
tial allows the fitting of the elastic constants even for the
case of Pc (0 [see Eq. (8}].

It is known that several properties of bcc transition
metals cannot be reproduced by pair potentials and that
angular-dependent terms must be considered in the
configurational energy, for instance, to reproduce the
measured phonon dispersion curves. ' Several authors
developed EAM-type potentials for those metals. ' '3

Among the three bcc metals Fe, Nb, and Cr, chosen in
Ref. 5 for the construction of empirical potentials, Fe is
the one that more nearly satisfies the (mathematical) con-
ditions to be approached by a pair interaction. Its Cau-
chy pressure Pc, which is a function related only to the
derivatives of the many-body part of the energy, is posi-
tive. By contrast, Pc of Cr is negative, and that of Nb is
larger than Fe's (0.107 eV/A3 against 0.328 eV/A ). In
addition, the ratio between vacancy formation energy and
cohesive energy in Fe is 0.42 against 0.29 in Cr and 0.26
in Nb. Therefore, on fitting an EAM potential for Fe, the
many-body contribution is small, being the pair part the
dominant one. On fitting the ED potential, we have im-
posed an arbitrary contribution of the many-body part to
the energy. This was fixed as 20%%uo of the (unrelaxed) for-
mation energy of the vacancy. It is important to realize
that although most of this contribution comes from the
angular term G, the contribution of the term F also in-
creases with respect to the one in the EAM approach.

We found that the bcc structure is more easily stabi-
lized with the ED potential than with the EAM one.
Note in Table III that the ED potential gives a higher
value of Ef„Eb„(Ef~is—the cohesive energy of a fcc
lattice with the lattice constant corresponding to the
minimum energy fcc str-ucture found with each potential).
Also, although the "unrelaxed" formation energy of the
vacancy fitted by either potential is the same, after relax-
ation the vacancy is found to be "easier" to create (lower
formation energy) in a lattice held by the EAM potential
than in one held by the ED.

We shall analyze the calculated results for the vacancy
in order to compare differences among the predictions of
either interatomic potential. The displacement field in-
duced by the defect was found to oscillate as the distance
to the vacant site increases. This oscillation can either be
a result of the elastic response of the material, as dis-
cussed by Tewary' regarding the Green function for a
discrete lattice, or be related to the oscillatory character
of the source forces discussed below. One of the features
of the EAM-type interactions is that the many-body vari-
ables and each contribution to the local energy can be as-
sociated with a given lattice site [Eqs. (1}, (3), and (4)].
Therefore density and energy variations as a function of
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the atomic location can be studied. The density oscilla-
tions, as revealed by the parameter p in Fig. 3, follow
those of the displacement field (excluding the defect's
closest neighbors}. Such a result is to be expected, since
density is determined mainly through distances between
interacting shells and 4 is a decreasing function in all its
range. EAM and ED results are quite similar.

Figure 4(b) shows that the many-body, density-
dependent contribution I' (p) to the defect energy decays
almost monotonically with distance from the vacancy.
This contribution is smaller for the EAM potential than
for the ED one, mainly because of the lower curvature of
the corresponding embedding function. The angular con-
tribution G(Y) is more important than the one of the
term F and has a richer structure, reflecting oscillations
in the displacements [remember that in our approxima-
tion the term G( Y) is linear in the angular many-body
variable]. By far, the most important contribution to the
energy relaxation comes from the pair interaction. The
oscillations of this contribution with distance from the
vacancy [Fig. 4(b)] do not follow those of the displace-
ments, being determined both by the distances between
interacting shells and by the shape of the efFective pair
function.

The harmonic response of a lattice to a point-defect
force source was discussed in Sec. III above. Regarding
the vacancy, the Kanzaki forces K at the unrelaxed
configuration are analytically evaluated (Table VI). As
detailed in the Appendix, the forces on any atom coming
from the many-body terms F(p) and G ( Y) can be
thought as composed by two contributions: one due to
the fact that when the atom considered moves, its own p,
or Y, is varied ("self-force") and the other one due to the
variation of the p or Y of its neighbors. The first contri-
bution to I' (p) takes the atom away from the vacancy to-
ward the bulk material, while the second gives a net force
toward the vacancy. A similar situation holds for the an-
gular term G( Y) regarding the first contribution, the bal-
ance for the second being a little more involved though
producing a mainly outward effect. This is a new feature
with respect to the simple EAM model. Compared to the
EAM potential, such an efFect is responsible for a smaller
vacancy relaxation volume. Ohta et al. ' calculated the
force field around the unrelaxed vacancy in several bcc
metals using the tight-binding bond (TBB)model. This is
a more sophisticated approach to atomic cohesion than
either the EAM or ED ones. Some features of that work
resemble the results obtained with the ED potential, par-
ticularly the large many-body force toward the vacancy
acting on the 6fth neighbors, though we do not expect to
reproduce their result of a significant force on the second
neighbors toward the vacancy (only the term F contrib-
utes in this sense in our model}.

In Ref. 31, Ohta et al. described the vacancy relaxa-
tion in terms of the strengthening of bonds connecting
atoms near the defect. This description is somewhat ill
defined within our model because for the many-body con-
tributions energy is associated with atomic sites rather
than with bonds. Nevertheless, as discussed by
Carlsson, either within a second-moment tight-binding
approximation or the EAM formalism, an environment-

dependent efi'ective pair interaction can be defined [Eq.
(5.14) in Ref. 7] in the same fashion as the effective pair
for the perfect lattice. This interaction adds an attractive
term for lower coordination numbers than the bulk;
therefore, the effect of introducing a vacancy could be in-
terpreted as a strengthening of the bonds in the vicinity
of the vacancy. However, Carlsson's description of the
vacancy relaxation can be misleading because of his re-
striction to a first-neighbor interaction. An equilibrium
first-neighbor pair interaction does not relax the single
vacancy (neither a vacancy cluster nor the free surface).
Within the above models, as long as the effective pair in-
teraction reaches more than first neighbors —and this is
likely to be the case for bcc materials —the driving force
of the relaxation may not be bond strengthening. In fact,
in our case this effect is minor (as reflected in Table VI)
for the unrelaxed vacancy forces: The contribution of the
effective pair term on the first two neighbors is much
larger than either of the many-body ones.

The values obtained for the relaxation of the vacancy,
the "computer simulation" row of Table V, are consistent
with experimental results and previous computer simula-
tions in bcc metals. ' We have found that the volume
change computed by means of the unrelaxed force pat-
tern may not be a good approximation, as shown by the
"total unrelaxed" row of Table V. This procedure is
equivalent to the zeroth approximation proposed by
Maysenholder for the case of Finnis and Sinclair's (FS)
potentials. His results show, however, a poor agreement
with the fully relaxed volume changes reported in Ref. 12
calculated with the same potentials. Moreover, we have
found that even for a simple defect such as a vacancy,
anharmonic efFects can be important. In this sense, the
EAM potential shows only a mild anharmonicity and the
zeroth approximation of Table VII already gives a fair
value for the volume change. On the other hand, for the
ED potential with a rather similar displacement pattern
as the EAM, no convergency to the computer simulation
result is reached until the vacancy core is "augmented"
to include the fifth neighbors of the missing atom (fifth
row of Table VII). This fact is related to the big contri-
bution of the angular term to the unrelaxed forces on the
fifth neighboring shell (see Table VI). Therefore the core
region of the vacancy is much more extended for the ED
potential than for the EAM one.

Regarding the interstitial configurations, it was found
that both the EAM and ED potentials reproduce the
minimum energy dumbbell configuration, i.e., the ( 110).
Compared to the results obtained with the EAM poten-
tial, the ED model gives higher formation energies and
relaxation volumes. To the authors' knowledge, the only
experimental interstitial relaxation volume reported for a
bcc metal is the one corresponding to the ( 110)
dumbbell in Mo: about 1.1 at. vol. This value and those
calculated for several bcc metals' using FS potentials
are considerably lower than the results given by the ED
potentia1. This is consistent with a more extended core
region given by the latter potential, since forces induced
by the defect in this region are expected to be mainly out-
wards rather than oscillating. However, it must be kept
in mind that as the displacements produced by intersti-
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tials are larger than those praduced by a vacancy (up to
-20%%uo of the equilibrium first-neighbor distance}, the
linear dependence of the energy on the angular variable Y
may be apen to questian. In addition to the larger relaxa-
tion volume obtained with the ED model, a smaller an-
isotropy in the eigenvalues of the dipole tensor P is
found. As a consequence, volume-dependent defect in-
teractions are predicted to increase and the ones depend-
ing on the anisotropy of P will decrease, with respect to
EAM predictions. A more detailed analysis of the inter-
stitial configuration will be reported elsewhere.

We conclude that even though the overall features af
the lattice relaxation induced by the simulated defects
can be dominated by the effective pair part of the interac-
tions, when many-body angular-dependent forces are in-

troduced, the defect cores are revealed to be different
from the ones calculated with the EAM potential. The
differences are minar if only displacements are analyzed,
but they become apparent when the anharmonic part of
those displacements is studied, as done above.

Regarding the empirical interatomic potentials used in
this work, we can say that both of them are appropriate
for computer simulation of defects. The ED approxima-
tion, which is more sensitive to the atomic environment
than the EAM one, seems to be physically more valid for
relatively small displacements, but it may enhance too
much the anharmonic features of the defect. On the oth-
er hand, the EAM patential is slightly less stable, sup-
porting the general notion that in bcc transition metals
stability is favored by many-body angular-dependent in-
teractions.
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where R, is the first-neighbar distance (R, =R „since
the atoms are at their perfect lattice positions).

The embedding function contributions are

tion with neighbor j. In the preceding equations, r, is"
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atom j and D,~ stands for the ap component of the devi-
atoric part of tensor A, ,

The first term on the right in Eq. (A3} is a contribution
to what we have called the "self-force" in the text, due to
the fact that when the atom moves, its own density is
varied, while the second term is due to the variation of
the density of the neighbor j.Far the angular forces [Eq.
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neighbor contributian is given by terms in G'. Note that
4'&0 and, for densities appropriate far the vacancy,
F'(p)&0. Therefore Eq. (A3} represents an attractive
force between atoms i and j ("bond strengthening").

The different contributions to the unrelaxed Kanzaki
forces af Eq. (25) are reported in Table VI. We shall ex-
emplify the derivation of those expressions calculating
the Kanzaki forces for the atom labeled 0 in Fig. 5 (first
neighbor of the vacancy u}. We shall use the symbol
Kpk [X] to indicate the force on 0 due to atoms k coming
from source X (X = V, F,G); a sum over atoms with the
same label in Fig. 5 is implied in this definition. The con-
tribution of X (X=F,G) to the self-force will be noted as
Kpp[X] ~
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APPENDIX

Kpp[F] =F (Pp)III (R
&

)
[111]

3

Kp] [F]= F (pI }4 (RI) [111]

111
Kp2 [F]= ~3F (p2 }4 (Rg ) (p2'=pp}

3

(A6a}

(A6b)

(A6c)

The a component of the total force on any atom i of
the lattice is

and Kpk[F] =0 for the remaining k's. R2 is the second-
neighbor distance.

Finally, the contribution from the term G is given by

Fc=-
l

E~.~ =QFp. [ V]+FJ [F]+Fp [G],
x,

(Al)

where E„,is the total energy of the crystal and

F;1[V]=—V'(R,")r,

F1[F]=[F'(p; )+F'(p )]CI'(R,")r,

CI(R;J )
FJ[G]=—4g [G D; ~+GJD~]r~

p=f ij

4(R; )—2 g @'(R;J)—2
P, y=1 ij

X [G DPr+G'Dg~]r~rrr,

(A2)

(A3)

(A4)

I
I
I
I

I
I
I
I
I
I

I
Pl

i12

4L

[001]

[100]

[010]

are the contributions to E; of the diferent terms in the
energy expansion [Eq. (1)] corresponding to the interac-

FIG. 5. Vicinity of the vacancy relevant for the unrelaxed
forces calculation.
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replacing G =GJ =G o in Eq. (A4),

Koo[G] = ——Go@(R ) )4'(R, )
4, , [111]

3

16, C(R))4(R2) [111]
Ko& [G]=— Go

] 3

(A7a)

(A7b)

4(R&)4(R2) [111]
Ko2 [G]= 4Go

R, 3
(A7c)

and Kok [G]=0 for the remaining k's.
Note the force balance in Eqs. (A6) and (A7): Equa-

tions (A6a) and (A7a) are positive along [111],while Eqs.
(A6b), (A6c), (A7b), and (A7c) are negative.
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